
Automata-based Techniques for the Verification

of Programs with Dynamic Linked Data Structures

Ahmed Bouajjani
LIAFA - University of Paris 7, France

joint work with

Peter Habermehl Pierre Moro
LIAFA - University of Paris 7, France

Adam Rogalewicz Tomas Vojnar
FIT - Brno University of Technology, Czech Rep.

1

Programs and Properties

Programs

• Finite-state data domains,

• Sequential programs without procedure calls (finite control),

•Dynamic creation of objects, destructive updates and pointer manipulation

Properties

• Absence of intrinsic errors (e.g., null pointer dereference, use of undefined
pointers, reference to deleted elements, etc.)

• Shape properties (e.g., at some given control point of the program, the heap
is always a doubly linked list)

2

Our approach

• Reduce the verification of shape properties to control point reachability

– Augment the program by testers of shape properties

• Automata-based framework:

– Encode configurations as words/trees

– Use finite-state word/tree automata to represent sets of configurations

– Encode program statements as word/tree transducers

• Apply abstract regular model checking techniques to solve the problem

Symbolic reachability analysis + (refinable) abstractions on automata

3

Regular Model Checking: A Generic Automata-based Framework

[Pnueli & al., 97], [Wolper, Boigelot, 98], [B., Nilsson, Jonsson, Touili, 00], [B., 01]

Finite State Automata = BDD for Infinite State Systems

4

Regular Model Checking: A Generic Automata-based Framework

[Pnueli & al., 97], [Wolper, Boigelot, 98], [B., Nilsson, Jonsson, Touili, 00], [B., 01]

Finite State Automata = BDD for Infinite State Systems

Pushdown systems (pop/push rules)

(p, p′) (p, p′)(γ, ε) (γ, γ′) (ε, γ)

(−,−) (−,−)

pγ 7→ p′ pγ 7→ p′γ′γ

Parametrized networks
(−,−)

(0, 1) (1, 0)(b, a)

(−,−)(a, a) (−,−)

OutToken i || InToken i+1(∀j < i. S[j] = a) ∧ S[i] = b / S[i] := a

5

Regular Model Checking: A Generic Automata-based Framework

[Pnueli & al., 97], [Wolper, Boigelot, 98], [B., Nilsson, Jonsson, Touili, 00], [B., 01]

Finite State Automata = BDD for Infinite State Systems

Computing post/pre images: Automata composition

(b, a)

(a, a) (b, b)

T A1 2 1′

2, 1′1, 1′

1, 1′ 2, 1′

(b, b)

b

b

a

(b, a)

T (A) = (T ×1 A)|2

T ×1 A

6

Regular Model Checking: A Generic Automata-based Framework

[Pnueli & al., 97], [Wolper, Boigelot, 98], [B., Nilsson, Jonsson, Touili, 00], [B., 01]

Finite State Automata = BDD for Infinite State Systems

Reachability analysis: Computing transitive closures

Safety ; T ∗(Init) ∩Bad = ∅

Problems to face:

• Non regularity / Non constructibility of T ∗ and T ∗-images

• Termination of the constructions

• State explosion of the automata / transducers

7

Termination Problem

(b, a)

(a, a) (b, b)

T A

b

b

T (A)

b

a

a

a, b

b

a, ba a

T [1,2](A)

T [1,3](A)

b

T+(A)
a a a

b

a, b

b

b
• • •

8

Termination problem: Acceleration ?

(b, a)

(a, a) (b, b)

T A

b

b

T (A)

b

a

a

a, b

b

a, ba a

a

a b

a, b

T [1,2](A)

T [1,3](A)

T+(A)

b

9

Abstract Regular Model Checking

Given a transducer τ , and 2 automata I (initial) and B (bad), check:

τ∗(I) ∩B = ∅

1. Define a finite-range abstraction function α on automata

2. Compute iteratively (α ◦ τ)∗(I),

3. If (α ◦ τ)∗(I) ∩B = ∅ then answer YES

10

Abstract Regular Model Checking

Given a transducer τ , and 2 automata I (initial) and B (bad), check:

τ∗(I) ∩B = ∅

=⇒ Abstract-Check-Refine loop

1. Define a finite-range abstraction function α on automata

2. Compute iteratively (α ◦ τ)∗(I),

3. If (α ◦ τ)∗(I) ∩B = ∅ then answer YES

4. Otherwise, let θ be the computed symbolic path from I to B,

5. Check if θ includes a concrete counterexample,

• If yes, then answer NO,

•Otherwise, define a refinement of α which excludes θ, and goto (2).

