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ABSTRACT
Upcoming technologies will automatically identify and ex-
tract certain types of general information from meetings, such
as topics and the tasks people agree to do. We explore inter-
faces for presenting this information to users after a meeting
is completed, using two post-meeting interfaces that display
information from topics and action items respectively. These
interfaces also provide an excellent forum for obtaining user
feedback about the performance of classification algorithms,
allowing the system to learn and improve with time. We
describe how we manage the delicate balance of obtaining
necessary feedback without overburdening users. We also
evaluate the effectiveness of feedback from one interface on
improvement of future action item detection.

INTRODUCTION
When people get together to share information, they often
do so in discrete events called meetings. As everyone knows,
these can be more or less successful depending on the qual-
ity of information people share and the decisions they make.
Many factors conspire against their success: People may
lack adequate prior information that is relevant to the meet-
ing, or they may be biased toward information they already
share, or they may interpret decisions or tasks differently,
or they may forget items or otherwise fail to record them or
record them in a disorganized way. Still, meetings manage
to help keep the world turning, so we continue to have them,
and also to produce tools meant to mitigate these counteract-
ing factors as much as possible.

A good rule of thumb for such tools is that they should try
not to require more effort than they supposedly relieve. That
rule can be hard to live by when technology gets involved,
especially technology that aims to create an automatic record
of meetings, which abound with the rapid, overlapping, un-
structured speech of multiple people who are not speaking
with machine recognition in mind. Moreover, meetings can
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vary greatly in how ordered or chaotic they are, and there are
few general principles that govern their content.

But nearly all meetings share a few commonalities: People
converge to discuss a certain set of topics, to make decisions
related to those topics, and they often seek to agree on a mu-
tual perspective of some imagined future, as well as the ac-
tions that need to be carried out in order to accomplish that
future. Our efforts of late have attempted to exploit those
commonalities with the goal of producing tools that may
help to make meetings more productive and their outcomes
more enduring; in particular, producing automated represen-
tations of the topics, decisions, and future actions that people
discuss.

Since the content of meetings can be complicated, unstruc-
tured, and errorful, producing interfaces to these tools that
follow the rule of thumb mentioned above is a tricky propo-
sition. These interfaces must first and foremost be able to
detect useful information from the maelstrom of signals a
meeting provides. It must then represent that information in
some intuitive way that makes sense to people. And since it
will undoubtedly make many errors, those errors should be
easily corrected or ignored by a user. It should also learn as
much information as it can from the normal actions of that
user, soliciting feedback in a way that is as close to invis-
ible as possible. Finally, that feedback should prove effec-
tive at helping the automatic detection process to hone in on
more relevant information, and should ideally learn to adapt
to each person’s style of working and to identify the infor-
mation they care about most.

We present some ideas here for interfaces that present auto-
matically detected topics and future actions or action items,
methods of soliciting user feedback from those representa-
tions, and an evaluation of the quality of feedback solicited
from one such interface that allows the participants from a
meeting to add automatically-detected action items to their
to-do lists.

Background
Recent advances in technologies that integrate speech pro-
cessing, natural language understanding, vision, and multi-
modal interaction have led to several research projects that
aim to produce tools that perceive what happens at a meet-
ing, extract salient events, and produce a reliable record. The
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ICSI Meeting Project [11, 12] produced automated and seg-
mented transcripts from natural, multi-party speech during
meetings, while the ISL Smart Meeting Room Task [20] and
the M4 and AMI projects [14] instrumented meeting rooms
to collect data on behaviors so the interactions of meeting
participants could be analyzed to produce flexible records of
their activities, while providing a supportive environment for
collaboration.

As part of the DARPA CALO Meeting Assistant project, we
have focused on data about the behaviors of people in meet-
ings, assimilating speech, movement, and note-taking data to
create a rich representation of a meeting that can be analyzed
and reviewed at many levels. The CALO Meeting Assistant
integrates its observations with those of a larger system of
agents, which assesses meeting data in the context of the on-
going projects and workflow for each meeting participant.
Thus, our meeting assistant aims to reach beyond an intel-
ligent room that understands only the activities of people in
meetings, and attempts to understand their overarching con-
cerns and interpret their behaviors from the perspective of
what their meetings mean to them.

Existing tools to view meeting data focus on rapid infor-
mation retrieval by users, and are designed to optimize the
speed and success of finding answers to a broad class of
queries. But the lack of linguistic metadata available to them
results in a focus on the playback of signals rather than the
display of dialogical or semantic features of the meeting [13,
19].

