Automata-based Techniques for the Verification
of Programs with Dynamic Linked Data Structures

Ahmed Bouajjani
LIAFA - University of Paris 7, France

joint work with

Peter Habermehl Pierre Moro
LIAFA - University of Paris 7, France

Adam Rogalewicz Tomas Vojnar
FIT - Brno University of Technology, Czech Rep.

Programs and Properties

Programs

e Finite-state data domains,
e Sequential programs without procedure calls (finite control),

e Dynamic creation of objects, destructive updates and pointer manipulation

Properties

e Absence of intrinsic errors (e.g., null pointer dereference, use of undefined
pointers, reference to deleted elements, etc.)

e Shape properties (e.g., at some given control point of the program, the heap
is always a doubly linked list)

Our approach

e Reduce the verification of shape properties to control point reachability

— Augment the program by testers of shape properties

e Automata-based framework:

— Encode configurations as words/trees
— Use finite-state word /tree automata to represent sets of configurations

— Encode program statements as word/tree transducers

e Apply abstract regular model checking techniques to solve the problem

Symbolic reachability analysis + (refinable) abstractions on automata

Regular Model Checking: A Generic Automata-based Framework
[Pnueli & al., 97], [Wolper, Boigelot, 98], [B., Nilsson, Jonsson, Touili, 00], [B., 01]

Finite State Automata = BDD for Infinite State Systems

Regular Model Checking: A Generic Automata-based Framework
[Pnueli & al., 97], [Wolper, Boigelot, 98], [B., Nilsson, Jonsson, Touili, 00], [B., 01]

Finite State Automata = BDD for Infinite State Systems

Pushdown systems (pop/push rules)
<_7_) <_7_)

()
=) -) ()
(0,0) 7 (7€) @(p,p’)) T (67) O

Py p py — Py

(a7 a) (_7_) (_7_) (_7_)

@ 8 o 8

(1,0)
(Vj <i.Sljl=a)A\Sli]=0b/Si] =a OutToken; || InToken,;

(0,1)

Regular Model Checking: A Generic Automata-based Framework
[Pnueli & al., 97], [Wolper, Boigelot, 98], [B., Nilsson, Jonsson, Touili, 00], [B., 01]

Finite State Automata = BDD for Infinite State Systems

Computing post/pre images: Automata composition

(a,a) (b, D) b
G e
(b,b)
TXlA ~>© >Q
b
T(A) =(Txi1 Al —~01) =2(>}

Regular Model Checking: A Generic Automata-based Framework
[Pnueli & al., 97], [Wolper, Boigelot, 98], [B., Nilsson, Jonsson, Touili, 00], [B., 01]

Finite State Automata = BDD for Infinite State Systems
Reachability analysis: Computing transitive closures

Safety ~» T*(Init) N Bad = ()

Problems to face:

e Non regularity / Non constructibility of 7™ and T*-images
e Termination of the constructions

e State explosion of the automata / transducers

Termination Problem

b
M OO
a a,b
b b
TiAA) O U O
a a a,b
b
ﬂ/b/\
O A e O

Termination problem: Acceleration 7

(a,a) (b, D) b
r @M @ A
b
rA) —O - 8
b
A4 ~O a @ a,b :8
b
O O

Abstract Regular Model Checking

Given a transducer 7, and 2 automata [(initial) and B (bad), check:
™ (I)NB =10

1. Define a finite-range abstraction function oz on automata
2. Compute iteratively (oo 7)*(1),
3.If (a¢o7)*(I) N B = () then answer YES

10

Abstract Regular Model Checking

Given a transducer 7, and 2 automata [(initial) and B (bad), check:
T (I)N B =1

—> Abstract-Check-Refine loop

1. Define a finite-range abstraction function o on automata
2. Compute iteratively (v o 7)*(1),
3.If (a¢/o7)*(I) N B = () then answer YES

4. Otherwise, let 6 be the computed symbolic path from [to B,
5. Check if @ includes a concrete counterexample,

e If yes, then answer NO,

e Otherwise, define a refinement of o which excludes 6, and goto (2).

11

Abstractions based on state space collapsing

o We define parametrized families of abstractions { v, }p:

e We consider equivalence relations ~, on states of automata,

and we define

ap(A) = A/ ~p

e We require that for every p € IP, the equivalence ~, is finite-index

= For every p, o, has a finite image (defines a finite abstract domain)

= Abstract fixpoint computations always terminate

19

Instance 1: Abstraction based on bounded length languages

e Let k£ € N. Then, given an automaton A, consider the equivalence
g1~ o iff L(A,q)=F = L(A, g)=F

where
LA, QS = LA, g) n{w e ©F : |w| <k}
e Forevery k € N, let a.(A) = A/ ~.

e The image of «y. is finite = all minimal automata for the finite languages of
words of lengths < &.

13

Instance 1: Abstraction based on bounded length languages

(a,a) (b, D) b
r D9 e
b
T4 —O - 8
b
A ~O a @ a,b :8
b b
TA) —~O U @ L<i(1)

14

Instance 2: Predicate Automata Abstraction

e Predicate = finite-state automaton (regular language)
olet P={Ay,..., Ay} be a set of predicate automata.

olet A= (2,0Q,qp, F,d) be finite-state automaton. For every ¢ € (), and
for every A; € P, let

qgE=A; iff L(A,q)NL(A;) #0

o Let ~pC () X () be the equivalence relation such that
Vg, € Q. q~p ¢ iff YA, €P. g A; < ¢ = A

o \We define
ap(A) = A/ ~p

= The image of ap is finite = all automata with at most 2IP| states.