11

Abstractions based on state space collapsing

•We define parametrized families of abstractions {αp}P:

•We consider equivalence relations 'p on states of automata,

and we define
αp(A) = A/ 'p

•We require that for every p ∈ P, the equivalence 'p is finite-index

⇒ For every p, αp has a finite image (defines a finite abstract domain)

⇒ Abstract fixpoint computations always terminate

12

Instance 1: Abstraction based on bounded length languages

• Let k ∈ N. Then, given an automaton A, consider the equivalence

q1 'k q2 iff L(A, q1)
≤k = L(A, q2)

≤k

where
L(A, q)≤k = L(A, q) ∩ {w ∈ Σ∗ : |w| ≤ k}

• For every k ∈ N, let αk(A) = A/ 'k

• The image of αk is finite = all minimal automata for the finite languages of
words of lengths ≤ k.

13

Instance 1: Abstraction based on bounded length languages

(b, a)

(a, a) (b, b)

T A

b

b

T (A)

b

a

a

a, b

b

a, ba a

a

a b

a, b

T [1,2](A)

T [1,3](A)

b

L≤1(1) = L≤1(2)1 2

α1(T
[1,3](A))

14

Instance 2: Predicate Automata Abstraction

• Predicate = finite-state automaton (regular language)

• Let P = {A1, . . . , An} be a set of predicate automata.

• Let A = (Σ, Q, q0, F, δ) be finite-state automaton. For every q ∈ Q, and
for every Ai ∈ P , let

q |= Ai iff L(A, q) ∩ L(Ai) 6= ∅

• Let 'P⊆ Q×Q be the equivalence relation such that

∀q, q′ ∈ Q. q 'P q′ iff ∀Ai ∈ P . q |= Ai ⇔ q′ |= Ai

•We define
αP(A) = A/ 'P

⇒ The image of αP is finite = all automata with at most 2|P| states.

15

Instance 2: Predicate Automata Abstraction

(b, a)

(a, a) (b, b)

T

b

T (A)

b

a

a

a, b

b

a, ba a

T [1,2](A)

T [1,3](A)

b

1 2

b

1 'P 2

A

b

a

a

a, b
αP(T [1,3](A))

P = {aΣ∗}

16

Counter-example guided abstraction refinement

X
Bad

Y

τ τ
τ

τ −1

α(Y)

17

Counter-example guided abstraction refinement

X
Bad

Y

τ τ
τ

τ −1

α(Y)

Refinement of α:

Find α′ ⊆ α such that: Y ∩X 6= ∅ implies α′(Y) ∩X 6= ∅.

18

Counter-example guided abstraction refinement

X
Bad

Y

τ τ
τ

τ −1

α(Y)

Refinement of α:

Find α′ ⊆ α such that: Y ∩X 6= ∅ implies α′(Y) ∩X 6= ∅.

⇒ Take P ′ = P ∪ {(α(Y) ∩X, q) : q is a state in α(Y) ∩X}

19

b

T (A)

b

a

a

a, b
T [1,2](A)

(b, b)(a, a) b

(b, a)

1 2 1 'P 2

a, b

a
αP(T [1,2](A))

a

a a, b

b
AT B P = {Σ∗, ∅}

.

20

b

T (A)

b

a

a

a, b
T [1,2](A)

(b, b)(a, a) b

(b, a)

1 2 1 'P 2

a, b

a
αP(T [1,2](A))

a

a a, b

b
AT B

p1
a

p2
b a

1 6'P ′ 2

p3

a, b

p4

P ′ = P ∪ {p1, p2, p3, p4}

αP(T [1,2])(A)×B

P = {Σ∗, ∅}

21

ARMC: References

• The case of words: [B., Habermehl, Vojnar, CAV’04]

• The case of trees: [B., Habermehl, Rogalewicz, Vojnar, Infinity’05]

• Generic framework: parametrized networks of processes, counter systems,
FIFO channel systems, etc

22

ARMC: References

• The case of words: [B., Habermehl, Vojnar, CAV’04]

• The case of trees: [B., Habermehl, Rogalewicz, Vojnar, Infinity’05]

• Generic framework: parametrized networks of processes, counter systems,
FIFO channel systems, etc

•⇒ Application to programs with dynamic linked data structures

23

The 1-next selector case

[B., Habermehl, Moro, Vojnar, TACAS’05]

24

The 1-next selector case

[B., Habermehl, Moro, Vojnar, TACAS’05]

• Heaps are collections of lists with sharing and (non-nested) cycles

•# of sharing points is proportional to # of program variables

z

a b b a dd c

a

c

x y

c

.

