
- 1 -

Concurrent Object Oriented Programming in a
Logic Variable Language

Matthew Huntbach
Department of Computer Science

Queen Mary and Westfield College
London E1 4NS, UK

mmh@dcs.qmw.ac.uk

Abstract This article introduces a concurrent object oriented language whose
underlying operational semantics is based on the logic variable. The language is
designed in reponse to Kahn’s criticisms [Kahn 89] of previous attempts to build
concurrent object-oriented languages on top of concurrent logic languages. We
believe Aldwych is a language which removes the verbosity of concurrent logic
language code, without removing the power for abstract concurrent programming.

Introduction
The Japanese Fifth Generation Project is often considered a failure. Having been
launched with ambitious goals of producing intelligent systems, its spokespeople
consider its most important product to be a programming language, KL1
[Sh & Wa 93]. In fact KL1 is just one example of a family of languages [Shap 89]
which originated from attempts to introduce parallelism to the logic programming
paradigm, but whose main characteristics stem from pragmatic decisions made in
order to map a language with a Prolog-like syntax efficiently onto a parallel
architecture.

The decision to abandon Prolog’s backtracking as a feature heavily dependent on
sequential access to a global stack, and to impose modes on predicate arguments in
order to synchronise parallel execution, looked like seriously weakening the logic
programming model. Unable to lose the “parallel Prolog” tag, these languages were
viewed in terms of their weakness rather than their strength. However, their main
contribution may be in their introduction of a simple concept of computation tailored
to distributed computing, termed, in recognition of its origin, the “logic variable”. The
value of the logic variable to distributed computing is discussed in more detail by
Haridi et al [Hari 99].

There is a growing realisation that computing needs to escape from the sequential von
Neumann model. At the time of the Fifth Generation project the main reason for
wishing to consider alternatives was one of efficiency. Declarative languages were
considered more efficient to program with, particular for the complex problems of
intelligent systems, but inefficient to run. The inefficiency of running them could be
overcome by parallel architectures, for which declarative languages were considered
particularly suited as their referential transparency property meant computations could
easily be split up and distributed. More recently, however, the development of
computers as things embedded in an environment rather than standalone devices
performing single computations has been the dominant factor in pushing
reconsideration of our underlying model of computation. The environment may be
human users interacting with the computer, physical devices which the computer runs,
or the network of computers of which the individual computer is just a component.
Gelernter and Carriero [Ge & Ca 92], in arguing the case for languages oriented
around coordinating computations rather than doing computations, state that this
coordination is the dominating issue in modern computer systems research.
Concurrency in artificial intelligence now is of interest not just for parallel speedups
but also because multi-agent systems which are inherently concurrent are becoming
an increasingly important aspect of the field.
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Logic Variable Languages
While the concurrent logic languages did not achieve the success hoped for, they have
been part of the background of several innovative programming languages. They may
therefore be regarded as an evolutionary step. The languages which have evolved
from them have generally dropped the claim to be part of the logic programming
paradigm, but have kept to the simple underlying computational model first present in
concurrent logic programming, one in which the logic variable accomplishes with
ease many of the things accomplished only with great difficulty in languages where
distribution is “bolted on” to the sequential von Neumann model. Additional concepts
such as semaphores, critical sections or monitors are not required.

The first of these languages is Strand [Fo & Ta 89] which for a while was successfully
marketed as a coordination language. In fact Strand was more a marketing trick than a
new language: simply concurrent logic programming explained without using logic
programming idioms. The authors of Strand developed the model further, into a
notation they called PCN [Fost 96]: the “definitional variable” of PCN is a logic
variable although PCN code does not resemble logic programming code. The
emphasis in PCN is on composing existing components written in imperative
languages to build systems which may be run on highly parallel computers. To aid
this it adds to the model notations for mapping computations onto meshes of
processing elemements.

The language ToonTalk [Kahn 96] describes the concurrent logic model in a cartoon
metaphor, giving a graphic environment intended for children, where aspects of the
language are represented by concrete objects in the cartoon world, and programming
is done by manipulating these objects. Clearly, abandoning the text base of the
language altogether is a particularly radical step in presenting the computational
model of concurrent logic programming in a new form.

