
1

The Core Language of Aldwych
Matthew HUNTBACH

Department of Computer Science, Queen Mary University of London

Abstract. Aldwych is a general purpose programming language which we have developed
in order to provide a mechanism for practical programming which can be thought of in an
inherently concurrent way. We have described Aldwych elsewhere [13] in terms of a
translation to a concurrent logic language. However, it would be more accurate to describe
it as translating to a simple operational language which, while able to be represented in a
logic-programming like syntax, has lost much of the baggage associated with “logic
programming”. This language is only a little more complex than foundational calculi such
as the pi-calculus. Its key feature is that all variables are moded with a single producer, and
some are linear allowing a reversal of polarity and hence interactive communication.

Keywords. Concurrency, logic programming, linear variables, single-assignment variables.

Introduction
It has been noted since the observations of Landin [18] that a complex programming
language can be understood by showing a translation into a tiny core language which
captures the essential mechanisms of its programming style. This idea has been most
influential in the field of functional programming languages which can be considered as
just “sugared lambda-calculus”. Modern computing, however, tends to be about
interaction as much as calculation. An early attempt to build a programming language
based on an abstract model of interaction was occam with its basis in CSP [4]. More
recently, the pi-calculus [19] has received much attention as the suggested basis for a
model of interactive computing. Unlike CSP, the pi-calculus is a name-passing calculus,
meaning that communication channels can themselves be passed along communication
channels, leading to the communication topology changing dynamically as code is
executed. There have been some attempts to build languages which are “sugared pi-
calculus”, for example PICT [21], but even when sugared this model seems to be difficult
for programmers to use practically.

We have been working on building a programming language with an abstract
concurrent model which uses the concept of shared single-assignment variables rather
than pi-calculus’s channels. It is another name-passing calculus, since a variable may be
assigned a value which is a tuple containing variables. Our work in this area sprang from
earlier work in concurrent logic languages [12]. Although these languages have been
proposed as practical programming languages in their own right, with an application area
in parallel programming [5], our experience with them suggested they had serious
defects. Firstly, their lack of structure meant it was difficult to scale them up from toy
examples to large scale use. Secondly, in their attempt to emulate the logic programming
style of Prolog, they led to programs where the data flow could not easily be detected.
This was despite the fact that in reality programmers in them almost always had an
intended mode for every variable with a single producer [29].

We considered building a programming language which compiles to an underlying
concurrent logic form, but which has a rich set of “derived forms” to enable more
practical programming. Although this is not a new idea (see [3] for a survey), unlike

2

previous attempts to build logic-programming based object-oriented languages, our
intention was not to “combine” object-orientation with logic programming. Rather, we
felt the very simple underlying operational model of the concurrent logic languages
would be a good core language for developing a richer language which made no claims
itself to be logic-oriented but which enabled practical programs to be written in a style
where concurrency is a natural feature rather than an awkward add-on extra.

This language is being developed under the name “Aldwych” and we describe some
of its features elsewhere [15]. Early in the development of Aldwych it became clear that a
key feature would be for all variables to be moded, that is with a single producer
identified clearly by the syntax and one or more consumers. Another key feature was the
division of variables into linear and non-linear, where non-linear variables have a single
consumer as well as a single producer. This enables the consumer-producer relationship
to be reversed with ease.

Many of the complexities of implementing the concurrent logic languages disappear
when moding can be guaranteed, and when there is also a clear indication of which
variables are linear implementation can be even more efficient [30]. Since the modes and
linearity of variables in the language to which Aldwych compiles can be guaranteed,
there is no need for any mechanisms to analyse it. In fact the underlying language
represents such a dramatic simplification of committed choice logic languages, which in
turn are a dramatic simplification of the logic programming model (see [28] for a
discussion of the paring down of logic programming features or “de-evolution” of logic
programming in the search for efficient concurrent implementation) that it no longer
makes sense to give references to it which emphasise and elaborate on its more complex
logic programming ancestry.

The purpose of this paper, therefore, is to describe the underlying operational model
of the language into which Aldwych compiles in a way that does not attempt to link it to
more general concepts of logic programming or describe stages in its de-evolution which
are no longer relevant to its current state. The model can be described in terms of a few
reduction rules. Full Aldwych is described in terms of “derived forms” which translate to
the simpler model here, thus this paper complements our previous papers which describe
those derived forms.

1. A Relational Language
In a conventional imperative language, the computation
f(g(x),y)

is taken as a command that the code for g with argument x is fully evaluated and gives a
value which becomes the first argument to f. The same applies in a strict functional
language. We can regard the construct as a shorthand for evaluating g(x), putting the
result in a variable and using that variable as the first argument for f:
z<-g(x); f(z,y)

where the semi-colon is a sequencing operator, all code before the semi-colon is
completed before code after it is executed.

Suppose we replace the sequencing operator by one which doesn’t have the property
of ordering computations, let us use a comma:
z<-g(x), f(z,y)

3

We could now, given a suitable architecture, evaluate g(x) and f(z,y) in parallel. The
variable z could be regarded as a “future” [9]. The computation f(z,y) may use it as a
placeholder, passing it to other computations or incorporating it into data structures while
g(x) is still computing its value. The computation f(z,y) will suspend, however, if it
needs to know the actual value of z in order to progress.

