Inducing lexical entries for an incremental
semantic grammar

Abstract. We introduce a method for data-driven learning of lexicatien in
an inherently incremental semantic grammar formalism,ddyic Syntax (DS).
Lexical actionsn DS are constrained procedures for the incremental projec
of compositional semantic structure. Here, we show howetloas be induced
directly from sentences paired with their complete projmsal semantic struc-
tures. Checking induced entries over an artificial dataseeated using a known
grammar demonstrates that the method learns lexical sntampatible with
those defined by linguists, with different versions of the fs8nework induced
by varying only general tree manipulation rules. This isieedd without requir-
ing annotation at the level of individual words, via a mettaminpatible with
work on linguistic change and routinisation.

1 Introduction

Dynamic Syntax (DS) is an inherently incremental semartergnar formalism [1, 2]
in which semantic representations are projected on a wenddrd basis. It recognises
no intermediate layer of syntax (see below), and generatidrparsing are interchange-
able. Given these properties, it seems well suited for disdoprocessing, and can in
principle model common dialogue phenomena such as unfihisheo-constructed ut-
terances, mid-utterance interruption and clarificatian [@. However, its definition in
terms of semantics (rather than the more familiar syntgtimse structure) makes it
hard to define or extend broad-coverage grammars: expgtiits are required. On
the other hand, as language resources are now availablé waicsentences with se-
mantic logical forms (LFs), the ability to automaticallydimce DS grammars could lead
to a novel and useful resource for dialogue systems. Herénwestigate methods for
inducing DS grammars, and present an initial method foréidulexical entries from
data paired with complete, compositionally structuredppisitional LFs.

From a language acquisition perspective, this problem easelen as one of con-
straint solving for a child: given (1) the constraints impdshrough time by her un-
derstanding of the meaning of linguistic expressions (femidence gathered from e.g.
her local, immediate cognitive environment, or interactwaith an adult), and (2) in-
nate cognitive constraints on how meaning representatiansce manipulated, how
does she go about separating out the contribution of eadhdodl word to the overall
meaning of a linguistic expression? And how does she chaose@the many guesses
she would have, the one that best satisfies these constraints

This paper represents an initial investigation into théopem: the method presented
is currently restricted to a sub-part of the general prob{see below). Future work
will adapt it to a more general and less supervised settingrevthe input data con-
tains less structure, where more words are unknown in eaxtarsse, and applicable to
real-world datasets — but the work here forms a first imposéap in a new problem
area of learning explicitly incremental grammars in therf@f constraints on semantic
construction.

2 Previous work on grammar induction

Existing grammar induction methods can be divided into twajancategories: super-
vised and unsupervised. Fully supervised methods, whiehaysarsed corpus as the
training data and generalise over the the phrase struaile®g to apply to a new set of
data, has achieved significant success, particularly wbeapled with statistical esti-
mation of the probabilities for production rules that shitwesame LHS category (e.g.
PCFGs [4]). However, such methods at best only capture pdhteogrammar learn-
ing problem, since they presuppose prior linguistic infation and are not adequate
as human grammar learning models. Unsupervised methodsearther hand, which
proceed with unannotated raw data and hence are closerharhan language acquisi-
tion setting, have seen less success. In its pure form —ymddta only, without bias—
unsupervised learning has been demonstrated to be cornopalit too complex (‘un-
learnable’) in the worst case [5]. Successful cases hawdvied some prior learning or
bias, e.g. a fixed set of known lexical categories, a proltgbiistribution bias [6] or a
hybrid, semi-supervised method with shallower (e.g. P&fg1ing) annotation [7].

More recently another interesting line of work has emergegbervised learning
guided bysemanticrather than syntactic annotation — more justifiably argeiablbe
‘available’ to a human learner with some idea of what a stitingn unknown language
could mean. This has been successfully applied in CombiahtBategorial Gram-
mar [8], as it tightly couples compositional semantics veyintax [9, 10] and [11] also
demonstrates a limited success of a similar approach wittiafipa semantically an-
notated data that comes from a controlled experiment. Simese approaches adopt
a lexicalist framework, the grammar learning involves icidg a lexicon assigning to
each word its syntactic and semantic contribution.