15

Instance 2: Predicate Automata Abstraction

12732

(a,a) (b, D) b
T @(b " @ A '@ P ={a>X*}
b
TA) —O . 8
b
T[w](A) —~0 a @ a,b 8
b b
T4) —~O O ©—

Counter-example guided abstraction refinement

17

Counter-example guided abstraction refinement

Refinement of «:
Find o/ C « such that: Y N X # 0 implies o/(Y) N X £ 0.

1R

Counter-example guided abstraction refinement

Refinement of «:
Find o/ C « such that: Y N X # 0 implies o/(Y) N X £ 0.

= Take P = PU{(a(Y)NX,q) : qis astate in o(Y)N X}

19

T(A)
b
@) 0 a @ a,b %
a,b
ap(T1H2(A)) —O— 8
ap(TH)(A) x B —() - o .

Pl =PU {plap2ap3ap4}

a,b

2

ARMC: References

e [he case of words: [B., Habermehl, Vojnar, CAV'04]

e [he case of trees: [B., Habermehl, Rogalewicz, Vojnar, Infinity'05]

e Generic framework: parametrized networks of processes, counter systems,
FIFO channel systems, etc

29

ARMC: References

e [he case of words: [B., Habermehl, Vojnar, CAV'04]

e [he case of trees: [B., Habermehl, Rogalewicz, Vojnar, Infinity'05]

e Generic framework: parametrized networks of processes, counter systems,
FIFO channel systems, etc

e = Application to programs with dynamic linked data structures

929

The 1-next selector case

[B., Habermehl, Moro, Vojnar, TACAS'05]

2

The 1-next selector case

[B., Habermehl, Moro, Vojnar, TACAS'05]

e Heaps are collections of lists with sharing and (non-nested) cycles

e # of sharing points is proportional to # of program variables

T Y
{ {

a -0 - 0 - - d - d - C - C

25

The 1-next selector case

[B., Habermehl, Moro, Vojnar, TACAS'05]

e Heaps are collections of lists with sharing and (non-nested) cycles

e # of sharing points is proportional to # of program variables

r,a —b—n,b—a—my,d—d—y,c—cmyl|z,c—a—ny

e = a finite (known) number of markers is needed
e Program statements correspond to rewrite steps (~» transducers)

e Automatic management of the markers by the transducers

2%

The case of several next selectors

[B., Habermehl, Rogalewicz, Vojnar, SAS'06]

e Several selectors S = {sq,...sn}

¢ > a finite set of labels (data)

e)M a finite number of markers (special labels, e.g., root)

e Heap encoded as a n-ary tree backbone + routing expressions

e Routing expression = regular expression over [1,n] U [1,7] U X U M

root

27

Examples of encodings

root

IR

ﬂ
—

=
DO

e

Examples of encodings

root

20

=
—_

=
[\)

—_

—|

Encoding program statements: Nondestructive updates

Consider the case x =y — s

e Routing expressions are encoded as tree transducers:

Given a tree where a source node n is labeled by a special mark ¢, the transducer T
associated with r moves the mark from n to another node m such that n and m are
related by a path in r.

e The mark ¢ is put on the node of y, the transducer T} is applied, and then z is moved to
the marked node. (Composition of transducers.)

20

Encoding program statements: Destructive updates

Consider the case x — s =y

e With each statement x — s = y, there is one associated routing expression
e the s-next pointer below x is labeled by the routing expression of this statement

e the shortest paths relating occurrences of x and ¥y in the trees are added to the routing
expression (operation on tree automata building a tree transducer encoding of the new
routing expression).

r" = r U Paths(z,y)

e Abstraction on automata =- finite number of routing expressions.

21

Experimental results

e Implementation based on MONA tree automata libraries

e Experimentation on a 64bit Opteron 2.8 GHz

Example Time | Abstraction method | |Q| | N;.f
SLL creation 1s predicates 251 0
SLL reverse bs predicates 52 0
DLL delete bs finite height 100, O
DLL insert 10s neighbour 106 -
DLL reverse s predicates 54 0
DLL insertsort 2s predicates 511 O
Inserting into trees 23s predicates 66| 0
Depth-first search 11s predicates 67 | 1
Linking leaves in trees 40s predicates 5| 2
LL insert bs predicates 51 0
Deutsch-Schorr-Waite tree traversal 47s predicates 126 0O
TL insert 11mn 25s finite height 277 0
TL delete Imn 41s predicates 420 O

SLL = singly linked lists, DLL = doubly linked lists
LL = list of lists
Task = DLL + pointer to the head. TL = list of tasks.

29

Related work

e TVLA approach [Sagiv, Reps, Wilhelm, ... , 1998- ..]

e PALE approach [Klarlund, Moller, Schwartzbach, 1993-2001]

e Logic-based approaches:
Separation logic [O'Hearn, ..., 1999-...],
Logic of Reachable Patterns [Yorsh, Rabinovich, Sagiv, Meyer, B., 06], etc.

e Several (specialized) techniques for the case of lists (and few for trees)

29

Conclusion and future work

e Automata-based techniques for shape analysis

e Promising experimental results

e Other abstraction techniques (specialized for the considered domain)
e Improving automata technology
e Data over infinite domains

e Other families of graphs

Ry

