Browsing Meetings: Automatic Understanding, Presentation and
Feedback for Multi-Party Conversations*

Patrick Ehlen, Stéphane Laidebeure, John Niekrasz, Matthew Purver, John Dowding, Stanley Peters

Center for the Study of Language and Information
Stanford University
Stanford, CA 94305, USA

Abstract

We present a system for extracting use-
ful information from multi-party meetings
and presenting the results to users via a
browser. Users can view automatically ex-
tracted discussion topics and action items,
initially seeing high-level descriptions, but
with the ability to click through to meeting
audio and video. Users can also add value:
new topics can be defined and searched
for, and action items can be edited or cor-
rected, deleted or confirmed. These feed-
back actions are used as implicit super-
vision by the understanding agents, re-
training classifier models for improved or
user-tailored performance.

1 Introduction

Research on multi-party dialogue in meetings has
yielded many meeting browser tools geared to-
ward providing visual summaries of multimodal
data collected from meetings (Tucker and Whit-
taker, 2005). Why create another? Existing tools
focus on facilitating manual annotation and anal-
ysis of abstracted knowledge, or on assisting the
meeting process by allowing users to conveniently
(but manually) add relevant information online.
Because our aim in the CALO Meeting Assis-
tant project is to automatically extract useful in-
formation such as the topics and action items dis-
cussed during meetings, our meeting browser has
a different goal. Not only do we need an end-user-
focused interface for users to browse the audio,

This work was supported by DARPA grant NBCH-D-03-
0010. The content of the information in this publication does
not necessarily reflect the position or the policy of the US
Government, and no official endorsement should be inferred.

{ehlen, laidebeu, niekrasz, mpurver, dowding, peters}@csli.stanford.edu

video, notes, transcripts, and artefacts of meet-
ings, we also need a browser that presents au-
tomatically extracted information from our algo-
rithms in a convenient and intuitive manner. And
that browser should allow — even compel — users
to modify or correct information when automated
recognition falls short of the mark.

2 Automatic Understanding

User studies (Banerjee et al., 2005) show that
amongst the most requested pieces of information
from a meeting are the topics discussed and action
items established.

Action Item Identification. Our understanding
suite therefore includes an agent for action item
identification — see (Purver et al., 2006). We ex-
ploit a shallow notion of discourse structure, by
using a hierarchical combination of supervised
classifiers. Each sub-classifier is trained to de-
tect a class of utterance which makes a particu-
lar discourse contribution to establishing an action
item: proposal or description of the related rask;
discussion of the timeframe involved; assignment
of the responsible party or owner; and agreement
by the relevant people. An overall decision is then
made based on local clusters of multiple discourse
contributions, and the properties of the hypothe-
sized action item are taken from contributing ut-
terances (the surface strings, semantic content or
speaker/addressee identity). Multiple alternative
hypotheses about action items and their properties
are provided and scored using the individual sub-
classifier confidences.

Topic Identification. Another agent splits meet-
ings into topically coherent segments, providing
models of the associated topics using vector space



models. Topics are extracted as probability dis-
tributions over words, learnt over multiple meet-
ings and stored in a central topic pool; they can
then be used for audio/video browsing (labelled
via the top most distinctive words) or to interpret a
user keyword or sentence search query (by finding
the weighted mixture of learnt topics which best
match the words of the query).

3 User Interface

Agents that generate multiple hypotheses fare bet-
ter with feedback from users about which hypothe-
ses sound reasonable, but getting that feedback
isn’t always easy. A meeting browser is the ideal
place to solicit feedback from end-users about
what happened during a meeting. Our browser
interface exploits the transparency of uncertainty
principle, which counts on people’s tendency to
feel compelled to correct errors when those errors
are (a) glaringly evident, and (b) correctable in a
facile and obvious way.

A user can view action items detected from the
meeting in the browser and drag them to a bin that
adds the items to the user’s to-do list. For the prop-
erties of action items — such as their descriptions,
owners, and timeframes — the background colors
of hypotheses are tied to their sub-classifier confi-
dence scores, so less certain hypotheses are more
conspicuous. These hypotheses respond to mouse-
overs by popping up the most likely alternate hy-
potheses, and those hypotheses replace erroneous
ones with a simple click. If an entire action item is
rubbish, one click will delete it and provide neg-
ative feedback to our models. A user who just
wants to make a reasonable action item disappear
can click an ignore this box, which will still pro-
vide positive feedback to our model.

Topics appear as word vectors (ordered lists of
words) for direct browsing or to help with user-
defined topic queries. Given a user search term,
the most likely associated topics are displayed,
together with sliders that allow the user to rate
the relevance of each list of words to the actually
desired topic. As the user rates each topic and
its words are re-weighted, a new list of the most
relevant words appears, so the user can fine-tune
the topic before the browser retrieves the relevant
meeting segments.

4 Learning from Feedback

Action Item Feedback. The supervised action
item classifiers can be retrained given utterance
data annotated as positive or negative instances
for each of the utterance classes (task description,
timeframe, owner and agreement). User confir-
mation of a hypothesized action item allows us to
take the utterances used to provide its properties
as positive instances; conversely, deletion allows
us to mark them as negative instances. Switch-
ing from one hypothesis to another for an indi-
vidual property allows us to mark the utterances
corresponding to the accepted hypothesis as pos-
itive, and the others as negative. Creation of a
new action item, or manual editing or insertion of
a property value requires us to search for likely
utterances to treat as corresponding positive ev-
idence; this can be done by using the relevant
sub-classifier to score candidate utterances, and/or
by string/synonym comparison, depending on the
property concerned. Feedback therefore provides
implicit supervision, allowing re-training models
for higher accuracy or user-specificity.

Topic Feedback. The topic extraction and seg-
mentation methods are essentially unsupervised
and therefore do not need to use feedback to the
same degree. Yet even here we can get some
benefit: as users define new topics during the
search process (by moving sliders to define a new
weighted topic mixture), these new topics can be
added to the topic pool. They can then be pre-
sented to the user (as a likely topic of interest,
given their past use) and used in future searches.

References

S. Banerjee, C. Rosé, and A. Rudnicky. 2005. The ne-
cessity of a meeting recording and playback system,
and the benefit of topic-level annotations to meeting
browsing. In Proceedings of the 10th International
Conference on Human-Computer Interaction.

M. Purver, P. Ehlen, and J. Niekrasz. 2006. Detect-
ing action items in multi-party meetings: Annota-
tion and initial experiments. In Proceedings of the
3rd Joint Workshop on Multimodal Interaction and
Related Machine Learning Algorithms.

S. Tucker and S. Whittaker. 2005. Accessing multi-
modal meeting data: Systems, problems and possi-
bilities. In S. Bengio and H. Bourlard (Eds.), Ma-
chine Learning for Multimodal Interaction: First
International Workshop, 2004, v. 3361 of Lecture
Notes in Computer Science, 1-11. Springer-Verlag.