The most successful of the logic variable languages in terms of practical usage is
Erlang [Arms 96]. Erlang was developed by Ericsson and has been used extensively
by them in building telecommunications applications. Ericsson have noted the
improvement in programmer productivity resulting from adopting a declarative
language. Like PCN, Erlang adds mapping notations to the underlying model, but also
mechanisms for dealing with node failure. Although Ericsson acknowledge the
influence of concurrent logic languages in the development of Erlang, indeed an early
version was implemented in Strand, they prefer to promote it as a functional language.

Challenging Erlang as a robust language with the sort of human and system support
needed for a language to succeed, is Oz [Smol 95]. Oz originates from concurrent
constraint programming [Sa & Ri 90], which adds arithmetic constraints to the partial
binding constraints of the standard logic variable. While of all the languages
described in this section, Oz is the one which makes the most claims about its links
with logic programming, it is arguably the one which has moved the furthest distance
from the original logic programming model. It has introduced mutable variables as a
primitive, and while early versions of Oz kept with the concurrent logic language aim
of exploiting parallelism implicitly, later versions [Ha & Fr 99] have abandoned this
in favour of explicit control over concurrency by means of a thread creation construct.

The Logic Variable
A logic variable conceptually has a fixed value from the moment of its creation, but
the value is unknown until the variable is bound. The communication needed to bind a
logic variable is part of the variable and not part of the program manipulating the
variable. This means the variable can be passed around at will. The computations
passing the logic variable need not know its value. In the concurrent logic model the
only restriction on concurrency is that a computation will suspend if it needs to know
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the value of a logic variable to make a choice. In a distributed environment, the value
of a logic variable will eventually be communicated to every computation that is
suspended waiting for it, but no guarantee is offered over communication time
between one computation binding the variable and others learning of the binding,
including no guarantee that one will learn of it before another if more than one is
suspended on it. A variable may be bound to a value which is a compound term with
components which may themselves be logic variables, the component logic variables
may be bound separately at a later time. Variables may not be reassigned once bound,
and concurrent logic programming’s abandoning of Prolog’s backtracking means
there is no problem with a logic variable being tentatively bound to some value only
to have that value rescinded through backtracking [Hu & Ri 95], this problem being
one of the difficulties in creating a true parallel Prolog.

As described above, a logic variable is just like a future in concurrent functional
[Hals 85] or object-oriented [Lieb 87] languages. Where it differs is over flexibility in
readers and writers. Crucially, if a logic variable is bound to a compound term
containing a logic variable, the binding of the inner logic variable need not be done by
the same computation, it could be done by a computation which received the binding
of the outer logic variable. This is known as “back communication”.

Logic programming as originally conceived [Kowa 74] had no concept of variables
having readers and writers, making no distinction between testing whether a variable
had a particular value and assigning that value to the variable. In reality, however, the
nature of Prolog’s search order and primitives mean that most programs in the
language make an actual but not syntactic distinction between input and output
variables. Programmers have to know the intended role of arguments to predicates.
Concurrent logic languages keep the lack of syntactic distinction between readers and
writers (although some have a mode declaration [Cl & Gr 86]), but it rarely makes
sense to have multiple unsynchronised writers to a single assignment variable, and
mechanisms suggested to handle the possibility (such as “test-and-set” operations
[Yard 90]) are awkward. The fact that the concurrent logic languages break from
Prolog in making a strong distinction between setting and testing the value of a logic
variable call into question the wisdom of keeping to the modeless syntax.

In fact the attempts of the concurrent logic languages to hold onto a syntax based on
attempts to build “computational logic” may have been a prime reason for their lack
of success. The cumbersome nature of programs in these languages has been a major
motivation in the development of languages like Oz and Erlang which have logic
variables but not a logic syntax. At the extreme, languages which closely resemble
existing conventional imperative languages, but have logic variables rather than
mutable variables have been suggested [Thor 95].

A Concurrent Object Oriented Language Implemented with Logic
Variables
We propose building a concurrent object oriented languages which uses logic
variables. In fact we shall insist that our language maintains a direct translation into
standard concurrent logic language code. We call our language “Aldwych” as a pun
on the concurrent logic language Strand (the London street Aldwych turns into the
London street Strand).

