
Probabilistic grammar induction in an incremental

semantic framework

Arash Eshghi1, Matthew Purver1, Julian Hough1, and Yo Sato2

1 Interaction Media and Communication

School of Electronic Engineering and Computer Science

Queen Mary University of London

{arash,mpurver,jhough}@eecs.qmul.ac.uk
2 Adaptive Systems Research Group

Science and Technology Research Institute

University of Hertfordshire

y.sato@herts.ac.uk

Abstract. We describe a method for learning an incremental semantic grammar

from a corpus in which sentences are paired with logical forms as predicate-

argument structure trees. Working in the framework of Dynamic Syntax, and as-

suming a set of generally available compositional mechanisms, we show how

lexical entries can be learned as probabilistic procedures for the incremental pro-

jection of semantic structure, providing a grammar suitable for use in an incre-

mental probabilistic parser. By inducing these from a corpus generated using an

existing grammar, we demonstrate that this results in both good coverage and

compatibility with the original entries, without requiring annotation at the word

level. We show that this semantic approach to grammar induction has the novel

ability to learn the syntactic and semantic constraints on pronouns.

1 Introduction

Human language processing has long been thought to function incrementally, both in

parsing and production [1, 2]. This incrementality gives rise to many characteristic phe-

nomena in conversational dialogue, including unfinished utterances, interruptions and

compound contributions constructed by more than one participant, which pose prob-

lems for standard grammar formalisms [3]. In particular, examples such as (1) suggest

that a suitable formalism would be one which defines grammaticality not in terms of

licensing strings, but in terms of constraints on the semantic construction process, and

which ensures this process is common between parsing and generation.

(1) A: I burnt the toast.

B: But did you burn . . .

A: Myself? Fortunately not.

One such formalism is Dynamic Syntax (DS) [4]. DS is an inherently incremental

semantic grammar formalism [4, 5] in which semantic representations are projected on

a word-by-word basis. It recognises no intermediate layer of syntax (see below), and

generation and parsing are interchangeable. Given these properties, it seems well suited



2

for dialogue processing, and can in principle model common dialogue phenomena such

as unfinished or co-constructed utterances, mid-utterance interruption and clarification

etc. [6]. However, its definition in terms of semantics (rather than the more familiar

syntactic phrase structure) makes it hard to define or extend broad-coverage grammars:

expert linguists are required. On the other hand, as language resources are now available

which pair sentences with semantic logical forms (LFs), the ability to automatically

induce DS grammars could lead to a novel and useful resource for dialogue systems.

From a language acquisition perspective, this problem can be seen as one of con-

straint solving for a child: given (1) the constraints imposed through time by her un-

derstanding of the meaning of linguistic expressions (from evidence gathered from e.g.

her local, immediate cognitive environment, or interaction with an adult), and (2) in-

nate cognitive constraints on how meaning representations can be manipulated, how

does she go about separating out the contribution of each individual word to the overall

meaning of a linguistic expression? And how does she choose among the many guesses

she would have, the one that best satisfies these constraints?

This paper presents a method for automatically inducing DS grammars, by learning

lexical entries from sentences paired with complete, compositionally structured, propo-

sitional LFs. By assuming only the availability of a small set of general compositional

semantic operations, reflecting the properties of the lambda calculus and semantic con-

junction, we ensure that the lexical entries learnt include the grammatical constraints

and corresponding compositional semantic structure of the language; by additionally

assuming a general semantic copying operation, we can also learn the syntactic and

semantic properties of pronouns.

2 Previous work on grammar induction

Existing grammar induction methods can be divided into two major categories: super-

vised and unsupervised. Fully supervised methods, which use a parsed corpus as the

training data and generalise over the the phracslpse structure rules to apply to a new set

of data, has achieved significant success, particularly when coupled with statistical esti-

mation of the probabilities for production rules that share the same LHS category (e.g.

PCFGs [7]). However, such methods at best only capture part of the grammar learn-

ing problem, since they presuppose prior linguistic information and are not adequate

as human grammar learning models. Unsupervised methods, on the other hand, which

proceed with unannotated raw data and hence are closer to the human language acquisi-

tion setting, have seen less success. In its pure form —positive data only, without bias—

unsupervised learning has been demonstrated to be computationally too complex (‘un-

learnable’) in the worst case [8]. Successful cases have involved some prior learning or

bias, e.g. a fixed set of known lexical categories, a probability distribution bias [9] or a

hybrid, semi-supervised method with shallower (e.g. POS-tagging) annotation [10].