Such approaches are only lightly supervised, using seetlavel propositional log-
ical form rather than detailed word-level annotation. Algammar is learnt ground-up
in an ‘incremental’ fashion, in the sense that the learndlects data and does the
learning in parallel, sentence by sentence. Here we follagvdpirit, inducing gram-
mar from a propositional meaning representation and mgl@i lexicon which spec-
ifies what each word contributes to the target semantics.edery taking advantage
of the DS formalism, a distinctive feature of which werd-by-wordprocessing of
semantic interpretation, we bring an added dimension akmentality: not only is
learning sentence-by-sentence incremental, but the geairiearned is word-by-word
incremental, commensurate with psycholinguistic resiitsving incrementality to be
a fundamental feature of human parsing and production BJ2]dcremental parsing
algorithms have correspondingly been proposed [14—16ygekier, to the best of our
knowledge, a learning system for an explicitly incremegt@mmar is yet to be pre-
sented — this work is a step towards such a system.

3 Dynamic Syntax

Dynamic Syntax is a parsing-directed grammar formalismictvimodels the word-
by-word incremental processing of linguistic input. Usliknany other formalisms, DS
models the incremental building up witerpretationswithout presupposing or indeed

27Ty(t) — Ty(t) —
Ty(e), 1Tyle = t) Ty(e), "Ty(e —t),
& john &
MTy(t) SN Ty(), O,

upset’ (john')(mary’)

/\

Ty(e), Ty(e), Ty(e —t),
john "Ty(e = 1) john Az.upset' (z)(mary”)
/\ A
Ty(e), Ty(e— (e = 1)), Ty(e), Ty(e— (e = 1)),

& Aydx.upset’ (x)(y) mary’ Aylz.upset' (x)(y)

Fig. 1. Incremental parsing in DS producing semantic trédshn upset Mary”

recognising an independent level of syntactic proces3ings, the output for any given
string of words is a purelgemantidree representing its predicate-argument structure;
tree nodes correspond to terms in the lambda calculus, aecbwith labels expressing
their semantic type (e.§"y(e)) and formula, with beta-reduction determining the type
and formula at a mother node from those at its daughters (&itju

These trees can lpartial, containing unsatisfied requirements for node labels (e.g.
?Ty(e) is a requirement for future developmentXy(e)), and contain gointer
labelling the node currently under development. Gramrabtycis defined as parsabil-
ity: the successful incremental construction of a tree wittoutstanding requirements
(a completetree) using all information given by the words in a sentefidee input
to our induction task here is therefore sentences pairdd suvith completesemantic
trees, and what we try to learn are constrained lexical ghaes for the incremental
construction of such trees.

3.1 Actionsin DS

The central tree-growth process is defined in terms of cimditactions procedural
specifications for monotonic tree growth. These take the ftooth of general structure-
building principles ¢omputational actions putatively independent of any particular
natural language, and of language-specific actions indog@arsing particular lexical
items (exical action3. The latter are what we here try to learn from data.

Computational actionsThese form a small, fixed set. Some merely encode the prop-
erties of the lambda calculus itself and the logical treenf@ism (LoFT, [17]) — these

we terminferentialactions. Examples includeHINNING (removal of satisfied require-
ments) and EIMINATION (beta-reduction of daughter nodes at the mother). These ac-
tions are entirely language-general, cause no ambiguitiadd no new information to
the tree; as such, they apply non-optionally whenever fireiconditions are met.

Other computational actions reflect DS’s predictivity ameldynamics of the frame-
work. For example, replacing feature-passing concepgs,fe: long-distance depen-
dency, *ADJUNCTION introduces a single unfixed node with underspecified tree po-
sition; LINK-ADJUNCTION builds a paired (“linked”) tree corresponding to semantic
conjunction and licensing relative clauses, appositiocth @ore. These actions repre-
sent possible parsing strategies and can apply optionadimyastage of a parse if their
preconditions are met. While largely language-indepetydeme are specific to lan-
guage type (e.g.NTRODUCTION-PREDICTION in the form used here applies only to
SVO languages).