This approach is not new. Following a description of a method of writing concurrent
logic programs which viewed them in object terms rather than logic terms
[Sh & Ta 83], a number of attempts were made to build object-oriented languages
which compiled into concurrent logic languages [Davi 92]. The main advantage of
maintaining the direct translation into a concurrent logic language is that it provides
us with an operational semantics, in much the same way lambda-calculus provides
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pure functional programming with an operational semantics. The existence of efficient
compilers for concurrent logic languages means the translation provides us with an
implementation which piggy-backs on this existing work done to implement logic
variables on distributed systems [Roku 96]. This is not to say that Aldwych must
always be implemented this way, however. Unlike some of the previous attempts to
build concurrent object-oriented languages on top of concurrent logic languages, our
aim is that Aldwych should be a language which stands on its own, rather than a tool
for assisting logic programmers. The user of Aldwych should not need to know the
concurrent logic translation, and should never have to resort to writing sections of
code in a concurrent logic language. The clean nature of the underlying concurrent
logic language should however guard against the tendency of languages to accumulate
“features” which break the original spirit of the language turning it into a “ball of
mud” (compare Lisp with functional languages which have maintained their pure
functional nature). Also, the translation into a concurrent logic language may be
further processed by using partial evaluation [Hunt 89], a process which works best
when applied to a language lacking in large numbers of features whose interactions
with each other have to be kept into account.

Additionally, we have designed Aldwych in the light of the criticisms made of
“concurrent object on top of concurrent logic” languages by one of those involved
with the development of one of these languages [Kahn 89]. The main criticism was
that the languages, in attempting to closely model existing concurrent object-oriented
languages, have lost the flexibility of their underlying concurrent logic model.
Aldwych contains a number of features with easy representation in the concurrent
logic model, but not found in previous concurrent object-oriented languages.

Concurrent Objects and Agents
The foundations of concurrent object-oriented programming were laid by Hewitt
[Hewi 77], who recognised that computations could be described in terms of simple
agents he termed “actors” exchanging messages rather than as a single thread of
control through a program manipulating the mutable store of the von Neumann
computer. There was a sharp distinction between the real concurrency envisaged by
Hewitt, and the simulated concurrency of Simula [Birt 73], the language which laid
the foundation for sequential object-oriented programming. Hewitt’s actors have been
a minor theme in the development of the object-oriented paradigm (stronger in
Smalltalk, but of little influence in C++ and Java), but it is the theme of most interest
to those who wish to develop object-oriented programming into multi-agent systems.

Shoham [Shoh 93] describes agent-oriented programming as specialising concurrent
object-oriented programming by limiting the states which objects may have, the sort
of messages they may exchange, and the way they may interpret those messages.
Hewitt developed the actor model by investigating open systems [He & In 91], where
an open system is a collection of interlinked services operating concurrently and
asychronously, without central control. Actors and concurrent logic languages have
been proposed as the two computational models most suited for open systems
[Ka & Mi 88]. An important aspect of open systems is that the components must be
able to encapsulate control of hardware alongside the software encapsulation of
standard objects. Erlang may be considered as answering some of the criticisms of
those working in open systems on concurrent logic languages lack of hardware
control by adding explicit control of hardware, including mechanisms for dealing with
sytems failure. The most explicit encapsulation of hardware resources in an object-
oriented style is found in Joule [Agor 95], another language which acknowledges the
influence of concurrent logic languages.

Consideration has been given to the direct use of concurrent logic languages for
programming agents [Hunt 95]. A concurrent logic language augmented with
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annotations (which may be compiled away giving a pure concurrent logic program)
has been used to control a system involving multiple robots, with manipulators and
vision sensors, which interact by negotiation [Nish 98]. However, the direct use of
concurrent logic languages tends to lead to verbose programs in which there is a lot of
obvious redundancy. One of the motivating factors of Aldwych is to identify and
remove this redundancy by observing common patterns in concurrent logic programs
designed in an object-oriented style and providing language features which represent
these patterns in a more convenient form.

Readers and Writers
A call to an Aldwych computation consists of a process type name, followed by a list
of variables which are those the computation is a reader for, and a further list of those
the computation is a writer for. For example
comp(u,v)->(x,y)
represents a call to a computation of type comp which is a reader of u and v and a
writer to x and y. The second pair of brackets may be omitted if a computation is a
writer to only one variable. A collection of computations must have the property that
every variable has exactly one writer and one or more readers. For example:
comp1(u,v)->(x,y), comp2(x)->u, comp3(y)->v, printer(v)
where v has one writer, a comp3 computation, but two readers: a printer and a
comp1  computation. Aldwych has no primitive input/output commands, but
processess could be linked to hardware devices as suggested by the term printer.