Because our aim in the CALO Meeting Assistant project is
to automatically extract useful information such as the action
items and topics discussed during meetings, our approach to
information presentation has a somewhat different goal. Not
only do we need interfaces for users to browse audio, video,
notes, transcripts, and artifacts of meetings, we also need an
interface that selectively presents automatically extracted in-
formation from our algorithms in a convenient and intuitive
manner. And it should also provide each user with the op-
portunity to modify or correct information when automated
recognition falls short of the mark, preferably with as little
burden as possible.

In fact, compelling users to provide feedback is essential,
since our agents maintain multiple lexical and semantic hy-
potheses, and then rely on feedback from users about which
hypotheses sound reasonable. Getting that feedback is not
easy, but we explore two possibilities here: one that supports
topic detection, and one that supports action item detection.

INTERFACE FOR TOPICS

Topic Detection
We can see the problem of topic detection as two sub-problems:
segmentation, dividing the meeting into topically coherent
segments, and identification, producing some description or
representation of the topics discussed therein. These two
problems could be approached separately. For example, a
meeting can be segmented into likely topical areas using fea-
tures indicative of topic shifts—such as cue phrases, speaker

activity shifts, and changes in vocabulary—without prior knowl-
edge about what those topics should look like [6, 2, 7]. Once
segmented, identification could then proceed by classifying
the segments according to some predefined list of topics [10]
or an agenda list [3].

However, separating the processes of segmentation and iden-
tification has some probelms. For one, the notion of a topic
can be highly subjective, since different people often come
away from a meeting with differing perspectives on what the
meeting was about and what topics were discussed. Even at-
tempts made by objective readers to segment meetings into
topics show wide variation and poor inter-annotator agree-
ment on topic boundary placement, especially as the defini-
tion of “topic” used becomes more fine-grained [8].

Of course, the presence of an established agenda divided into
topical subject areas can help achieve consensus; but in the
absence of such information we may find that a particular
user’s ideal segmentation depends on their perspective on
which topics are important. We therefore prefer an approach
which treats segmentation and identification as joint prob-
lems, and attempts to solve them simultaneously by joint in-
ference. We also prefer one which can easily be adapted to
individual users and their individual topics of interest.

Generative Topic Model
We represent topics as probability distributions over words.
We then model the meeting discourse as though it were gen-
erated by a set of underlying unseen topics, with each topi-
cally coherent discourse segment corresponding to a partic-
ular fixed weighted mixture of those topics. We use a variant
of Latent Dirichlet Allocation [4], to learn a set of underly-
ing topics jointly with a most likely segmentation (see Fig-
ure 1). Segmentation accuracy rivals that of other methods,
while human judges rate the topics themselves highly on a
coherence scale (see [17] for details on our topic detection
method).

The learning is initially unsupervised, learning topics over
multiple meetings and storing them in a central topic pool.
This approach can be personalized to a user by learning top-
ics only over meetings in which that user participates or
perhaps which have been marked as “interesting.” More-
over, this algorithm lends itself to further personalization
and learning through supervision: If users were to provide
feedback from some suitable interface on the topics or seg-
ments of interest, the learning can be constrained, producing
a personalized topic model.

User Adaptation
How can such feed back be obtained? One potential method
is to observe and make use of user interaction with some
topic presentation interface. This could happen during the
meeting, perhaps by providing users with note-taking soft-
ware that monitors note-taking behavior and uses that be-
havior as potential feedback that can be applied to learning
topics in the future [1]. However, that method only works if
at least one person is typing notes “on-line” during the meet-
ing, which might require more cognitive effort than meet-
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Figure 1. A meeting segmented into topic areas

ing participants are consistently willing to provide. An al-
ternate interface that allows users to browse content after
the meeting might provide better opportunities for obtaining
user feedback.

Such an off-line approach would involve giving users post-
meeting topic information and allowing feedback via use-
ful interaction. Since we define topics as lists of weighted
words that are probable over some period of time, the two
dimensions where feedback could be applied would be on
the weightings of those words as they relate to the topic, and
on the timing of the topic boundaries, as graphed in Figure 1.
But the average person doesn’t think about topics in this way,
so these dimensions do not immediately lend themselves to
a clear method of presentation.