We could flatten code out, replacing all embedded calls g(x1,…,xn) by a variable
z with the call z<-g(x1,…,xn) occurring beforehand. If the call z<-g(x1,…,xn) is
always placed before the call which has z as an argument, and the calls are executed in
order we will obtain strict order evaluation in functional programming terms. We could
however execute the calls in some other order, possibly involving some parallelism. If we
use the comma operator as above, then the only necessary sequencing is that imposed by
the necessity for a computation to suspend if it needs to know the value of a variable until
that value has been computed.

Note that the possibility of parallelism does not imply its necessity. The extreme
alternative to the conventional sequential execution of z<-g(x), f(z,y) is that
f(z,y) is evaluated while g(x) is suspended, and g(x) is only evaluated if f(z,y)
suspends due to the need to know the value of z. Suppose we employ the convention that
the rightmost computation is picked for progression, but if it needs the value of a variable
and that variable has not yet been given a value, the computation that gives that variable a
value is picked, and if that one is also suspended due to the need to know the value of
another variable, the computation which gives that variable a value is picked and so on.
We will then obtain what is known in functional programming as “call-by-need” or “lazy
evaluation”. The advantage to this is that if a computation gives a value to a variable but
there is no computation left which has that variable as an argument, that computation can
be abandoned without evaluation.

Clark and Gregory [2] suggested a “relational language” which worked like the
above description of a flattened functional language, with no suggested ordering on
computations apart from that imposed by computations suspended while waiting for
others to bind variables. The intention, however, was that the potential parallelism would
be exploited. This language was influenced by logic programming in that the function
call assignment to a variable y<-f(x1,…,xn) was written as a relation
r(x1,…,xn,y). Logic programming in its Prolog form and most other varieties does
not have a concept of a direction on variables, whereas in functional programming all
variables have a direction with just one computation that can write to them. Clark and
Gregory’s relational language imposed a direction on variables by giving a mode
declaration to its relations, so the above relation r would have mode r(m1,…,mn,mn+1)
with m1 to mn being ? meaning “input” and mn+1 being ^ meaning “output”. Furthermore,
it insisted that each variable have just one producer, though it may have many consumers.
So a computation would consist of a collection of relations which shared variables, but
each variable had to occur exactly once in the position in a relation which had mode
declaration ^.

The result of this directionality was that the arguments were “strong” [7]. That is, for
each argument of a relation call, the argument was either completely constructed by that
call (if an output argument) or by another call (if an input argument). The right to set a
variable to a value remained solely with one relation call, that relation call might set the
variable to a structure containing further variables, but it had either to take those variables
from its own input variables or set up new relation calls to construct their values.

4

The result appeared to be a rather restricted syntax for first order functional
programming. Lacking embedded function calls there was a proliferation of variables
introduced merely to take the result of one call and make it an argument to another. The
lack of facilities for higher order functions might be considered a serious weakness given
the importance which many advocates of functional programming give them [11].
However, the making of all variables used for communication explicit, and the flat
structure of computations with a single environment of variables, led to an attractively
simple programming model. As we shall show below, it also had the advantage of being
able to handle non-determinism with ease whereas this is a problem in functional
programming.

2. Non-Determinism
Since the programming model does not rely on the lambda-calculus of functional
programming it can cope with situations where there is more than one way of progressing
a computation and the outcome will differ depending on the choice made. As an example,
consider the following declaration:
#p(x,y)->z
{
 x=a || z=b;
 y=c || z=d;
:
 || z=e
}

The syntax used here is not the Prolog-like one of Clark and Gregory’s relational
language, but one we have developed and will describe further in this paper. It is used so
that programs in this core language will be a subset of the full Aldwych language. The #
is used to denote the introduction of a new procedure name (we will use this term rather
than “relation”). Input and output modes are denoted by separating them in the procedure
heading, so that if the heading is #p(u1,…,um)->(v1,…vn) then u1,…,um have input
mode, and v1,…,vn have output mode; we omit the brackets around v1,…,vn when n is
1, and we omit -> and the brackets when n is 0.

The description of a procedure consists of a list of sets of rules. A set of rules is
enclosed by braces, with a semicolon as the separator between rules, and for convenience
“}:{” denoting the end of one set and the start of another may be written “;:”. Each
rule consists of two parts, a left-hand side (lhs) and a right-hand side (rhs). The lhs
contains tests of variable values (“asks” in terminology introduced by Saraswat [23] for
concurrent logic programming) and the rhs contains variable assignments (in Saraswat’s
terminology “tells”). So x=a, where x is a variable and a is a constant means “wait until
x is given a value and test that it is a” when it is on the lhs, and “set x to a” when it is on
the rhs.

The first set of rules in the procedure p above means that a call p(u,v)->w will set
w to b if u gets set to a, and will set w to d if v gets set to c. If both u is set to a and v is
set to c, w could be set to either b or d. A functional programming computation, whether
strict or lazy, would insist that u be evaluated before proceeding either to assign b to w or
to go on to test the value of v. In a parallel setting, however, we may have u and v being
computed in parallel and be content to react accordingly depending on which
computation finishes first without being forced to wait for the other. Having received the

5

news that u is set to a, we could kill off the computation of v if there is no other
computation that has v as an input argument, and similarly we could kill the computation
of u if we receive the news that v is set to b [8].

The multiple sets of rules in our notation mean that the conditions for rules to apply
can be tested sequentially if that is required. If and only if the conditions for none of the
rules in the first set applies, the second set is used, and so on. In the above example there
are only two sets, and the last set has a single rule with an empty lhs meaning no
conditions are required for its application. So in our call p(u,v)->w if both u becomes
set to something other than a, and v becomes set to something other than c, the final set
of rules is used and causes w to be set to e.