One cause of verbosity in concurrent logic languages is the lack of embedded calls,
necessitating much invention of names to pass values. Aldwych has embedded calls,
for example
comp1(comp2(x),v)->(x,y), comp3(y)->v, printer(v)
is defined as equivalent to the above. This gives the language more of a functional
feel. Circular data flow, as with the variable x is permitted.

A process description in Aldwych consists of a header naming the input and output
variables, and a set of reaction rules. A reaction rule has a left-hand side (lhs) giving
the variable bindings that must occur on the input variables for the procedure call to
rewrite to the procedure collection on the right-hand side (rhs) of the rule. On the lhs,
x=a means “suspend until variable x is equal to constant a”, on the rhs it means “bind
variable x to constant a”. On the rhs x<-y means “assign input variable y to output
variable x. So the process description
#comp1(u,v)->(x,y)
{
 u=a || x=b, y<-v;
 v=c || z<-comp2(u), y<-z, x<-comp3(z);
}
means comp1(u,v)->(x,y) is suspended until either u gets assigned constant a or
v gets assigned constant c. Other computations operating concurrently will be doing
the assigning. The first rule says that when comp1 learns that u has become a it
assigns constant b to x, and variable v to y. The latter assignment means any reader
of y becomes a reader of v. The second rule shows a more complex example. It sets
up two computations and introduces a local variable z. Here z<-comp2(u) is just
another way of writing comp2(u)->z. Local variables like z must have exactly one
writer and one or more readers. Process output variables, like x and y must have
exactly one writer in every rule. Process input variables like u and v need not have
readers in the rules. Failure to have the correct number of readers or writers results in
a compiler error.
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Aldwych is indeterminate. A comp1 computation will react to whichever of its input
variables is bound first if it has immediate access to a processor. However if no
attempt is made to evaluate it until both input variables are bound it reacts
indeterminately according to either rule.

Long Lived Processes
The computation described above are ephemeral. The way of making long-lived
processes in Aldwych follows the technique for programming in an object-oriented
style in concurrent logic languages described by Shapiro and Takeuchi [Sh & Ta 83].
Note firstly that variables may be assigned tuple values as well as constants.
a=f(b,c) on the lhs means “suspend until variable a has been assigned to a tuple
with name f and two arguments given local variable names b and c”, and on the rhs
means “assign the tuple with name f and arguments variables b and c”. If a=f(b,c)
occurs on the rhs, b  and c  must have each have a writer there. However, no
synchronisation is required between a being given value f(b,c) and b and c being
given their values. If a=f(b,c) occurs on the lhs, b and c can have no writers on the
rhs but can have any number of readers. Thus tuples as described here may not be
used for back communication. The reason for this is that as a may have several
readers, allowing b or c to be used for back communication would enable each of
these readers to be a writer for b or c, thus breaking the rules that ensure every
variable has exactly one writer. The match a=f(b,c) on the lhs has no dependence
on whether b and c have been given values by the time it is made.

Actors work by handling a message and specifying a new actor to handle the next
message [Agha 90]. This is how concurrent object oriented programming is modelled
in concurrent logic languages: a recursive call in the body of a clause is considered to
be a continuation of the object which reacted according to that clause. A message is
sent by binding a shared variable to a tuple, one of whose arguments is a variable
intended to be used for similar communication of the next message. Here is a process
which receives a stream of add messages, adding the arguments of the messages to a
sum until the stream is ended, and the sum is then returned as the value of the
computation:
#adder(count,mess)->sum
{
 mess=add(val,mess1) || sum<-adder(count+val,mess1);
 mess=end || sum<-count;
}
To avoid the verbosity here, Aldwych rules which have a single bar separator have an
unwritten recursive call. The arguments to the recursive call are the same as the
arguments to the call that made it unless they have been changed by an assignment.
So an assignment a<-e on the rhs of a single bar rule where a is a process input
variable and e is an expression means that e replaces a in the recursive call to the
process. This means the above is more concisely written in Aldwych:
#adder(count,mess)->sum
{
 mess=add(val,mess1) | count<-count+val, mess<-mess1;
 mess=end || sum<-count;
}
It can be seen that though we are dealing with logic variables here, it makes sense to
think of count as a mutable variable which forms part of the state of an adder
process. Note that also an output process variable may have its value changed. If we
start off with a version of the adder process which unlike the previous one is not tail
recursive:
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#adder(mess)->sum
{
 mess=add(val,mess1) || sum<-adder(mess1)+val;
 mess=end || sum<-0;
}
the version with implicit recursion is:
#adder(mess)->sum
{
 mess=add(val,mess1) | sum<-sum+val, mess<-mess1;
 mess=end || sum<-0;
}
This is less intuitive to those used to thinking in a sequential imperative style, since in
sum<-sum+val, the second sum is a value which is to be calculated, not a previous
value stored in variable sum. In general, if we have a<-e on the rhs of a single bar
rule, where a is a process output variable and e an expression, any other reference to
a (including any inside e) is taken to refer to the output variable of the implicit
recursive call.