More recently another interesting line of work has emerged: supervised learning

guided by semantic rather than syntactic annotation – more justifiably arguable to be

‘available’ to a human learner with some idea of what a string in an unknown language

could mean. This has been successfully applied in Combinatorial Categorial Grammar

[11], as it tightly couples compositional semantics with syntax [12, 13] and [14] also



3

demonstrates a limited success of a similar approach with partially semantically an-

notated data that comes from a controlled experiment. Since these approaches adopt

a lexicalist framework, the grammar learning involves inducing a lexicon assigning to

each word its syntactic and semantic contribution.

Such approaches are only lightly supervised, using sentence-level propositional log-

ical form rather than detailed word-level annotation. Also, grammar is learnt ground-up

in an ‘incremental’ fashion, in the sense that the learner collects data and does the

learning in parallel, sentence by sentence. Here we follow this spirit, inducing gram-

mar from a propositional meaning representation and building a lexicon which spec-

ifies what each word contributes to the target semantics. However, taking advantage

of the DS formalism, a distinctive feature of which is word-by-word processing of

semantic interpretation, we bring an added dimension of incrementality: not only is

learning sentence-by-sentence incremental, but the grammar learned is word-by-word

incremental, commensurate with psycholinguistic results showing incrementality to be

a fundamental feature of human parsing and production [15, 16]. Incremental parsing

algorithms have correspondingly been proposed [17–19], however, to the best of our

knowledge, a learning system for an explicitly incremental grammar is yet to be pre-

sented – this work is a step towards such a system.

3 Dynamic Syntax

Dynamic Syntax is a parsing-directed grammar formalism, which models the word-

by-word incremental processing of linguistic input. Unlike many other formalisms, DS

models the incremental building up of interpretations without presupposing or indeed

recognising an independent level of syntactic processing. Thus, the output for any given

string of words is a purely semantic tree representing its predicate-argument structure;

tree nodes correspond to terms in the lambda calculus, decorated with labels expressing

their semantic type (e.g. Ty(e)) and formula, with beta-reduction determining the type

and formula at a mother node from those at its daughters (Figure 1).

These trees can be partial, containing unsatisfied requirements for node labels (e.g.

?Ty(e) is a requirement for future development to Ty(e)), and contain a pointer ♦ la-

belling the node currently under development. Grammaticality is defined as parsability:

the successful incremental construction of a tree with no outstanding requirements (a

complete tree) using all information given by the words in a sentence (see Figure 1 for

a word by word parse of “John upset Mary”). The input to our induction task here is

therefore sentences paired with such complete, semantic trees, and what we try to learn

are constrained lexical procedures for the incremental construction of such trees.

3.1 Actions in DS

The central tree-growth process is defined in terms of conditional actions: procedural

specifications for monotonic tree growth. These take the form both of general structure-

building principles (computational actions), putatively independent of any particular

natural language, and of language-specific actions corresponding to particular lexical

items (lexical actions). Like CCGs, DS is a highly lexicalised framework and thus gram-

mar induction amounts to inducing the lexicon, i.e. the set of lexical actions, from data.



4

?Ty(t)

?Ty(e),
♦

?Ty(e → t)

−→
“john”

?Ty(t)

Ty(e),
john

?Ty(e → t),
♦

−→
“upset”

?Ty(t)

Ty(e),
john

?Ty(e → t)

?Ty(e),
♦

Ty(e → (e → t)),
λyλx.upset′(x)(y)

−→
“mary”

Ty(t),♦,

upset′(john′)(mary′)

Ty(e),
john

Ty(e → t),
λx.upset′(x)(mary′)

Ty(e),
mary′

Ty(e → (e → t)),
λyλx.upset′(x)(y)

Fig. 1. Incremental parsing in DS producing semantic trees: “John upset Mary”

Computational actions These form a small, fixed set. Some merely encode the prop-

erties of the lambda calculus itself and the logical tree formalism (LoFT, [20]) – these

we term inferential actions. Examples include THINNING (removal of satisfied require-

ments) and ELIMINATION (beta-reduction of daughter nodes at the mother). These ac-

tions are entirely language-general, cause no ambiguity, and add no new information to

the tree; as such, they apply non-optionally whenever their preconditions are met.