If there is always a final rule set consisting of a single unconditional rule, a relation
call in our notation can never fail. This contrasts with Prolog where failure due to no
applicable rules is a natural part of the system and causes computation to backtrack to the
point where a previous non-deterministic choice was made, and to change the choice
made there. Such a backtracking may be practical in the single-processor sequential
computation like Prolog, but is impractical in a concurrent or parallel system where one
non-determinate choice may have sparked off several distributed computations, and
impossible if the variable is linked to an effect on some physical system in the real world:
the real world does not backtrack. We discuss in more detail the arguments against non-
determinism combined with backtracking (termed “don’t know non-determinism” [17])
in an earlier work [12], although doubt over the usefulness of automated backtracking in
programming languages can be found much earlier than that [27].

3. Back Communication
Handling non-determinism is one aspect where a relational as opposed to functional
approach to programming languages gives increased power, particularly in a concurrent
setting. Another is the “logic variable” [10] used to provide “back communication” [7].
Building on the relational language described above, the idea here is that the input-output
modes are weakened. In particular, a computation may bind a variable to a structure
containing further variables, but leave a computation which inputs that structure to
provide a value for some of those variables. The relational language of Clark and
Gregory was developed into Parlog which provided such back communication, at the
same time a number of similar languages were developed which were given the general
name “committed choice logic languages” [24].

Given back communication, the mode system of the relational language broke down.
Parlog’s mode system applied only to the arguments of a relation at top level, and not to
the individual components of structured arguments. It existed only to enable Parlog
programs to have a more superficial appearance to Prolog programs where assignment to
variables is done through pattern matching with clause heads. The other committed
choice logic languages used explicit assignment operators to give values to variables, as
did Parlog when the variables were arguments to tuples used for back communication.
The languages ended up as modeless – there was no syntactic way of discovering which
computation could actually assign a value to a variable, in fact the possibility of several
different computations being able to bind a single variable was opened up, and handled in
a variety of different ways. This then necessitated elaborate mechanisms to rediscover
intended modes in code, since practice revealed that programmers almost always
intended every variable to have just one computation that could write to it, and

6

knowledge of the intended moding could greatly improve the efficiency of
implementation [29].

In our notation, we extend moding to the terms of compound arguments. On the lhs
we have x=t(i1,…,im) meaning a test that x is bound to a tuple with tag t and m
arguments i1,…,im, all of which are taken to have input mode (that is, they will be
assigned by the computation which is giving a value to x). On the rhs x=t(i1,…,im)
means that x is assigned a tuple with tag t and m arguments i1,…,im, all with input
mode, that is the computation which does the assignment must have ik as an argument or
must provide another computation which gives ik a value for 1≤k≤m. We also allow
x=t(i1,…,im)->(o1,…,on) on the lhs, where o1,…,on are output variables, meaning
that the computation which has this test must provide values for o1,…,on in the rhs of
the rule. We allow x=t(i1,…,im)->(o1,…,on) on the rhs, meaning that o1,…,on

will be used in the rhs, but that a computation which takes in the value of x will give
values to o1,…,on.

As an example, consider the following:
#map(xs)->(ys,f)
{
 xs=cons(x,xs1) || f=ask(x,cont)->y,

map(xs1)->(ys1,cont),
ys=cons(y,ys1);

 xs=empty || ys=empty, f=done
}

#square(queries)
{
 queries=ask(u,cont)->v || v<-u*u, square(cont);
 queries=done ||
}

with the following initial computations:
map(list1)->(list2,stream), square(stream)

The result of executing this will be that a list in variable list1 composed of tuples with
tag cons, first argument an integer and second argument a further list (with empty
indicating the empty list), is taken as input, and a square function is mapped onto it to
produce the list in list2. This shows how back communication can be used to obtain a
higher-order function effect. The input of a function is represented by the output of a
stream of queries taking the form ask(i,cont)->o, where i is the argument to the
function, o the result, and cont the rest of the stream giving further queries to the same
function, or set to done if the function is not to be used any more. The code is not
elegant, but the point is the higher order effect can be achieved within this model, and
could be incorporated in to a language which is based on this model but uses derived
forms to cover commonly used patterns at a more abstract level for use in practical
programming.

However, this back communication leads to the problem that since a variable may
occur in several input positions, if it is set to a tuple which includes output arguments,
those output arguments will be become duplicated. Each of the computations which takes
the tuple as an input could become a writer to its output arguments. One way of avoiding
this, adopted for example in the logic programming language Janus [SKL 90], was to

7

insist that every variable must be linear, that is occur in exactly one input position and
one output position. This however acts as a considerable constraint on the power of the
language, meaning that we cannot use variables as “futures” in the Multilisp way [9].

Our solution to the problem is to adopt a system which involves both modes and
linearity. So arguments to a procedure or to a tuple may be one of four types: input-linear,
output-linear, input-non-linear and output-non-linear. Only a linear variable may be
assigned a tuple value which contains output arguments or linear arguments either input
or output. A non-linear variable may only be assigned constants or tuples all of whose
arguments are input-non-linear. In the above example, the arguments f to map and
queries to square should be denoted as linear, as should the variable cont in the
first rule for map and the first rule for square.