Aldwych goes further and uses a similar implicit recursion to handle channels used to
pass messages. Firstly, let us go back to our original tail-recursive adder, and consider
using : as an infix tuple operator:
#adder(count,channel)->sum
{
 channel=add(val):channel1 || sum<-adder(count+val,channel1);
 channel=end || sum<-count;
}
Here is the less verbose syntax allowed by Aldwych to mean the same as this:
#adder(count,channel)->sum
{
 channel.add(val) || sum<-adder(count+val,channel);
 channel$ || sum<-count;
}
So c.mess on the lhs is equivalent to c=mess:c1 on the lhs with all occurrences of
c replaced by c1 on the rhs. Also c$ indicates that a variable representing a channel
has been set to a special value indicating “end of channel”. Combining this with the
implicit recursion on process calls gives:
#adder(count,channel)->sum
{
 channel.add(val) | count<-count+val;
 channel$ || sum<-count;
}
Output channels can be expressed by a similar notation. a.mess on the rhs where a
is a process output variable is equivalent to a<-mess:a1,a1<-a where the second
a refers to the equivalent output variable from the implicit recursive call, other
references to a in the rhs will also refer to this a from the recursive call. a$ binds
variable a to the “end of channel” value. So here is a version of the adder process
which instead of returning a single sum, sends out a stream of sum messages which
give the sums of the numbers received in add messages as they are received:
#adder(count,in)->out
{
 in.add(val) | count<-count+val, out.sum(count);
 in$ || out$;
}
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Since c.f(a,b) on the rhs means “send the tuple f(a,b) on channel c”, a separate
notation is needed to compute and send a value: c^f(a,b) means “evaluate
f(a,b) and send the result on channel c”. On the lhs, c?a means the new local
variable a is bound to whatever is the next value on channel c, compare with c.a
which only reacts to channel c receiving the constant a.

Objects
The above gives us a notation which is similar to CSP [Hoar 85]. It could be used to
program simple reactive agents. We could have input channels to a process connected
to sensors, and output channels connected to effectors to program an agent which
works in an environment. However, for more sophisticated agents we need better
means of two way communication. In concurrent logic languages this is done with
the logic variable’s back communication, but the rules on readers and writers
described above do not allow it. The rules above do allow one-to-many
communication as a channel may have more than one reader, but do not allow the
many-to-one communication of actor programming.

Many-to-one communication in concurrent logic programming is achieved by channel
merging. A non-deterministic merge of two channels is easily defined in Aldwych:
#merge(c1,c2)->m
{
 c1?v | m^v;
 c2?v | m^v;
 c1$ || m<-c2;
 c2$ || m<-c1;
}
Messages received on the two input channels will be output on the output channel in
the order received. Two channels which are merged may both be considered handles
on a single process:
comp1(a1)->c1, comp2(a2)->c2, comp3(merge(c1,c2),a3)->out
So the comp3 process will have a single channel containing messages from both the
comp1 and comp2 process, c1 and c2 being their respective handles on it. However,
for a closer resemblance to actors, the handles should be considered as inputs (or
acquaintances) of the comp1 and comp2 processes. In Aldwych, a variable starting
with a capital letter is taken to refer to an object. Object variables have the same rule
as other variables, having exactly one writer and any number of readers. A translation
is made so that an object variable in a read position is converted to a channel with a
unique name in a write position, and all the write channels derived from a single
object variable are merged to form a read channel. This read channel replaces the
single write occurrence of the object variable. So the above can be written:
comp1(a1,C), comp2(a2,C), comp3(a3)->(out,C)
Here comp3 produces both an output value and an object handle. This is permissible,
but more usually a process will produce only object handles (in which case it can be
regarded as an actor) or non-object values (in which case it can be regarded as a
function). Although comp1 and comp2 are indicated as having no outputs, they
interact by sending messages to the object C which they share.