Topic Presentation
A solution we devised was to represent a meeting as a series
of topical discussions on a timeline, using the MIT Simile
Timeline widget [18]. As can be seen in Figure 2, the time-
line consists of two horizontal bands: The bottom band is
a birds-eye view of the entire meeting, while the top band
shows minute-by-minute details. Segments of topic discus-
sions are represented as regions shaded in different colors. In
the birds-eye view, the meeting is viewed as a series of top-
ics, and clicking within a topic will scroll the detailed view to
that segment of the meeting. At the same time, a transcript
panel below the timeline also scrolls the ASR trancsript to
the selected point of the meeting, and begins to play audio
from that point as well.

To represent the actual “content” of each topic, a blue band
at the top displays the “topic title,” represented as the five

most characteristic keywords for this topic.1 Clicking on the
topic title displays the topic words in a word cloud, where
words with higher relevance to the topic under discussion
are displayed in larger font.

There are several possible ways to obtain useful feedback
about topics from a timeline interface such as this. A user
could be allowed to change topic boundaries by moving the
edges of shaded topic regions, providing better definition
for when discussion of a particular topic begins and ends.
This user feedback would then provide implicit supervision
for determining better overall or user-specific segmentation,
and future runs of the generative topic model could be con-
strained to produce segmentations that are more consistent
with user-defined boundaries. Users could also use manual
topic shading to “mark & tag” topic areas they may wish to
revisit. For instance, a user might highlight a certain segment
of the meeting and apply a user-defined tag like “Q4 bud-
get.” With enough feedback of this kind, the system could
then learn to associate these tags with particular probability
distributions, and produce them automatically for generated
topics in future

Word clouds also provide a potential source of feedback, if
users are allowed to change what they see as the relative
salience of words by upgrading or downgrading them. If
a topic discussion about the budget shows the word “bud-
get” in small font, the user could drag the word upwards to
make it larger, thus providing feedback for the weightings of

1Keywords are extracted from the topic’s underlying word proba-
bility distribution, by finding those words for which the probability
associated with this topic exceeds that assigned by a general topic-
independent distribution by the greatest amount.
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Figure 2. Timeline view of meeting showing automatically detected action items, regions shaded according to topic segmentation, word clouds
reflecting topic word salience, and ASR-produced transcript segmented by dialogue acts.

words in that topic for later retraining.

INTERFACE FOR ACTION ITEMS

Action Item Detection
When people discuss the action items they intend to carry
out, they use an interactive and collaborative process. Tasks
and their details are defined, and commitment to them is es-
tablished, not through individual utterances in isolation but
through sequences of utterances that play particular roles in
an evolving game. Thus to automatically detect action items,
we rely on a shallow notion of dialogue structure; but be-
cause data from ASR transcripts of freeform meetings are
highly variable and errorful, rule-based methods for infer-
ring such structure do not yield good results, calling for a
more robust approach. Our “hierarchical” approach to ac-
tion item detection recognizes that discussions of commit-
ments to future actions are characterized by the probable
co-occurence of certain types of dialogue moves which can
be individually detected. Clusters of these moves that ap-
pear within some window of time may then indicate proba-
ble action item discussions. (We designed this hierarchical

approach specifically to overcome the complexities of dia-
logue, which make it unsuitable for “flat” approaches such
as that implemented for textual sources like e-mail [5].)

Thus, detection is a two-stage process. In the first stage, we
look for utterances that play the relevant roles in the com-
mitment process, which can be thought of as a set of action-
item-specific dialogue moves: task description (proposal or
discussion of the task to be performed), timeframe (proposal
or discussion of when the task should be performed), own-
ership (assignment or acceptance of responsibility by one
or more people), and agreement (commitment to the action
item as a whole or to one of its details). This is implemented
using independent utterance classifiers (“subclassifiers”—
linear-kernel support vector machines trained from manual
annotations), each of which is trained to detect whether an
utterance might represent one of the four action-item-related
dialogue moves listed above.

The second stage involves a single subdialogue classifier (the
“superclassifier”), which analyzes clusters of these patterns
of tagged utterances and their confidence scores to hypothe-
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size windows of action item discussion (see Figure 3). When
these clusters indicate a hypothesized action item discussion,
the relevant utterances that were previously tagged by the
subclassifiers are fed into a summarization algorithm that at-
tempts to extract details for the action item—the who, what,
and when of the action—and render them in a format suit-
able for presentation in a user interface. Because there are
often several utterances that convey these details, these ut-
terances are ranked according to their classification score,
allowing alternate hypotheses of details to be available to
the end-user. For more discussion of the classification and
summarization processes, see [15].