4. Computation
We can now describe our operational model in more detail. A computation in our
notation consists of a set of procedure calls which take the form
p(i1,…,im)->(o1,…,on) with m,n≥0, where each ih and ok, 1≤h≤m, 1≤k≤n, are
variable names, and a set of variable assignments which take the form either v=t or v<-
u. In the variable assignments, v and u are variables, and t is a term which takes the
form s(i1,…,im)->(o1,…,on) , m,n≥0, where each ih and ok, 1≤h≤m,1≤k≤n are
variable names, and s is a “term tag”, that is an atomic value. For notational convenience
in a term, if n is 1 the second set of brackets are omitted, if n is 0 the -> is also omitted,
and if m is 0 the first set of brackets is omitted.

The moding is used to ensure that every variable occurs exactly once in an output
position, where an output position is v in v = t or v<-u , or ok, 1≤k≤n , in
p(i1,…,im)->(o1,…,on) , or ok, 1≤k≤n , in v=s(i1,…,im)->(o1,…,on). A non-
linear variable may occur in any number of input positions, but every linear variable must
occur in exactly one input position, where an input position is ik, 1≤k≤m , in
p(i1,…,im)->(o1,…,on) , or ik, 1≤k≤m , in v=s(i1,…,im)->(o1,…,on) , or u in
v<-u.

We can regard a procedure call p(t1,…,tm)->(v1,…,vn) where t1,…,tm are
te rms and v 1,…,vn a r e va r i ab l e s , a s a sho r thand fo r
p(i1,…,im)->(o1,…,on),i1<=t1,…,im<=tm,v1<-o1,…,vn<-on. Here vk<=tk is
vk<-tk if t k is a variable, otherwise it is vk=tk. The point of this is to give each
procedure call a fresh set of variables as its arguments. We also allow v<-e, where e is
an arithmetic expression involving variables. Similarly, assignment to a variable of a
tuple which contains non-variable arguments can be regarded as shorthand for an
assignment which contains only variable arguments with separate assignments of terms to
the arguments where necessary. So u=s(t1,…,tm)->(v1,…,vn) is considered
shorthand for u=s(i1,…,im)->(v1,…,vn),i1<=t1,…,im<=tm. An output argument
in a tuple or procedure call can only ever be a variable.

The first computation rule is that v<-u,u=t transforms to v=t,u=t, written:
v<-u,u=t → v=t,u=t

There is no concept of ordering on the computations, so u=t,v<-u also transforms to
v=t,u=t. Note that if u is a linear variable we can say v<-u,u=t transforms to v=t,
since v<-u is the one input occurrence of u and u=t the one output occurrence, and the
variable u thus occurs nowhere else. If u is a linear variable, then v<-u is only allowed

8

if v is also a linear variable, although v<-u is allowed if v is a linear variable but u is
not. Since u=t where t contains linear variables and/or output positions is only allowed
if u is a linear variable, this ensures that output positions of any variable and input
positions of linear variables do not get duplicated.

We also have v<-u,u<-w transforms to v<-w,u<-w or
v<-u,u<-w → v<-w,u<-w

Similar to above, if u is linear, we can transform v<-u,u<-w to just v<-w.
Arithmetic is dealt with by the computation rule that v<-e where e is an arithmetic

expression transforms to v=n when there are assignments ui=mi for all variables in e,
and replacing each variable ui by mi in e and evaluating e gives n.

A procedure call p(i1,…,im)->(o1,…,on) is linked to a set of rules initially given
by the procedure declaration for p, and we assume there is a universal fixed set of named
procedure declarations. Each procedure call produces a new copy of these rules, where if
the procedure heading is #p(u1,…,um)->(v1,…,vn), any occurrence of uh, 1≤h≤m, in
the rules is replaced by ih, any occurrence of vk, 1≤k≤n, in the rules is replaced by ok,
and any other variable in the rules but not in the header is replaced by a fresh variable.
The replacement of a procedure call by a set of rules initialised with entirely fresh
variables can be regarded as a step in the computation.

The basis of the rule for procedure rewrite, which we develop in more detail later, is
that given x=a and a set of rules including the rule x=a||body, where a is a constant,
we rewrite the set of rules to body. Note that, unlike the pi-calculus, the assignment is
not consumed once used, and the variable may never be re-used in an assignment. We
can show this by the computation rule:
x=a,{…;x=a||body;…}:… → x=a,body

We allow more than one test on the lhs, so we can generalise this to:
x1=a1,…,xn=an,{…;x1=a1,…,xn=an||body;…}:… → x1=a1,…,xn=an,body

The ordering of the assignments and the ordering of the tests is irrelevant, as is the
ordering of the rules in {…;x1=a1,…,xn=an||body;…}. However, the rules following
“:” in the rule set cannot be employed at this stage.

A rule is discarded if there is an assignment to a constant other than the one being
tested for in the rule:
x=a, {…; …,x=b,…||body; …}:… → x=a,{…;…}:… if a≠b
If all rules in the first set have been discarded, we can go on to consider the rules in the
second set:
{}:{rule1;…;rulen}:… → {rule1;…;rulen}:…

We allow rules with an empty lhs which rewrite unconditionally, so:
{…; ||body; …}:… → body

Another way of thinking of this is as individual assignments picking off tests from the lhs
of rules until a lhs becomes empty and the above rule applies, in which case we have:
x=a,{…; …,x=a,…||body; …}:… → x=a,{…;…,…||body;…}:…

Or, since ordering of rules and tests does not matter:
x=a,{x=a,T||body;R}:S → x=a,{T||body;R}:S

9

where T is a set of tests, R a set of rules, and S a list of sets of rules, and the existence of
computation rules to reorder T and R (but not S) is assumed. We have also (indicating
discarding a rule when one test fails, moving to a second set of rules when all rules are
discarded, and using a rule when all its tests succeed):
x=a,{x=b,T||body;R}:S → x=a,{R}:S if a≠b
{}:S → S

{T||body;R}:S → body if T is the empty set
Here body consists of further procedure calls and assignments which application of the
last computation rule above causes to be added to the top-level set of procedure calls and
assignments. The assignments in body will then cause other sets of rules to become
rewriteable.