Now, each reference to an object, such as C above, becomes a channel which has just
one writer and one reader, the implicit merge process. The merge process writes to
one channel which again has one reader, the process which had the one write
occurrence of the object variable. Thus we are guaranteed that a message sent on one
of the channels used to implement the object is not duplicated in a one-to-many
communication, so we can use it for back communication. This is the key result which
enables us to build actor-like concurrent object oriented programming into Aldwych.
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A message is sent to an Aldwych object just like messages are sent to channels, but
messages sent to channels may not have return variables nor may any of their
arguments be object variables. No such restrictions apply to messages sent to objects.
The syntax Obj.mess(in)->out refers to sending a message of type mess to
object Obj with argument in and having a reply returned in variable out. This
counts as a write occurrence of out. The object referred to by Obj is guaranteed to
receive it and must eventually bind variable out, but there is no synchronisation
except a process which needs the value of out to react will suspend until it receives
it. A process which does not need to know the value of out may handle it as a future.
We can implement the past, now and future types of message passing of the
concurrent object-oriented language ABCL [Yone 90] without a special syntax.

Bank Account Objects
Bank account objects are often used as an example to illustrate object oriented
programming, and we shall demonstrate Aldwych using this familiar example. Here is
the basic bank account class:
#account(balance)->Handle
{
 Handle.deposit(sum) | balance<-balance+sum;
 Handle.balance->reply | reply<-balance;
 Handle.withdraw(sum)->reply, sum>balance | reply<-0;
 Handle.withdraw(sum)->reply, sum<=balance |
     reply<-sum, balance<-balance-sum;
 Handle$ ||;
}
The last rule causes an object to terminate if its handle becomes “end-of-channel”,
which combined with setting a channel to an object to end-of-channel when it is no
longer referenced gives us garbage collection on objects. The code is still verbose,
though much less than if written directly in a concurrent logic language. Further
shorthands are available in Aldwych to reduce verbosity and bring code closer to an
object-oriented look. Firstly, if a class has a single output object handle, the output
stream may be made anonymous (indicated by ~). An unattached message on the lhs
is taken to be attached to the anonymous handle, rendering the above (the garbage
collecting final clause is unwritten as it is added as a default by the Aldwych system):
#account(balance)~
{
 deposit(sum) | balance<-balance+sum;
 balance->reply | reply<-balance;
 withdraw(sum)->reply, sum>balance | reply<-0;
 withdraw(sum)->reply, sum<=balance |
     reply<-sum, balance<-balance-sum;
}
Secondly, anonymous replies to messages are allowed, indicated by dropping the > in
-> on the lhs, and on the rhs >value means assign value to the anonymous return
on the lhs. This gives us:
#account(balance)~
{
 deposit(sum) | balance<-balance+sum;
 balance-|>balance;
 withdraw(sum)-, sum>balance |>0;
 withdraw(sum)-, sum<=balance |>sum, balance<-balance-sum;
}
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Finally, the syntax
a [ b | rule1; c | rule2 ]
is introduced as shorthand for
a, b | rule1;
a, c | rule2;
and we can even have C-style assignment shorthands, giving:
#account(balance)~
{
 deposit(sum)   |  balance+=sum;
 balance       -|> balance;
 withdraw(sum)-[
   sum>balance  |> 0;
   sum<=balance |> sum, balance-=sum;
 ]
}
Here is the code which will set up a joint account with an initial balance of 100,
shared by two objects:
husband(Account), wife(Account), account(100)->Account