25

The 1-next selector case

[B., Habermehl, Moro, Vojnar, TACAS’05]

• Heaps are collections of lists with sharing and (non-nested) cycles

•# of sharing points is proportional to # of program variables

z

a b b a dd c

a

c

x y

c

n m

x, a → b → nt, b → a → mt, d → d → y, c → c, mf ‖ z, c → a → nf

•⇒ a finite (known) number of markers is needed

• Program statements correspond to rewrite steps (; transducers)

• Automatic management of the markers by the transducers

26

The case of several next selectors

[B., Habermehl, Rogalewicz, Vojnar, SAS’06]

• Several selectors S = {s1, . . . sn}
• Σ a finite set of labels (data)

•M a finite number of markers (special labels, e.g., root)

• Heap encoded as a n-ary tree backbone + routing expressions

• Routing expression = regular expression over [1, n] ∪ [1, n] ∪ Σ ∪M

s2

r2r1

w

w ∈ L(r2)

root

27

Examples of encodings

⊥

⊥

r1

r1

r1 r2

r2

r2

r1 = 1

r2 = 1

root

.

28

Examples of encodings

⊥

⊥

r1

r1

r1 r2

r2

r2

r1 = 1

r2 = 1

root

r1 = 1

r2 = 1
+
root

29

Encoding program statements: Nondestructive updates

Consider the case x = y → s

• Routing expressions are encoded as tree transducers:

Given a tree where a source node n is labeled by a special mark �, the transducer Tr

associated with r moves the mark from n to another node m such that n and m are
related by a path in r.

• The mark � is put on the node of y, the transducer Tr is applied, and then x is moved to
the marked node. (Composition of transducers.)

r

�
x

x

y y

�Tr

w ∈ L(r)

r

30

Encoding program statements: Destructive updates

Consider the case x → s = y

•With each statement x → s = y, there is one associated routing expression

• the s-next pointer below x is labeled by the routing expression of this statement

• the shortest paths relating occurrences of x and y in the trees are added to the routing
expression (operation on tree automata building a tree transducer encoding of the new
routing expression).

x yy x
r′r

r′ = r ∪ Paths(x, y)

• Abstraction on automata ⇒ finite number of routing expressions.

31

Experimental results

• Implementation based on MONA tree automata libraries

• Experimentation on a 64bit Opteron 2.8 GHz

Example Time Abstraction method |Q| Nref

SLL creation 1s predicates 25 0
SLL reverse 5s predicates 52 0
DLL delete 6s finite height 100 0
DLL insert 10s neighbour 106 –
DLL reverse 7s predicates 54 0

DLL insertsort 2s predicates 51 0
Inserting into trees 23s predicates 65 0
Depth-first search 11s predicates 67 1

Linking leaves in trees 40s predicates 75 2
LL insert 5s predicates 55 0

Deutsch-Schorr-Waite tree traversal 47s predicates 126 0
TL insert 11mn 25s finite height 277 0
TL delete 1mn 41s predicates 420 0

SLL = singly linked lists, DLL = doubly linked lists
LL = list of lists
Task = DLL + pointer to the head. TL = list of tasks.

32

Related work

• TVLA approach [Sagiv, Reps, Wilhelm, ... , 1998- ...]

• PALE approach [Klarlund, Moller, Schwartzbach, 1993-2001]

• Logic-based approaches:

Separation logic [O’Hearn, ..., 1999-...],

Logic of Reachable Patterns [Yorsh, Rabinovich, Sagiv, Meyer, B., 06], etc.

• Several (specialized) techniques for the case of lists (and few for trees)

33

Conclusion and future work

• Automata-based techniques for shape analysis

• Promising experimental results

•Other abstraction techniques (specialized for the considered domain)

• Improving automata technology

•Data over infinite domains

•Other families of graphs

34