We allow ordering tests on the lhs of rules, which will fail if their arguments are
orderable:
x=a,y=b,{x>y,T||body;R}:S → x=a,y=b,{T||body;R}:S if a>b
x=a,y=b,{x>y,T||body;R}:S → x=a,y=b,{R}:S if a≤b
x=a,y=b,{x>y,T||body;R}:S → x=a,y=b{R}:S if a and b are not
orderable by >
The precise definition of “orderable” (whether numerical, or applying more widely, for
example, alphabetic ordering of tags) is not relevant for this paper.
Also a wait test allows suspension until a variable is bound to any value:
x=a,{wait(x),T||body;R}:S → x=a,{T||body;R}:S

and type tests give dynamic typing:
x=a,{integer(x),T||body;R}:S → x=a,{T||body;R}:S if a is an integer
x=a,{integer(x),T||body;R}:S → x=a,{R}:S if a is not an integer.

Our computation rules, as given so far, have not taken account of variables being
assigned or tested for tuples containing further variables. In the full rules we allow tests
on the lhs of a rule of the form x=s(i1,…,im)->(o1,…,on), where m≥0 and n≥0. The
notational convenience for omitting brackets described previously may again be used.
The variable names i1,…,im and o1,…,on must all be new variable names, with rule
scope so they can be re-used in other rules. For the purposes of the describing the
operational behaviour, all arguments to tuples in tests must be variables. However, for
notational convenience we can write a input tuple argument in a test as a non-variable,
and take this as being shorthand for introducing a separate variable and testing it, so
x=s(…,t,…)->(…) is shorthand for x=s(…,y,…)->(…),y=t where y is a new
variable name, and t a term.

Given this, the computation rule for matching an assignment against a test is:
x=s(u1,…,um)->(v1,…,vn),{x=s(i1,…,im)->(o1,…,on),T||body;R}:S →
x=s(u1,…,um)->(v1,…,vn),{i1<-u1,…,im<-um,v1<-o1,…,vn<-on,T||body;R}:S

If x is a linear variable, we could at this point add to body on the rhs an indication that if
the lhs becomes empty and the rule is chosen, the assignment can be removed as this is
the one permitted reading of the variable.

10

Now we need to deal with x<-y occurring on the lhs of rules (which can only occur
temporarily after the application of the above computation rule). If we are testing that x
has a particular tuple value, and x is matched against variable y, then we are testing that
y has that pattern, replacing an internal variable in the test with an external one. So:
{x<-y,x=t,T||body;R}:S → {x<-y,y=t,T||body;R}:S

We must also take account of the other tests that may occur on the lhs, for example:
{x<-y,wait(x),T||body;R}:S → {x<-y,wait(y),T||body;R}:S

If the lhs of a rule consists only of variable assignments, there are no further tests, so the
rule can be applied but the variable assignments must be retained for use with body:
{x1<-y1,…,xn<-yn||body;R):S → x1<-y1,…,xn<-yn,body

This ensures the internal variables of body are linked with external variables. Note that
since a linear variable cannot be assigned to a non-linear variable, this rule is conditional
on there being no xi<-yi where yi is denoted as linear but xi is not. If there is such a
match, the rule becomes inapplicable:
{x<-y,T||body;R}:S → {R}:S if y is linear and x is non-linear.

A rule also becomes non-applicable if it involves matching tuples of differing arities,
or tuples of differing tags:
x=s(u1,…,um)->(v1,…,vn),{x=s(i1,…,ip)->(o1,…,on),T||body;R}:S →

{R}:S if p≠m
x=s(u1,…,um)->(v1,…,vn),{x=s(i1,…,im)->(o1,…,op),T||body;R}:S →

{R}:S if p≠n
x=s1(u1,…,um)->(v1,…,vn),{x=s2(i1,…,im)->(o1,…,op),T||body;R}:S →

{R}:S if s1≠s2

5. Procedure Structure
As already noted, a procedure consists of a header giving a name and two lists of
arguments, one for input, and one for output, followed by a list of sets of rules. Each rule
consists of a list of tests forming the lhs and a list of computations forming the rhs. A test
on the lhs takes the form x=s(u1,…,um)->(v1,…,vn), with a small number of other
tests permitted, such as the comparison tests x>y, the wait test wait(x) and dynamic
type tests. The computations on the rhs consist of assignments x<-y ,
x=s(u1,…,um)->(v1,…,vn), and procedure calls p(u1,…,um)->(v1,…,vn). Here
x, y, each ui and vj are variable names. No other syntax is required, though a certain
amount of syntactic sugar may be used to make the notation more readable, such as using
a term instead of a variable, so that p(…,t,…)->(v1,…,vn) is shorthand for
p(…,y,…)->(v1,…,vn),y=t on either the lhs or the rhs, with y an otherwise unused
variable.