Figure 3. Defining an action item by classifying multiple utterances
with dialog subclasses

Action Item Feedback
Figure 4 shows a broad view of our architecture for using
implicit supervision from users to improve classifier perfor-
mance. From the interface, a user’s interactions with the
summarized action items can be interpreted, providing feed-
back to a feedback interpreter that updates the hypothesized
action items and utterance tags, which are ultimately treated
as annotations that provide new training data for the classi-
fiers.

Action Item Presentation and User Feedback Mechanisms
So, as can be seen in see Figure 3, our action item detector
consists of not one classifier but five, each of which could
stand to improve from feedback about its performance. How-
ever, when keeping in mind our rule of thumb not to create
interfaces that are more effort than they’re worth, obtaining
good feedback becomes a tall order.

Subclassifier Feedback
Our solution was to use implicit supervision from users by
creating an interface that sends each meeting participant a
list of the action items it detected, allowing each user to add
action items to their to-do lists, along with the supporting de-
tails. As can be seen in Figure 5, action items detected from
a meeting are presented in rows, and each lists supporting

details of “What to do,” “When to do it” and “Who should
do it.” Each of these fields corresponds to information asso-
ciated with one of the dialogue act types used in detection,
and therefore to the output of one of the subclassifiers (with
the exception of the agreement classifier). Feedback on the
individual properties can therefore be used to provide im-
plicit supervision for the corresponding subclassifiers.

Under the “What to do” and “When to do it” fields, we
present a descriptive phrase extracted from the top utterance
the classifier finds most relevant to the field (for example, an
utterance “I’ll get back to you on that tomorrow” might pro-
vide the phrase “tomorrow” under the “When to do it” field).
By single-clicking on the field, a user sees a list of the top
six most likely phrases, any of which can replace the current
description with a single click. Users may also double-click
the description and edit or retype the field if they they wish
to do so before the action item is added to their to-do list.
Allowing the user to edit these results is essential when us-
ing ASR, which often substitutes proper names or acronyms
with similar-sounding words from the lexicon; allowing the
user to edit these allows acquisition of new vocabulary that
can later be included in the language model.

Extracting the “Who should do it” information is slightly
more complex. When people assign or agree to do tasks
in a meeting, they rarely use one another’s names, instead
referring to one another using pronouns as in “Can you do
that?” or “Yes, I’ll do that.” For this reason, displaying the
most relevant utterance picked by the classifier rarely pro-
vides information that’s actually useful to the user (unless
the user can remember who “you” or “I” was referring to).
For this reason, we perform an extra step of reference reso-
lution on such utterances (see [9]), and display a hypothesis
about which person or persons agreed to do the task. These
can be displayed as a list of ordered hypotheses that can be
selected, though it is also useful to provide the names of the
other participants in the meeting, and also an “unassigned”
option.

Turning interaction into useful data for classifier re-training
now requires a further step: inferring a set of training data in
which utterances are tagged as positive or negative instances.
If a hypothesized description is accepted unchanged, this is
straightforward: the utterance(s) from which the hypothesis
was made are marked as positive instances. If a descrip-
tion is changed to one of the alternatives provided, the ut-
terance(s) associated with the chosen alternative are marked
as positive instances, and all others as negative. When users
elect to edit or retype the field, we must do more in order to
find the correct utterances to mark as positive: our current
method is to search for possible utterances near the area of
action item discussion which are lexically close to the given
description (for the what/when properties) or referentially
consistent with it (for the who property).

Superclassifier Feedback
In addition to these subclassifier feedback mechanisms, a
fourth field (“My Actions” in Figure 5) shows buttons that
solicit feedback for the superclassifier, using the assump-
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Figure 4. An outline of the action item detection and feedback system.

tion that users will only want to add valid, reasonably-well-
formed descriptions of tasks to their to-do list. In doing so,
they provide information about how the superclassifier fared
on each detected action item.

One complication, however, is that effective feedback in this
case requires not two but three possible user actions in re-
sponse to an action item. These actions can be roughly sum-
marized as “This is a good action item,” “This is not an ac-
tion item” and “This is an action item but delete it anyway.”
The latter two require an important distinction to be clear
for the user. If an action item has been correctly detected
and the user chooses “Add action item to to-do list” (shown
as a thunderbolt icon), we want to record this as an instance
of positive feedback for the superclassifier, and also to mark
each utterance selected in the property fields (What, When
and Who) as instances of positive feedback. So the case of
positive feedback is straightforward.