Lexical actionsThe lexicon associates words with lexical actions, whiké tomputa-
tional actions, are each a sequence of tree-update aatiandi-.. THEN..ELSE format,
and composed of explicitly proceduegtbmic actiondike nmake, go, put (and others).
make creates a new daughter node. moves the pointer to a daughter node, pud
decorates the pointed node with a label. Fig. 2 shows a silepieal action forJohn
The action says that if the pointed node (marked)adhas a requirement for type
then decorate it with type (thus satisfying the requirement); decorate it with foranul
John' and finally decorate it with the bottom restrictidf) L (meaning that the node
cannot have any daughters). In case the IF conditioy(e) is not satisfied, the action
aborts, meaning that the word ‘John’ cannot be parsed indh&egt of the current tree.

IF 2Ty(e) My(t) Johp Ty(t)
THEN put(Ty(e))
Joh put(Fo(John') /\
put((])L) Ty(e), Tyle = t) Ty(e), 7Ty(e) "Ty(e —t)
ELSE ABORT & John', (1)L, &

Fig. 2. Lexical action for the word ‘John’

3.2 Graph Representation of DS Parsing

Given a sequence of words) , wo, ..., w,), the parser starts from trexiomtree Ty

(a requirementT'y(t) to construct a complete tree of propositional type), andiepp
the corresponding lexical actioria;, as, .. ., a,), optionally interspersing computa-
tional actions — see Figure 1. [18] shows how this parsinggss can be modelled on
aDirected Acyclic Grapi{DAG), rooted atly, with partial trees as nodes, and compu-
tational and lexical actions as edges (i.e. transitionséen trees):

pred ‘john’
OO

In this DAG, intro, pred and*Adj correspond to the computational actiong Ro-
DUCTION, PREDICTION and *-ADJUNCTION respectively; and ‘john’ is a lexical ac-
tion. Different paths through the DAG represent differesutging strategies, which may
succeed or fail depending on how the utterance is continderk, the pattiy — 13
will succeed if ‘John’ is the subject of an upcoming verb {fdaipset Mary”) Ty — Ty
will succeed if ‘John’ turns out to be a left-dislocated attjé¢'John, Mary upset”).

This DAG is taken to represent thiaguistic contextavailable during a parse, used
for ellipsis and pronominal construal [19, 20]. It also pid®s us with a basis for imple-
menting a best-first probabilistic parser, by taking theentrDAG, plus a backtracking
history, as thearse stateGiven a conditional probability distributioR(a;| f (¢)) over
possible actions,; given a set of features of the current partial trge), the DAG
is then incrementally constructed and traversed such tratyanode (partial tree), the
most likely action (edge) is traversed first, with backtiaglallowing other possibilities
to be explored. Estimation of this probability distributits not a problem we address
here —we assume a known probability distribution for thevkmgrammar fragment.

4 Learning lexical actions

4.1 Assumptions and Problem Statement

Assumptions.Our task here is data-driven learning of lexical actionsdoknown
words. Throughout, we will assume that the (language-iaddpntcomputationabc-
tions are known. To make the problem tractable at this irstiage, we further make
the following simplifying assumptions: (1) The supervisioformation is structured:
i.e. our dataset pairs sentences with the DS tree that esqméiseir predicate-argument
structure — rather than just a less structured Logical Farin &.9. [9] (Note that this
does not provide word-level supervision: nodes do not epwead to words here) (2)
The training data does not contain any pronouns or elli®i$\e have a seed lexicon
such that there are no two adjacent words whose lexicalrectoe unknown in any
given training example. As we will see this will help deten@ivhere unknown actions
begin and end. We will examine the elimination of this asstiombelow. Relaxing any
of these assumptions means a larger hypothesis space.

Input. The input to the induction procedure to be described is nofelasvs:

— the set of computational actions in Dynamic Syntax,

— aseed lexicoll,: a set of words with their associated lexical actions thataken
to be known in advance.

— a set of training examples of the for{f;, T;), whereS; is a sentence of the lan-
guage and’; — henceforth referred to as therget tree— is the complete semantic
tree representing the compositional structure of the nmepoii.S; .

Target. The output is the lexical actions associated with previpuslkknown words.