In order to ensure correct moding, with variables having exactly one producer, and in
the case of linear variables exactly one consumer, the following conditions apply in use
of variables:

11

1) In any test x=s(u1,…,um)->(v1,…,vn) on the lhs, if n>0 or any ui is indicated as
linear, x must be linear. There will be a notational indication to show which variables are
to be treated as linear.
2) In any test x=s1(u1,…,um)->(v1,…,vn) on the lhs, x must be either an input
argument to the procedure, or occur as one of the w is in another test
y=s2(w1,…,wp)->(z1,…,zq) on the same lhs.
3) No variable occurring as ui or vj in x=s1(u1,…,um)->(v1,…,vn) on the lhs may
occur in the procedure header or as w h or zk in another test
y=s2(w1,…,wp)->(z1,…,zq) on the same lhs.
4) Every output variable to the procedure, and every extra output variable in a rule, that is
one of the vis in any x=s(u1,…,um)->(v1,…,vn) on the lhs, must be used in exactly
one output position on the rhs. An output position is x in x=s(u1,…,um)->(v1,…,vn)
or in x < - y , or any v i in x = s (u1,…,um)->(v1,…,vn) or any v i in
p(u1,…,um)->(v1,…,vn).
5) If a linear variable occurs as x in a test x=s(u1,…,um)->(v1,…,vn) on the lhs, it
must not occur at all on the rhs.
6) Any input linear variable either from the procedure heading or occurring as one of the
uis in a test x=s1(u1,…,um)->(v1,…,vn) on the lhs which does not occur in a test as
y in y=s2(w1,…,wk)->(z1,…,zh) on the lhs must be used exactly once in an input
position on the rhs. An input position is y in x < - y or any u i in
x=s(u1,…,um)->(v1,…,vn) or any ui in p(u1,…,um)->(v1,…,vn).
7) Any variable that occurs only on the rhs of a rule must occur in exactly one output
position. If it is a linear variable, it must also occur in exactly one input position,
otherwise it can occur in any number of input positions.

A new variable is introduced under condition 7 when a procedure call rewrites using
one of its rules. We refer to this as a “local variable”. If the variable is introduced with its
output occurrence as one of the vis in p(u1,…,um)->(v1,…,vn), the procedure has
itself set up a computation to give the variable a value. If, however, it is introduced as one
of the vis in x=s(u1,…,um)->(v1,…,vn) in the rhs where x is not itself a local
variable, the variable will be given its value by the procedure which has x as in input.
This is a form of what is called “scope extrusion” in pi-calculus. Scope extrusion of read
access to a variable is given when it is used as one of the uis in
x=s(u1,…,um)->(v1,…,vn) . I f t h e p r o c e d u r e h e a d i n g i s
p(i1,…,im)->(o1,…,on), write access to a variable x can also be passed out of the
procedure by x<-ik and read access passed out by o h<-x . Also if we have
y=s(u1,…,um)->(v1,…,vn) as a test on the lhs, write access to a variable x can also
be passed out of the procedure by x<-ui on the rhs and read access passed out by
vj<-x. Otherwise, access to a variable remains private within the procedure where it was
created and it cannot be interfered with by another procedure.

Although values given to variables are not rescinded, condition 5 can be seen as
dictating consumption of a value sent on a linear variable considering it as a channel. If a
rule with a linear variable test is used to progress computation, that linear variable cannot
be used again, so in practice the assignment to it could be deleted. If a reference count is
kept to record the number of readers of a non-linear variable, the assignment to the non-
linear variable could in practice be deleted if that reference count drops to zero.

12

6. Dynamic Communication Topology
If a procedure call has output access to two variables X and Y (from here we will adopt
the convention that linear variables are indicated by an initial capital letter), with input
access to X and Y being two separate procedures, a direct communication channel can be
made between those two procedures. X=t1->c,Y=t2(c) will establish a one-way
communication channel from the call which inputs X to the call which inputs Y. If this
linking variable is itself linear, as in X=t1->C,Y=t2(C), a channel which may be
reversed in polarity is established.

Let us consider an extended example. We have a dating agency which for simplicity
has access to just one girl client and one boy client, shown by computation:
agency(Girl,Boy), girl()->Girl, boy()->Boy

Here an agency call has two input linear variables, and a girl and boy call each
produce one linear output variable. The agency call must wait until both the girl and the
boy request an introduction. The boy’s request contains a channel on which he can send
his first message to the girl he is put in contact with, while the girl will send a request
which sends back a channel on which a message from a boy will be received. This is
programmed by:
#agency(Boy,Girl)
{
 Boy=ask(Channel1), Girl=ask->Channel2 || Channel2<-Channel1
}

The output linear variable of the girl call is set to the input linear variable of the boy
call. Now we can set up code to let them communicate:
#girl()->Dating
{
 || Dating=ask->Channel, goodgirl(Channel)
}

#boy()->Dating
{
 || Dating=ask(Channel), Channel=hello->Reply, goodboy(Reply);
 || Dating=ask(Channel), Channel=hello->Reply, badboy(Reply)
}

Sending a message on a channel and waiting for a reply is implemented by binding the
channel variable to a tuple containing just one variable of output mode, and then making
a call with that variable as input which suspends until the variable is bound. It can be seen
that the message a girl call sends on the Dating channel reverses the polarity of that
channel with the reversed channel renamed Channel, while the message a boy call
sends on Dating keeps the polarity with Channel being a continuation of the same
channel in the same direction.