Other computational actions reflect DS’s predictivity and the dynamics of the frame-

work. For example, COMPLETION moves the pointer up to the mother node if the current

(pointed) node is type-complete; this is to allow subsequent beta-reduction; replacing

feature-passing concepts, e.g. for long-distance dependency, *ADJUNCTION introduces

a single unfixed node with underspecified tree position, to be merged later on in the

parse with an appropriately typed node once it becomes available; LINK-ADJUNCTION

builds a paired (“linked”) tree corresponding to semantic conjunction and licensing rel-

ative clauses, apposition and more.

These actions represent possible parsing strategies and can apply optionally at any

stage of a parse if their preconditions are met. While largely language-independent,

some are specific to language type (e.g. INTRODUCTION-PREDICTION in the form used

here applies only to SVO languages).

Lexical actions The lexicon associates words with lexical actions, which like computa-

tional actions, are each a sequence of tree-update actions in an IF..THEN..ELSE format,

and composed of explicitly procedural atomic actions like make, go, put (and others).

make creates a new daughter node. go moves the pointer to a daughter node, and put

decorates the pointed node with a label. Fig. 2 shows a simple lexical action for John.

The action says that if the pointed node (marked as ♦) has a requirement for type e,

then decorate it with type e (thus satisfying the requirement); decorate it with formula

John′ and finally decorate it with the bottom restriction 〈↓〉⊥ (meaning that the node

cannot have any daughters). In case the IF condition ?Ty(e) is not satisfied, the action

aborts, meaning that the word ‘John’ cannot be parsed in the context of the current tree.



5

Action Input tree Output tree

John

IF ?Ty(e)
THEN put(Ty(e))

put(Fo(John′)
put(〈↓〉⊥)

ELSE ABORT

?Ty(t)

?Ty(e),
♦

?Ty(e → t)

John
−→ ?Ty(t)

Ty(e), ?Ty(e)
John′, 〈↓〉⊥,♦

?Ty(e → t)

Fig. 2. Lexical action for the word ‘John’

A more complex lexical action for a transitive verb dislike takes the following form,

first making a new predicate node of type e → (e → t), and then an argument node

with a requirement for type e (to be satisfied after parsing the object):

Action Input tree Output tree

dislikes

IF ?Ty(e → t)
THEN make(〈↓1〉); go(〈↓1〉)

put(Ty(e → (e → t)))
put(Fo(λxλy.Dislike′(x)(y)))
put(〈↓〉⊥)
go(〈↑1〉)
make(〈↓0〉)
go(〈↓0〉)
put(?Ty(e))

ELSE ABORT

?Ty(t)

Ty(e), John′
?Ty(e → t)

♦

Dislikes
−→ ?Ty(t)

Ty(e), John′ ?Ty(e → t)

?Ty(e)
♦

Ty(e → (e → t))
Fo(λxλy.Dislike′(x)(y)))

Fig. 3. Lexical action for the word ‘dislikes’

3.2 Graph Representation of DS Parsing

Given a sequence of words (w1, w2, ..., wn), the parser starts from the axiom tree T0 (a

requirement ?Ty(t) to construct a complete tree of propositional type), and applies the

corresponding lexical actions (a1, a2, . . . , an), optionally interspersing computational

actions – see Figure 4.

This parsing process can be modelled as a directed acyclic graph (DAG) rooted at

T0, with partial trees as nodes, and computational and lexical actions as edges (i.e. tran-

sitions between trees) [21]. Figure 4 shows an example: here, intro, pred and *-adj cor-

respond to the computational actions INTRODUCTION, PREDICTION and *-ADJUNCTION



6

T0

T1
intro

T2

pred

T3

link-adj

T4

*-adj

T5

john

abort

T6

john

“john”

T7

thin
T8

comp

T9

pred

T10

link-adj

T11

thin
T12

comp

T13

likes

abort

abort

“likes”

Fig. 4. DS parsing as a graph: actions (edges) are transitions between partial trees (nodes).

respectively; and ‘john’ is a lexical action. Different DAG paths represent different pars-

ing strategies, which may succeed or fail depending on how the utterance is continued.

Here, the path T0 −T3 will succeed if ‘John’ is the subject of an upcoming verb (“John

upset Mary”); T0 − T4 will succeed if ‘John’ turns out to be a left-dislocated object

(“John, Mary upset”).