The power of Aldwych comes from the way (answering the concerns of [Kahn 89]) in
which although it can be used in a standard actors style, that is only a subset. As a
simple example, an object in Aldwych can have more than one handle, allowing for
different classes of access. A bank account, for example, may have privileged access
for the bank:
#account(balance)->(Customer,Bank)
{
 deposit(sum)   |  balance+=sum;
 balance       -|> balance;
 Customer.withdraw(sum)-[
   sum>balance  |> 0;
   sum<=balance |> sum, balance-=sum;
 ]
 Bank.withdraw(sum) | balance-=sum;
}
so the bank can withdraw fees from the account regardless of the balance. If a
message has no handle, it is assumed to be applicable to all of them, so for example
the first rule above is shorthand for:
 Customer.deposit(sum)  | balance+=sum;
 Bank.deposit(sum)      | balance+=sum;
A privileged access handle can be used to implement the express message passing
feature of the concurrent object-oriented language ABCL [Yone 90].

The become operation and nested code
Now let us consider a further example, a bank account where the customer is allowed
to make one withdrawal which makes the account balance negative, but this causes
the account to be switched to a special overdrawn account (where the balancer is the
amount overdrawn). The overdrawn account is switched back to a standard account
when the overdraft is cleared. This has been used elsewhere [To & Sch 89] as an
illustration of concurrent object-oriented programming. Here is a version of such an
account which keeps the privileged bank access:
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#account(balance)->(Customer,Bank)
{
 deposit(sum)   |  balance+=sum;
 balance       -|> balance;
 Customer.withdraw(sum)-[
   sum>balance  ||> sum,
                   overdrawn(sum-balance)->(Customer,Bank);
   sum<=balance |> sum, balance-=sum;
 ]
 Bank.withdraw(sum) | balance-=sum;
}

#overdrawn(balance)->(Customer,Bank)
{
 deposit(sum) [
  sum<=balance | balance-=sum;
  sum>balance || account(sum-balance)->(Customer,Bank);
 ]
 balance       -|> -balance;
 Customer.withdraw(sum)-|>0
 Bank.withdraw(sum) | balance+=sum;
}

This shows how the become  operation of the actor model [Agha 90] is implemented
by assigning output handles. An account object can become an overdrawn object and
vice-versa, and an object sending it messages on its handle does not need to know
which it is.

An alternative to this is to have the code for one sort of object nested inside another:
#account(balance)->(Customer,Bank)
{
 deposit(sum)   |  balance+=sum;
 balance       -|> balance;
 Customer.withdraw(sum)-[
   sum>balance  |> sum, balance<-sum-balance
       {
        deposit(sum) [
           sum<=balance | balance-=sum;
           sum>balance || balance<-sum-balance;
           ]
         balance       -|> -balance;
         Customer.withdraw(sum)-|>0
         Bank.withdraw(sum) | balance+=sum;
        }
   sum<=balance |> sum, balance-=sum;
 ]
 Bank.withdraw(sum) | balance-=sum;
}

In general, if we have
#behav1(in)->out
{
…
rhs | lhs { rules }
…
}
this is equivalent to:
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#behav1(in)->out
{
…
rhs | lhs, behav2(in)->out;
…
}

#behav2(in)->out { rules’ }
where rules’ is obtained from rules by replacing any rule of the form
rhs || lhs
by
rhs || lhs, behav1(in)->out
In each case, in refers to the input state variables after lhs has altered them, and
out to the output state variables before lhs has altered them. There are also triple-
barred rules which cause termination from both the inner and outer behaviour, so
rules may have rules of the form
rhs ||| lhs
which are equivalent to
rhs || lhs
in rules’. In fact nested code may go to any depth, with the number of bars
indicating the number of nestings exited. There is further syntax, not described here,
for allowing additional local variables in nested code.

The reason for introducing this nesting is that it avoids having to expand the name
space of process type names. Without it, programs can end up a convoluted tangle of
mutually recursive process types. Nesting gives a loop-within-a-loop effect, and
combined with two further constructs not discussed here (roughly equivalent to a
sequencing and an if-then-else operator) means that code can be written in a style
which resembles conventional structured imperative programming.