However, when an action item is deleted, there is no way to
distinguish a priori whether the user is deleting it because
it is a bad instance of an action item—which should result
in negative feedback—or if the action item is being deleted
because the user doesn’t want to add it for some reason (e.g.,
the action item is assigned to someone else, or already has
it on the to-do list, or wishes to ignore it)—which should
not result in negative feedback, since the action item is still
presumably valid.

To capture this distinction, we took inspiration from a sim-
ilar solution used in e-mail to assist in spam detection. An
e-mail message offers a similar 3-way choice: For valid e-
mail messages, either the user wishes to keep it, or to delete
it for whatever reason. But the user is also informed that a
third option exists—the “spam” button—that will mark cer-
tain types of e-mail messages as spam, with the aim of help-
ing classification and hopefully reducing the future number
of spam messages the user receives.

In a similar vein, we included a “junk” or “This is not an
action item” button, with which a user can mark a potential
action item as a bad selection, and in doing so provide nega-
tive feedback on classifier choices that should be discounted
in future retraining. Figure 5 shows the “junk” button as a
thunderbolt with an “X” through it, distinguishable from the
third choice of deleting an action item for any other reason,

represented by an icon of a thunderbolt going into a recycle
bin. This method of obtaining negative feedback instances
asks the user to exchange a small amount of effort (pressing
a button) with the promise of less effort in the future as the
classifiers improve at distinguishing valid action item utter-
ances from invalid ones.

Action Item User Review Process
To provide an overall picture, each user’s review process
proceeds as follows: After a meeting has finished and an
ASR transcript is generated along with hypothesized topic
segments and action items, the user receives an e-mail indi-
cating the meeting data is available for review. By following
the e-mailed link the user will see a list of detected action
items, as shown in Figure 5. For the action items that look
valid, the user may select different descriptive utterances or
manually edit the “What” and “When” fields, followed by
pressing the “Add action item” button, which causes the ac-
tion item to disappear from the detected items list and reap-
pear in the user’s to-do list, at the same time sending positive
feedback for the subclassifiers and the superclassifier.

For the remaining action items, the user can press a button
to listen to audio for the surrounding segment of the meeting
if think these may still contain useful reminders or actions.
If not, they can be deleted, “junked,” or simply ignored.
“Junked” action items will provide negative feedback, while
deleted or ignored ones will not.

Action Item Feedback Evaluation
With these feedback mechanisms in place, the question re-
mains of how effective that feedback will be at retraining
classifiers, leading to improved action item detection in the
future. Because the DARPA CALO program requires an an-
nual evaluation, this gave us an opportunity to test that ques-
tion.
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Figure 5. Meeting browser action item feedback screenshot.

DARPA CALO CLP Evaluation Data
As part of the DARPA CALO evaluation, CALO compo-
nents are put to the test during a “Critical Learning Period”
(CLP) where evaluators use the CALO components as part
of their everday work cycle. The evaluation took place at
SRI International over a week-long period, with 18 SRI re-
searchers using the components on a daily basis. As part of
this, the participants held daily meetings and were trained
to use system components in the same way a naive end-user
might do. This process resulted in 18 meetings, divided into
four sequences attended by different groups with different
areas of expertise. Each sequence consists of 4 or 5 meet-
ings, with most of the same participants, discussing related
topics.

As part of the post-meeting review process, many (though
not all) participants provided feedback on detected action
items using the interface described above. The raw action
item hypotheses which they saw were produced using a pre-
viously annotated set of fully supervised training data, taken
from meetings recorded in the previous year; these meetings
were held at various CALO institutions and involved several
different participants and discussion topics. We will refer to
this initial set of training data as Supervised Data (S). The
feedback produced from user interaction was then used to
infer a new set of training data, which we will refer to here
as Feedback Data (F). We then tested the effect of this feed-
back data on classifier improvement, to evaluate whether a
feedback-retrained classifier would perform closer to human
annotations of action items than one trained only on the ini-
tial fully supervised set.

Baseline vs. Feedback Comparison
To provide a gold standard for comparison, we manually an-
notated the final meeting in each sequence for action items
and their properties, using the annotation criteria described

in [16]. We can then directly compare the performance of (a)
the baseline system trained only on set S, with (b) a system
trained on set S plus the data in set F for the relevant meeting
sequence. Note that as we are evaluating on the final meet-
ing in each sequence, we train on the feedback data from all
meetings in that sequence except the final one. Performance
improvement over the baseline system indicates an effective
feedback mechanism.