This incrementally constructed DAG makes up the entire parse state at any point.

The rightmost nodes (i.e. partial trees) make up the current maximal semantic informa-

tion; these nodes with their paths back to the root (tree-transition actions) make up the

linguistic context for ellipsis and pronominal construal [22]. Given a conditional prob-

ability distribution P (a|w, T ) over possible actions a given a word w and (some set of

features of) the current partial tree T , we can parse probabilistically, constructing the

DAG in a best-first, breadth-first or beam parsing manner.

Generation uses exactly the same actions and structures, and can be modelled on the

same DAG with the addition only of a goal tree; partial trees are checked for subsump-

tion of the goal at each stage. The framework therefore inherently provides both parsing

and generation that are word-by-word incremental and interchangeable, commensurate

with psycholinguistic results [15, 16] and suitable for modelling dialogue [3]. While

standard grammar formalisms can of course also be used with incremental parsing or

generation algorithms [17–19], their string-based grammaticality and lack of inherent

parsing-generation interrelation means examples such as (1) remain problematic.

4 Learning lexical actions

4.1 Problem Statement

Our task here is data-driven, probabilistic learning of lexical actions for all the words

occurring in the corpus. Throughout, we will assume that the (language-independent)

computational actions are known. We also assume that the supervision information

is structured: i.e. our dataset pairs sentences with complete DS trees encoding their

predicate-argument structures, rather than just a flat logical form (LF) as in e.g. [12].

DS trees provide more information than LFs in that they disambiguate between different

possible predicate-argument decompositions of the corresponding LF; note however

that this provides no extra information on the mapping from words to meaning. The

input to the induction procedure is now as follows:



7

– the set of computational actions in Dynamic Syntax, G.

– a set of training examples of the form 〈Si, Ti〉, where Si = 〈w1 . . . wn〉 is a sen-

tence of the language and Ti – henceforth referred to as the target tree – is the

complete semantic tree representing the compositional structure of the meaning of

Si.

The output is a grammar specifying the possible lexical actions for each word in

the corpus. Given our data-driven approach, we take a probabilistic view: we take this

grammar as associating each word w with a probability distribution θw over lexical

actions. In principle, for use in parsing, this distribution should specify the posterior

probability p(a|w, T ) of using a particular action a to parse a word w in the context

of a particular partial tree T . However, here we make the simplifying assumption that

actions are conditioned solely on one feature of a tree, the semantic type Ty of the cur-

rently pointed node; and that actions apply exclusively to one such type (i.e. ambiguity

of type leads to multiple actions). This effectively simplifies our problem to specifying

the probability p(a|w).
In traditional DS terms, this is equivalent to assuming that all lexical actions have

a simple IF clause of the form IF ?Ty(X); this is true of most lexical actions in ex-

isting DS grammars (see examples above), but not all. This assumption will lead to

some over-generation – inducing actions which can parse some ungrammatical strings

– we must rely on the probabilities learned to make such parses unlikely, and evalute

this in Section 5. Given this, the focus of what we learn here is effectively the THEN

clause of lexical actions: a sequence of DS atomic actions such as go, make, and put

(see Fig. 2), but now with an attendant posterior probability. We will henceforth refer

to these sequences as lexical hypotheses. We first describe our method for constructing

lexical hypotheses with a single training example (a sentence-tree pair). We then dis-

cuss how to generalise over these outputs, while updating the corresponding probability

distributions incrementally as we process more training examples.

4.2 Hypothesis Construction

DS is strictly monotonic: actions can only extend the tree under construction, deleting

nothing except satisfied requirements. Thus, hypothesising lexical actions consists in

an incremental search through the space of all monotonic, and well-formed extensions

of the current tree, Tcur, that subsume (i.e. can be extended to) the target tree Tt. This

gives a bounded space which can be described by a DAG equivalent to the parsing DAG

of section 3.2: nodes are trees, starting with Tcur and ending with Tt, and edges are

possible extensions. These extensions may be either DS’s basic computational actions

(already known) or new lexical hypotheses.

This space is further constrained by the fact that not all possible trees and tree exten-

sions are well-formed (meaningful) in DS, due to the properties of the lambda-calculus

and those of the modal tree logic LoFT. Mother nodes must be compatible with the

semantic type and formula of their daughters, as would be derived by beta-reduction;

formula decorations cannot apply without type decorations; and so on. We also prevent

arbitrary type-raising by restricting the types allowed, taking the standard DS assump-

tion that noun phrases have semantic type e (rather than a higher type as in Generalized

Quantifier theory) and common nouns their own type cn (see [5], chapter 3 for details).