We take these to be conditioned solely on the semantic typeeopointed node (i.e.
their IF clause takes the form IF'y(X)). This is true of most lexical actions in DS
(see examples above), but not all. This assumption will teasbme over-generation:

inducing actions which can parse some ungrammatical stiiiig main output of the
induction algorithm is therefore the THEN clauses of thenown actions: sequences
of DS atomic actions such g®, make andput (see Fig. 2). We refer to these sequences
aslexical hypothesedVe first describe our method for constructing lexical hyxeses
with a single training example (a sentence-tree pair). \Wa tliscuss how to generalise
over and refine these outputs in an incremental fashion asreeegs more training
examples.

4.2 Hypothesis construction

DS isstrictly monotonicactions can onlgxtendthe tree under construction, deleting
nothing except satisfied requirements. Thus, hypotheglsixical actions consists in
an incremental search through the space of all monotonénsidns of the current tree
T.. that subsume (i.e. can be extended to) the targeffiredot all possible trees and
tree extensions are well-formed (meaningful) in DS, makhesearch constrained to
a degree. The constraints are: (1) Lexical actions adddégantent —formula & type
labels together— only téeaf nodes with the corresponding type requirement. Non-
terminal nodes can thus only be given typguirementglater receiving their type and
content via beta-reduction); (2) Leaf nodes can only be igged by one lexical action,
i.e. once a leaf node receives its semantic content, nodeaition will return to it
(anaphora, excluded here, is an exception); (3) Once a nde/iscreated, the pointer
must move to it immediately and decorate it with the appmtpriype requirement.

The process of hypothesis construction proceeds by loaalliyincrementally ex-
tendingT.,., Using sequences ofake, go, andput operations as appropriate and
constrained as above, each time takifig,. one step closer to the target trég, at
each stage checking for subsumptioriifThis means that lexical actions are not hy-
pothesised in one go, but left-to-right, word-by-word.

Hypothesis construction for unknown words is thus interseiawith parsing known
words on the same DAG: Given a single training examfile; , . . ., w,,), T;), we be-
gin parsing from left to right. Known words are parsed as ralymthen some unknown
w; is encountered(w;, . .., w,) is scanned until the next known word; is found
or the end of the word sequence is reached (i.e- n). We then begin hypothesis-
ing for w;, ..., w;_1, incrementally extending the tree and expanding the DAGgus
both computational actions, and hypothesised lexical éstensions until we reach a
tree where we can parse;. This continues until the tree under development equals
the target tree. All such possibilities are searched dépthvia backtracking until no
backtracking is possible, resulting in a fully explored btfesis DAG. Successful DAG
paths (i.e. those that lead from the axiom tree to the targe} thus provide the success-
ful hypothesised lexical sub-sequences; these, once defieeome the THEN clauses
of the induced lexical actions.

For unknown words, possible tree extensions are hypo#tkasfollows. Given the
current tree under constructidf,,, and a target tre@;, possible sequences of atomic
actions (e.ggo, put , make) are conditioned on the nod¥, in T; which corresponds
to — has the same address as — the pointed ?age in T.,,-. If N; is a leaf node,
we hypothesisput operations which add each label 8f not present oV, thus
unifying them. Otherwise, we hypothesise adding an apjateptype requirement fol-
lowed bymake, go andput operations to add suitable daughters.

Ty(t),
o
'Ty(t) upset’ (john')(mary’)

Ty(e), ?Ty(e —t), Ty(e), Ty(e — t),
john o john Az.upset’ (z)(mary’)
Ty(e), Tyle— (e > 1)),

mary’ Aydz.upset’ (z)(y)

Fig. 3. The tree under development,, (left) and the target tre@; (right)

Figure 3 shows an example. Hef&,is the complete tree on the right, aifig,, the
partial tree on the left. SincE.,,,.’s pointed node corresponds to a non-leaf nodg;in
we hypothesise two local action sequences: one which baridsgument daughter with
appropriate type requirementdke(lo); 9o(Jo); put (?Ty(e))), and another which
does the same for a functor daughteeke({1); go(}1); put (?Ty(e — (e — t))).