Comparisons and Conclusion
We have introduced a programming language, Aldwych, whose underlying model is
based on the logic variable. The aim is to keep the declarative simplicity and clear
operational semantics of concurrent logic programming, while removing the verbosity
of programs written in an object-oriented style directly in concurrent logic languages.
The language is intended for modern models of computation where the emphasis is on
interaction rather than algorithm. In this paper, it has only been possible to describe
informally a subset of the features of Aldwych. The full language extends the idea
presented here of a carefully designed notation to keep the flexibility of the
underlying logic variable model, but to structure programs to fit in with other
language paradigms. The two-handled bank account is just one example of where
Aldwych provides a flexibility beyond existing concurrent object oriented languages.
Further features exist enabling Aldwych programs to be written in styles which
resemble both functional and imperative programming. An implementation of
Aldwych exists, which translates the language into the concurrent logic language
KL1, which may further be translated into efficient programs in C [Roku 96].

In the history of computers, many programming languages have been proposed but
few have achieved significant use. It is therefore a necessity for those proposing new
languages to say why existing languages are not suitable. Below we describe the
disadvantages of other languages compared to Aldwych, but also features in them
which could be used in future development of Aldwych.
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Java – although often promoted as a language suitable for concurrent programming
[Ma & Kr 99], Java is still very much oriented to sequential computation.
Concurrency is achieved by threads which are awkward to use and “bolt on” to the
underlying sequential language. One of the most useful lessons to be learnt from Java
is the importance of a comprehensive standard library alongside the core language.

Linda [Gele 85] – widely used and has the advantage of extreme simplicity, just a few
extra notations to be added to any programming language. The tuple database of
Linda, however, is unsuited for agent programming, as it is both a bottleneck and
insecure. From Linda we could learn that simple notations to be added to languages to
give them an interface might enable the gradual adoption of a language like Aldwych
as a co-ordination language.

Erlang – has achieved a niche use in building several real-life systems. Language
developers should be grateful to the Ericsson company, within which Erlang was
developed, for having the courage to persist with a non-standard language and
showing it can be used for real systems and achieve programmer productivity gains.
Erlang is unsuitable for multi-agent systems, however, because it is not object-
oriented. What can be learnt from it is the importance, if practical use is to be
achieved, of having notations which link the language to the architecture and enable it
to deal with such things as hardware component failure.

Oz – has achieved very wide prominence in academic circles, due to having a large
team of experienced academic researchers in programming languages working on its
development. However, there is little evidence of it achieving much use outside
academia. Its constraint mechanism may be a bottleneck for multi-agent systems
programming. Recent versions of Oz have retreated from implicit concurrency to
sequential evaluation with concurrency gained by explicit threads. Oz has also added
features which take it away from the logic programming paradigm, claiming instead a
semantics based on the !-calculus [Smol 94], a form of process calculus like the
"-calculus [Miln 92].

PICT [Pi & Tu 95] – is intended to be just a sugared version of the "-calculus. The
lesson from Oz and PICT is the importance of a formal semantic background, and we
believe it possible (and have done some preliminary work to this end) to give a formal
description of Aldwych in a process calculus form. PICT itself, although building up
from the " -calculus using various derived forms, still suffers from the lack of
structure in the calculus. This is noted by Honda et al [Hond 98] who propose some
additional primitives to a process claculus base for complex interactions among
processes. We feel Aldwych manages such interactions more elegantly than these.

Joule – the only published evidence of this language is its manual [Agor 95] produced
by a software house specialising in electronic commerce. Joule has similar problems
to Oz in having a rather cumbersome syntax, and it lacks a clear underlying
semantics. We mention it as the only language we are aware of that attempts to
implement the ideas of hardware resource encapsulation first proposed by Miller and
Drexler [Mi & Dr 88]. We feel that control of hardware resources is important in
making agents autonomous. Our previous research [Hunt 91] shows that abstract
concurrent languages cannot always assume hardware resources are unlimited. The
mechanisms proposed by Miller and Drexler and implemented in Joule provide a
more sophisticated and agent-oriented approach to rationing hardware resources than
the simple priority mechanism we proposed.

The idea of a language which is concurrent by design remains a novel one. While
declarative languages promised to liberate us from the von Neumann machine
[Back 78] mapping them onto parallel machines and employing them in an interactive
styles has often not been easy. In the ancestry of Aldwych lies the attempts of the
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Japanese Fifth Generation project to parallelise the logic programming paradigm, but
this is well hidden by the syntax. In fact the syntax of Aldwych is deliberately
intended not to be a variation of some existing programming language paradigm. Our
hope is that the simple model of computation set out here could be the foundation on
which a new programming paradigm can be built.
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