For the sake of interest, we will let the boy call become non-deterministically either
a goodboy call or a badboy call. A goodboy call sends the message hello, waits
for the reply hi back, then sends a kiss message and waits for a kiss message back.
When that happens it sends another kiss message in reply and so long as a kiss
message is replied with a kiss message this continues forever. A badboy call sends a
bed message when it receives a kiss message. We show here a girl call which can
only become a goodgirl call, where a kiss message is replied with a kiss message,

13

but a bed message is replied with a no message that has no reply variable, thus ending
communication. Either type of boy call, on receiving a no message can do no more, the
call is terminated. Otherwise, the recursive calls represent a continuation of the call. Here
is how this is all programmed:
#goodboy(Channel)
{
 Channel=hi->Me || Me=kiss->Her, goodboy(Her);
 Channel=kiss->Me || Me=kiss->Her, goodboy(Her);
 Channel=no ||
}

#badboy(Channel)
{
 Channel=hi->Me || Me=kiss->Her, badboy(Her);
 Channel=kiss->Me || Me=bed->Her, badboy(Her);
 Channel=no ||
}

#goodgirl(Channel)
{
 Channel=hello->Me || Me=hi->Him, goodgirl(Him);
 Channel=kiss->Me || Me=kiss->Him, goodgirl(Him);
 Channel=bed->Me || Me=no
}

In the first two rules of each procedure here, Channel is an input channel on which is
received a message which causes a reversal of polarity, so a message can be sent out on it
which again reverses its polarity to receive a further message in reply. Effective two-way
communication is established. A recursive call turns a transient computation into a long-
lived process, the technique introduced by Shapiro and Takeuchi [25] to provide object-
based programming in a concurrent logic language.

An alternative way of setting up this scenario would be for the agency call to take
the initial initiative and send the boy and girl call a channel on which they
communicate rather then them having to request it. In this case, the agency, boy and
girl procedures will be different although the goodboy, badboy and goodgirl
procedures will remain the same. The initial set-up is:
agency->(Girl,Boy), girl(Girl), boy(Boy)

with procedures:
#agency->(Girl,Boy)
{
 || Girl=tell(Channel),Boy=tell->Channel
}

#girl(Dating)
{
 Dating=tell(Boy) || goodgirl(Boy)
}

14

#boy(Dating)
{
 Dating=tell->Girl || Girl=hello->Her,goodboy(Her);
 Dating=tell->Girl || Girl=hello->Her,badboy(Her)
}

A third way of setting it up would be for the boy call to take the initiative while the
girl call waits for the agency to communicate:
agency(Boy)->Girl ,boy()->Boy, girl(Girl)

with the code for the agency procedure:
#agency(Boy)->Girl
{
 Boy=ask(Channel) || Girl=tell(Channel)
}

Here the boy procedure used will be the same as the first version given above, and the
girl procedure the same as the second.

These examples show how the communication topology can be dynamic. We
initially have a boy and girl call which both have a communication link with an
agency call, but have no direct communication with each other. We show three
different ways in which a direct communication link can be obtained, one in which the
boy and girl call take the initiative jointly, another in which the agency call takes the
initiative, and the third in which only the boy call takes the initiative.

Note that the examples shown here have no final default rule, thus it could be argued
the whole program could fail if a call bound a variable to a value which its reader had no
rule to handle. However, moding means we can always add an implicit default rule to
prevent failure. In this rule, all output variables of the procedure are set to a special value
indicating an exception. All input linear variables become the input variable to a special
exception-handling procedure, which for any tuple the variable becomes bound to sets all
output variables of the tuple to the special value indicating exception and makes all input
linear variables the argument to another call to this procedure.

7. Conclusions and Related Work
The work described here can be considered a presentation of the work done by Reddy
[22] oriented towards a language that can be used for practical programming. Reddy’s
work is inspired by Abramsky’s computational interpretation [1] of linear logic [6]. We
extend Reddy’s typed foundation by allowing non-linear as well as linear variables, but
our typing extends only as far as is necessary for modes to establish the single-writer
multiple-reader property. Other attempts to build practical programming languages which
add linearity to concurrent logic programming, such as Janus [26], have insisted that all
variables be linear.

Our language could also be considered as a re-presentation of a committed choice
logic language [24] which avoids logic programming terminology or the attempt to
maintain some backward compatibility with Prolog that we argue elsewhere [14] was a
contributing factor to these languages gaining little acceptance. Our strong moding
expressed in the syntax of the language makes programs much easier to understand since
it is always clear from where a variable receives its binding. It also means that the

15

problem of dealing with the rare possibility of more than one computation wishing to
bind a variable, which led to many of the variations discussed in [24], does not occur.

Another computation model related to ours is Niehren’s delta-calculus [20]. Like our
notation, the delta-calculus represents functions as relations with an explicit output
variable and an assignment operator. The delta-calculus also uses linear types to enforce
single assignment to variables. Unlike our language, the delta-calculus is higher order,
that is variables may be assigned procedure values and used as operands. Although our
language is first-order, we have shown elsewhere [15] how the effect of higher order
functions can be obtained using the standard techniques for representing objects in
committed choice logic languages [25], a function can be considered as just an immutable
object which has only one method (application).

Our work originates from attempts to build an object-oriented language on top of
concurrent logic programming under the name “Aldwych” [13]. Previous attempts to do
so [3] had been criticised for losing some of the flexibility of concurrent logic
programming [16]. However these languages did have the benefit of being much less
verbose than the equivalent code expressed directly as concurrent logic programming.
Our intention was to have a syntax in which common patterns of using the underlying
concurrent logic language were captured, as little as possible of the operational capability
was lost, and the direct translation into concurrent logic programming kept in order to
maintain a clear operational semantics. Aldwych enables procedures to be written and
thought about in a style that resembles object-oriented programming, and also in a style
that resembles functional programming, with functions that can be curried.