This method produces, for each training exam{ple 7), a hypothesis DAG repre-
senting all possible sequences of actions that lead fromxém#tree to the associated
target tree;, using known lexical actions for known sub-strings%f new hypothe-
sised lexical actions for unknown sub-strings, and the kmoemputational actions of
DS. Such a DAG is in effect a mapping from the unknown word stilmgs ofS; into
sequences of local action hypotheses plus general corignabactions that may have
applied between words.

This method does not in principle require us to know any ofvtloeds in a given
training example in advance if we employed some method diftisyy’ sequences asso-
ciated with more than one adjacent word (a tactic employ¢tidhas well as [11]). We
will discuss this possibility in the next section, but cuntlg, since producing a compact
lexicon requires us to generalise over these action sequeymotheses, our method
opts for the simpler alternative of assuming that in any paimdjacent words one of
them is known.

4.3 Hypothesis generalisation and refinement

Hypotheses produced from a single training example ar&elglio generalise well to
other unseen examples: words occur at different syntaetitantic positions in differ-
ent training examples. We therefore require a method fointtremental, example-by-
example refinement and generalisation of the action hygethproduced for the same
unknown word in processing differet$, 7;) pairs as above.

DS'’s general computational actions can apply at any poiftrber after the appli-
cation of a lexical action, thus providing strategies fojuating the syntactic context
in which a word is parsed. We can exploit this property to gelise over our lexical
hypotheses: by partitioning a sequence into sub-sequevtiel can be achieved by
computational actions, and sub-sequences which must lmvadtexically. Removing
the former will leave more general lexical hypotheses.

However, we need a sequence generalisation method whiabnhotallows com-
putational action subsequences to be removed when thigaitsralisation, but also

8

First Training Example: ‘john’ in subject position:

(:) CA:intro O CA:predict O LH:put(Ty(e));put(fo(John’)) CA:thin CA:complete CA:anticip @

Second Training Example: ‘john’ on unfixed node, i.e. |laftlacated object:

0] CA:lnlro,O CA:predict

CA:anticip ’O
i s LH:put(Ty(e));put(fo(John")) CA:thin CA:complete . s
CA:star—adj | . _CA:mtru CA:pred

Third training example: ‘john’ before parsing relative u$e ‘who. .. "

CA:anticip
CA:predict CA:complete e
LSOX I »QO _ CAtintro

. @ LH:put(Ty(e));put(fo(John’)) ~ CA:thin () .
CA:star-adj CA:link-adj

CA:intro

©]

CA:pred

»O

Fig. 4. Incremental intersection of candidate sequences

allows them to become lexicalised when generalisation igeguired — i.e. when all
observed uses of a word involve therffor example, the parsing of relative clauses in
current DS grammars involves the computational actionkl=ADJUNCTION building

a paired tree. Parse DAGs for sentences including relatiitetherefore include LINK -
ADJUNCTIONIN all successful paths. If every observed use of the regtionourwho

is now associated with a sequence containingd-ADJUNCTION, this computational
action can become part of its lexical entry, thus increapenging efficiency.

Generalisation through sequence intersectioriThe hypothesis construction process
above produces a set of parse/hypothesis DA%Gsfrom a corresponding set of train-
ing examples{S; = (w1, ...,wy,),T;). Each of these provides a mappings;(w),
from any unknown wordv ¢ L, in S; (whereL, is the seed lexicon), into a set of
sequences of (partial) trees, connectecthgdidate sequenced actions (see Figure
4) made up of both computational actions and the local Iéxigaotheses (marked as
“LH" in Figure 4). Given our first simplifying assumption fne Section 4.1 above, these
candidate sequences must always be bounded on either sidmiwlexical actions.
As we process more training examples, the set of candidatgesees forw grows
as per:CS(w) = ;,_; CS;(w). The problem now is one of generalisation over the
candidate sequencesahS (w).