Performance is shown in terms of precision, recall and F-
score for the overall task of detecting action item discus-
sions. Precision tell us how many of the system’s hypothe-
ses overlapped a gold standard action item discussion; recall
tells us how many of the gold standard action item discus-
sions were detected; and F-score is the harmonic mean of
precision and recall. Note that our definition of a match is
lenient: we do not require that all consituent utterances are
exactly identified, but that a discussion is identified which
overlaps with a gold-standard action item discussion. Ta-
ble 1 shows the absolute figures for both systems; Table 2
shows the improvement deltas (in terms of absolute score
difference and in terms of error reduction (relative reduction
in the difference between the score and 1.00)).

Table 1. Absolute performances: baseline vs. retrained
Baseline (S) Retrained (S+F)

Rec Pre F1 Rec Pre F1
Seq 1 (OP) 0.50 1.00 0.67 0.63 1.00 0.77
Seq 2 (PE) 0.27 0.60 0.37 0.45 0.57 0.51
Seq 3 (SU) 0.67 0.60 0.63 0.22 0.33 0.27
Seq 4 (SY) 0.67 0.67 0.67 0.78 0.71 0.74

The results show that sizeable improvements are achieved
in 3 of the 4 meeting sequences, with error reductions from
20 to 40%, which gives us encouragement that our interface
and approach to implicit supervision can provide real bene-
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Table 2. Performance improvement with feedback
Absolute Error Reduction

Rec Pre F1 Rec Pre F1
Seq 1 (OP) 0.13 0.00 0.10 26% 0% 30%
Seq 2 (PE) 0.18 -0.03 0.14 25% -8% 22%
Seq 3 (SU) -0.45 -0.27 -0.36 -136% -68% -97%
Seq 4 (SY) 0.11 0.04 0.07 33% 12% 21%

fits. However, performance was badly negatively affected in
sequence 3 (SU).

Closer examination of the raw user feedback data revealed
some unusual feedback behavior for a user set of training
data for that sequence, perhaps indicating some technical
difficulties when providing feedback (e.g., providing 38 in-
stances of feedback for a single action item, where only four
should have been possible, some of which was contradic-
tory). So there is clearly some variability in feedback behav-
ior, and we need to investigate the nature of this variability
and its impact on overall performance.

In general, note that these results are preliminary; we now
inted to investigate whether performance can be further im-
proved, and negative impacts reduced, by modifying the train-
ing data inference methods. As the methods we currently use
to infer training data from feedback are relatively naive (e.g.
confirmations are taken as supplying positive feedback for
all properties, no matter how low the initial classifier con-
fidence from which they were produced; alternative candi-
dates for utterances are selected using only simple lexical
distance metrics), we believe that improvements are there to
be made.

CONCLUSION
We presented some methods for display of automatically de-
tected and abstracted meeting data, in particular the topics
and action items discussed by meeting participants. While
some abstracted data does not lend itself well to useful pre-
sentation to end users, we believe topic information can be
displayed effectively in a timeline format that allows topic
discussions to be viewed as colored bands throughout the
meeting. This way meetings can be viewed from a birds-
eye view as collections of topical discussions, and topic dis-
cussion boundaries can be redefined or tagged by the user,
providing data for future retraining and classification. In ad-
dition, topics presented as word clouds allow users to deliver
human feedback on the relative salience of terms in each
topic.

For action items detected during a meeting, we described
an interactive list with GUI actions that allow the user to
fine-tune the who, what and where of an action item before
adding it to a to-do list, harvesting these user actions as feed-
back data. An analysis of feedback data from the DARPA
CALO 2007 CLP sessions shows that such feedback have
the potential to be quite useful in retraining the system to of-
fer action items in line with human selected ones. With the
amount of feedback we used here, this process appears to be
somewhat delicate, which may wash out with more feedback

data; we intend to investigate that further.

In the future, we will explore whether similar methods of ob-
taining feedback from the timeline interface would be use-
ful for retraining on topic segmentation and identification.
We are also engaged in research on the detection of dec-
sions, and intend further research into how those might be
displayed on a timeline, or otherwise. Finally, we’re cu-
rious how online methods of feedback—in which meeting
participants provide feedback during the meeting rather than
after—compare with the methods described herein, and how
these methods compare to ordinary in-meeting note-taking.
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