Our use of linear variables arose from practical necessity, but its closeness to
Reddy’s work establishes a stronger theoretical justification for it. This paper originates
from the necessity to provide a clear description of the language underlying Aldwych. In
previous papers introducing Aldwych we have described it in terms of translation to a
concurrent logic language, but due to the plethora of such languages, and the mistaken
belief that they are “parallel Prologs”, our intention has not always been clear. In this
paper we define an operational semantics for the underlying language in terms of
reduction rules and under the assumption, which will be true in any translation from
Aldwych, that all variables are moded such that they will have a single writer which can
be found using the syntax of the language.

References
[1] S.Abramsky. A computational interpretation of linear logic. Theoretical Computer Science 111:3-57
(1993).
[2] K.L.Clark and S.Gregory. A relational language for parallel programming. In Proc. ACM Conf. on
Functional Programming Languages and Computer Architecture. 171-178. (1981).
[3] A.Davison. A survey of logic programming based object oriented languages. In Research Directions in
Concurrent Object Oriented Programming. G.Agha, P.Wegner, A.Yonezawa (eds) MIT Press (1993).
[4] D.Q.M.Fay Experiences using Inmos proto-OCCAM™ SIGPLAN Notices 19 (9) (1984).

[5] I.Foster and S.Taylor Strand: New Concepts in Parallel Programming, Prentice-Hall (1989).

[6] J.-Y.Girard. Linear logic. Theoretical Computer Science 50:1-102 (1987).

[7] S.Gregory. Parallel Logic Programming in PARLOG. Addison-Wesley. (1987).

[8] D.H.Grit and R.L.Page. Deleting irrelevant tasks in an expression-oriented multiprocessor system. ACM
Trans. Prog. Lang and Sys, 3(1):49-59. (1981).

16

[9] R.H.Halstead. Multilisp: a language for concurrent symbolic computation. ACM Trans. Prog. Lang and
Sys, 7(4):501-538. (1985).

[10] S.Haridi, P Van Roy, P.Brand, M.Mehl, R.Scheidhauser and G.Smolka. Efficient logic variables for
distributed computing. ACM Trans. Prog. Lang and Sys, 21(3):569-626. (1999).

[11] J.Hughes. Why functional programming matters. Computer Journal, 32(2):98-107. (1989).

[12] M.M.Huntbach and G.A.Ringwood. Agent-Oriented Programming. Springer LNCS 1630 (1999).
[13] M.Huntbach. The concurrent language Aldwych. Proc. 1st Int. Workshop on Rule-Based Programming
(RULE 2000) (2000).

[14] M.Huntbach, The concurrent language Aldwych. World Multiconference on Systemics, Cybernetics
and Informatics (SCI 2001) XIV:319-325.
[15] M.Huntbach. Features of the concurrent language Aldwych. ACM Symp. on Applied Computing
(SAC’03) 1048-1054 (2003).
[16] K.M.Kahn. Objects – a fresh look. Proc. 3rd European Conf. on Object-Oriented Programming
(ECOOP 89). S.Cook (ed), Cambridge University Press.
[17] R.A.Kowalski. Logic for Problem Solving. Elsevier/North Holland (1979).

[18] P.J.Landin The mechanical evaluation of expressions. Computer Journal 6 (4):308-320 (1964).

[19] R.Milner, J.Parrow and D.Walker. A calculus of mobile processes. J of Information and Computation,
100:1-77 (1992).
[20] J.Niehren. Functional computation as concurrent computation. Proc. 23rd Symp. on Principles of
Programming Languages (PoPL’96) 333-343 (1996).
[21] B.C.Pierce and D.N.Turner. Pict: a programming language based on the pi-calculus. Proof, Language
and Interaction: Essays in Honour of Robin Milner, MIT Press (2000).
[22] U.S.Reddy. A typed foundation for directional logic programming. Proc. 3rd Int. Workshop on
Extensions of Logic Programming. Springer LNCS 660:282-318 (1993).
[23] V.A.Saraswat, M.Rinard and P.Panangaden. Semantic foundations of concurrent constraint
programming. Principles of Prog. Lang. Conf. (POPL'91), 333-352 (1991).
[24] E.Y.Shapiro. The family of concurrent logic programming languages. ACM Computing Surveys
21(3):413-510 (1989).
[25] E.Shapiro and A.Takeuchi. Object oriented programming in Concurrent Prolog. New Generation
Computing 1:25-48 (1983).
[26] V.A.Saraswat, K.Kahn and J.Levy. Janus: a step towards distributed constraint programming. Proc.
1990 North American Conf. on Logic Programming. MIT Press. 431-446 (1990).
[27] G.J.Sussman and D.V.McDermott. From Planner to Conniver – a genetic approach. Proc AFIPS Fall
Conference 1171-79 (1972).
[28] E.Tick. The de-evolution of concurrent logic programming languages. J. Logic Programming 23(2):
89-123 (1995).
[29] K.Ueda. Experiences with strong moding in concurrent logic/constraint programming. Proc. Int.
Workshop on Parallel Symbolic Languages and Systems (PSLS'95), Springer LNCS 1068:134-153. (1996).
[30] K.Ueda. Linearity analysis of concurrent logic programs. Proc. Int Workshop on Parallel and
Distributed Computing for Symbolic and Irregular Applications. T.Ito and T.Yuasa (eds) World Scientific
Press (2000).