Generalisation over these sequences proceeds by remmstingutationalctions
from the beginning or end of any sequence. We implement thia single packed data-
structure which we term thgeneralisation DAGas shown in Figure 4: a representation
of the full set of candidate sequences via their intersedtioe central common path)
and differences (the diverging paths at beginning and antjer the constraint that
these differences consist only of computational actiorglds here therefore no longer

! see e.g. [21] for how syntactic change can be explained ghr@uprocess of calcification
or routinisation, whereby repeated use of certain parsirajegies leads to these strategies
becoming fixed within some lexical domain.

represent single trees, but sets of trees. As new candielgtiesces are added from new
training examples, the intersection is reduced. Figureovsithis process over three
training examples containing the unknown word ‘john’ infeient syntactic positions.
The ‘'S’ and ‘F’ nodes here mark the start and finish of the aurirtersection subse-
guence —initially the entire sequence. As new training goamarrive, the intersection
— the maximal common path — is reduced as appropriate. Ldxjgetheses thus re-
main as general as possible, with initial/final action saftences which depend on
syntactic context being delegated to computational asfibat computational actions
thatalwaysprecede or follow a sequence of lexical hypotheses will beckexicalised,
as desired.

Eventually, the intersection is then taken to form the THHAuse of the new
learned lexical entry. The IF clause is a type requiremestgined from the pointed
node on all partial trees in the ‘S’ node beginning the irdetion sequence. As lexical
hypotheses within the intersection are identical, ancdclxXiypotheses are constrained
to add type information before formula information (seettec4.2), any type infor-
mation must be common across these partial trees. In Figiarejdhn’, this is ?T'y(e),

i.e. a requirement for type, common to all three training examplés.

Lexical Ambiguity. Of course, it may well be that a new candidate sequencevfor
cannot be intersected with the current generalisation D&Gf (i.e. the intersection
is the null sequence). Such cases indicate differencegiitalehypotheses rather than
in syntactic context — either different formula/type dext@n (polysemy) or different
structure (multiple syntactic forms) — and thus give riskexical ambiguity with a new
generalisation DAG and lexical entry being created.

Splitting Lexical ItemsOur assumption that no two adjacent words are unknown in any
training example reduces the hypothesis space: candiglatesces correspond to sin-
gle words and have known bounds. Relaxing this assumptiopicceed in two ways:
either by hypothesising candidate action sequences fdi-maitd sequences, and then
hypothesising a set of possible word-boundary breaks (gefl@, 11]); or by hypothe-
sising a larger space of lexically distinct candidate segas for each word. Due to the
incremental nature of DS, hypotheses for one word will dffee possibilities for the
next, so connections between lexical hypotheses for atjaaerds must be maintained
as the hypotheses are refined; we leave this issue to oneesigle h

5 Testing and Evaluation

We have tested a computational implementation of this neetwer a small, artificial
data set: following [22] we use an existing grammar/lexittbgenerate sentences with
interpretations (complete DS trees), and test by remowarigél entries and compar-
ing the induced results. As an initial proof of concept, wat tan two unknown words:
‘cook’ (in both transitive and intransitive contexts) addhn’ (note that results gener-
alise to all words of these types); the dataset consistsedioffowing sentences paired

2 As we remove our simplifying assumptions, IF conditions trhes derived by generalising
over all features of the partial trees in the start node. Weat@ddress this here.

10

with their semantic trees: (1) ‘John likes Mary’ (2) ‘Johnah likes’ (3) ‘Mary likes
John’ (4) ‘Bill cooks steak’ (5) ‘Pie, Mary cooks’ (6) ‘Bill@oks’. (1), (2) and (3) have
‘John’ in subject, left-dislocated object, and object piosis respectively. The struc-
turally ambiguous verb ‘cooks’ was chosen to test the ghdftthe system to distin-
guish between its different senses.

Original Induced
IF ?Ty(e)
THEN. putl) THEN put(Ty(c)
THEN put(Ty(e)) put(Ty(e /
put(Fo(John')) put(Fo(John'))

1)
pui(() 1) beletelrT
"Ty(e))
ELSE ABORT ELSE ABORT

Fig. 5. Original and Induced lexical actions for ‘John’

The original and learned lexical actions for a proper nodal{h’) are shown in Fig-
ure 5. The induced version matches the original with onetifdit deletes the satisfied
?Ty(e) requirement, i.e. it lexicalises the inferential compiata&l action THINNING
(see Figure 4: HINNING occurs in all observed contexts, hence its lexicalisation)

Verbs provide a stronger test case. In the original coneemti DS [1], the compu-
tational actionsNTRODUCTIONand FREDICTION (together, NTRO-PRED) were taken
to build argument and functor daughters of the rBgtt) node in English, accounting
for the strict SVO word order and providing a nodefaf(e — t) as trigger for the verb.
However, more recent variants [23] have abandomaukb-PRED in favour of a more
language-general@CAL*-A DJUNCTION rule, motivated independently for Japanese
and all languages with NP clustering and scrambling (seef@jpter 6§ Such variants
require markedly different lexical actions for verbs, ¢rgged by?T'y(¢) and building
a complete propositional template while merging in the ndrgument nodes already
constructed.

We therefore test verb induction given different sets of patational actions (i.e.
one with LOCAL*-A DJUNCTION, one with NTRO-PRED). Fig. 6 shows the results for a
transitive verb: the induced actions match the original nadlly defined actions for both
variants, given only this change in the general computatiantions available. With
INTRO-PRED, the induced action is triggered By (e —) and does not need to build
the root node’s daughters; withdCAL*-A DJUNCTION, the action builds a complete
propositional template triggered B¥'y(t), and merges the unfixed node introduced by
LocAL*-A DJUNCTIONINto its appropriate subject position.

Moreover, in the sequence intersection stage of our methedaction for the in-
transitive ‘cook’ (from training sentence (6), but not inded here for reasons of space)
was successfully distinguished from that of the transitiren in Fig. 6; the candidate
sequences induced from sentences (4) and (5) were incditgpaith those from (6),
and thus resulted in a null intersection, giving rise to t@parate lexical entries.

3 This rule allows the addition of a second locaifixed nodevith its merge point restricted to
any argument position. See [23, 2] for details.

IF
THEN

ELSE

Original

Ty(e — t)

make(1); go({1)
put(Fo(AyAz.cook(z,y)))
put(Ty(e — (¢ — 1)))
put((1) 1)

go(1); make(lo); go(lo)
put(?Ty(e))

ABORT

Induced with Intro-Pred

IF
THEN

ELSE

Ty(e —t)

make(1); go({1)
put(?Ty(e — (e — t)))
put(Fo(AyAz.cook(z,y)))
put(Ty(e — (e — 1)))
put((4) 1)

delete(?Ty(e — (e — t)))
go(1); make(lo); go(lo)
put(?Ty(e))

ABORT

11

Induced with Local*-Adj

IF
THEN

ELSE

Ty(t)

make(lo); go({o)
put(?Ty(e))

merge

make(1); go({1)
put(?Ty(e — t))
make(1); go({1)
put(?Ty(e — (e — t)))
put(Fo(AyAz.cook(z,y)))
put(Ty(e — (e — 1)))
delete(?Ty(e — (e — t)))
go(1); make(lo); go(lo)
put(?Ty(e))

ABORT

Fig. 6. Original and Induced lexical actions for transitive ‘cook’

6 Conclusions and Future work

In this paper we have outlined a novel method for the indmatibnew lexical entries
in an inherently incremental and semantic grammar formml3ynamic Syntax, with
no independent level of syntactic phrase structure. Methitmveloped for other non-
incremental or phrase-structure-based formalisms contidb@ used here. Our method
learns from sentences paired with semantic trees repiegéhé sentences’ predicate-
argument structures: hypotheses for possible lexicabmacubsequences are formed
under the constraints imposed by the known sentential séreand by general facts
about tree dynamics. Its success on an artificially gengm@dgaset shows that it can
learn new lexical entries compatible with those defined ibguists, with different vari-
ants of the DS framework inducible by varying only generaétmanipulation rules.
Our research now focusses on relaxing our simplifying aggioms and applying
to real data. Firstly, we are developing the method to rentlkeeassumptions limiting
the number of unknown words. Secondly, the induction mether@ is more super-
vised than we would like; work is under way to adapt the samthatkto learn from
sentences paired not with trees but with less structuredusigy Type Theory with
Records [24] and/or the lambda calculus, for which corpoesaaailable. Other work
planned includes integrating this method with the learrohgonditional probability
distributions over actions, to provide a coherent prattivadel of parsing and induc-
tion with incremental updates of both the lexical entriemntiselves and the parameters

of the parsing model.

References

1. Kempson, R., Meyer-Viol, W., Gabbay, D.: Dynamic Syntaike Flow of Language Under-
standing. Blackwell (2001)
2. Cann, R., Kempson, R., Marten, L.: The Dynamics of Langué&tsevier, Oxford (2005)

12

w

[0

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Gargett, A., Gregoromichelaki, E., Kempson, R., PurMer,Sato, Y.: Grammar resources
for modelling dialogue dynamically. Cognitive NeurodyriasB(4) (2009) 347-363

. Charniak, E.: Statistical Language Learning]. MIT Prd£96)
. Gold, E.M.: Language identification in the limit. Infortin and ControllQ(5) (1967)

447474

. Klein, D., Manning, C.D.: Natural language grammar irttut with a generative

constituent-context mode. Pattern Recogni®&®) (2005) 1407-1419

. Pereira, F., Schabes, Y.: Inside-outside reestimatimm partially bracketed corpora. In:

Proceedings of the 30th Annual Meeting of the Associatianfomputational Linguistics.
(1992) 128-135

. Steedman, M.: The Syntactic Process. MIT Press, Cangyridg (2000)
. Zettlemoyer, L., Collins, M.: Online learning of relax€@€G grammars for parsing to logical

form. In: Proceedings of the Joint Conference on Empiricattdds in Natural Language
Processing and Computational Natural Language LearniktN(E>-CoNLL). (2007)
Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., Steggh, M.: Inducing probabilistic CCG
grammars from logical form with higher-order unificationn: IProceedings of the 2010
Conference on Empirical Methods in Natural Language P=ings(2010) 1223-1233
Sato, Y., Tam, W.: Underspecified types and semanticstrapping of common nouns
and adjectives. In: Proceedings of Language EngineeriddNatural Language Semantics.
(2012)

Lombardo, V., Sturt, P.: Incremental processing anditefiocal ambiguity. In: Proceedings
of the 1997 Cognitive Science Conference. (1997)

Ferreira, F., Swets, B.: How incremental is languagelyetion? evidence from the pro-
duction of utterances requiring the computation of aritieums. Journal of Memory and
Languaget6 (2002) 57-84

Hale, J.: A probabilistic Earley parser as a psychoistgumodel. In: Proceedings of
the 2nd Conference of the North American Chapter of the Aatoa for Computational
Linguistics. (2001)

Collins, M., Roark, B.: Incremental parsing with thegaegtron algorithm. In: Proceedings
of the 42nd Meeting of the ACL. (2004) 111-118

Clark, S., Curran, J.: Wide-coverage efficient statitparsing with CCG and log-linear
models. Computational Linguisti&3(4) (2007) 493-552

Blackburn, P., Meyer-Viol, W.: Linguistics, logic andite trees. Logic Journal of the
Interest Group of Pure and Applied Logi2gl) (1994) 3—-29

Sato, Y.: Local ambiguity, search strategies and paiisirDynamic Syntax. In: The Dy-
namics of Lexical Interfaces. CSLI (2010) to appear.

Cann, R., Kempson, R., Purver, M.: Context and well-ftness: the dynamics of ellipsis.
Research on Language and Computa&(8) (2007) 333-358

Purver, M., Eshghi, A., Hough, J.: Incremental semattitstruction in a dialogue system.
In: Proceedings of the 9th International Conference on Gaaijnal Semantics. (2011)
365-369

Bouzouita, M.: At the syntax-pragmatics interfaceiadiin the history of spanish. In: Lan-
guage in Flux: Dialogue Coordination, Language Variatidhange and Evolution. College
Publications, London (2008) 221-264

Pulman, S.G., Cussens, J.: Grammar learning usingtimduogic programming. Oxford
University Working Papers in Linguistid(2001)

Cann, R.: Towards an account of the english auxiliartesysbuilding interpretations incre-
mentally. In: Dynamics of Lexical Interfaces. Chicago: @®8less (2011)

Cooper, R.: Records and record types in semantic th@ouaynal of Logic and Computation
15(2) (2005) 99-112