8

We implement these constraints by packaging together permitted sequences of tree

updates as macros (sequences of DS atomic actions such as make, go, and put), and

hypothesising possible DAG paths based on these macros. We can divide these into

two classes of lexical hypothesis macros: (1) tree-building hypotheses, independent of

the target tree, and in charge of building appropriately typed daughters for the current

node; and (2) content decoration hypotheses in charge of the semantic decoration of the

leaves of the current tree (Tcur), with formulae taken from the leaves of the target tree

(Tt).

?Ty(X),♦

?Ty(e) ?Ty(e → X)

IF ?Ty(X)
X 6= e

THEN make(〈↓0〉); go(〈↓0〉)
put(?Ty(e));go(〈↑〉)
make(〈↓1〉); go(〈↓1〉)
put(?Ty(e → X)); go(↑)

ELSE ABORT

?Ty(e),♦

?Ty(cn) ?Ty(cn → e)

IF ?Ty(e)
THEN make(〈↓0〉); go(〈↓0〉)

put(?Ty(cn)); go(〈↑〉)
make(〈↓1〉); go(〈↓1〉)
put(?Ty(cn → e)); go(↑)

ELSE ABORT

Fig. 5. Target-independent tree-building hypotheses

Figure 5 shows example tree-building hypotheses which extend a mother node with

a type requirement to have two daughter nodes which would (once themselves devel-

oped) combine to satisfy that requirement. On the left, an general rule in which a cur-

rently pointed node of some type X can be hypothesised to be formed of types e and

e → X (e.g. if X = e → t, the daughters will have types e and e → (e → t)). This

reflects only the fact that DS trees correspond to lambda calculus terms, with e being a

possible type. The other is more specific, suitable only for a type e node, allowing it to

be composed of nodes of type cn and cn → e (where cn → e turns out to be the type

of determiners), but again reflects only general semantic properties which would apply

in any language.

Content decoration hypotheses on the other hand depend on the target tree: they

posit possible addition of semantic content, via sequences of put operations (e.g.

content-dec: put(Ty(e)); put(Fo(john))which develop the pointed node

on Tcur towards the corresponding leaf node on Tt. They are constrained to apply only

to leaf nodes (i.e. nodes in Tcur whose counterparts on Tt are leaf nodes), other nodes

being assumed to receive their content via beta-reduction of their daughters.

?Ty(t)

Ty(e),
john

?Ty(e → t),
♦

Ty(t),
upset′(john′)(mary′)

Ty(e),
john

Ty(e → t),
λx.upset′(x)(mary′)

Ty(e),
mary′

Ty(e → (e → t)),
λyλx.upset′(x)(y)

Fig. 6. The tree under development Tcur (left) and the target tree Tt (right)



9

Figure 6 shows an example. Here, Tt is the complete tree on the right, and Tcur the

partial tree on the left. Since Tcur’s pointed node corresponds to a non-leaf node in Tt,

we hypothesise two local action sequences: one which builds an argument daughter with

appropriate type requirement (make(↓0);go(↓0);put(?Ty(e))), and another which

does the same for a functor daughter (make(↓1);go(↓1);put(?Ty(e → (e → t))).

4.3 Hypothesis Splitting

Hypothesis construction therefore produces, for each training sentence 〈w1 . . . wn〉, all

possible sequences of actions that lead from the axiom tree T0 to the target tree Tt

(henceforth, the complete sequences); where these sequences contain both lexical hy-

potheses and general computational actions. To form discrete lexical entries, we must

split each such sequence into n sub-sequences, 〈cs1 . . . csn〉, with each candidate sub-

sequence csi, corresponding to a word wi, by hypothesising a set of word boundaries.

This splitting process is subject to two constraints. Firstly, each candidate sequence

csi must contain exactly one content decoration lexical hypothesis (see above); this en-

sures both that every word has some contribution to the sentence’s semantic content,

and that no word decorates the leaves of the tree with semantic content more than once.

Secondly, candidate subsequences csi are computationally maximal on the left: csi may

begin with (possibly multiple) computational actions, but must end with a lexical hy-

pothesis. This reduces the splitting hypothesis space, and aids lexical generalisation (see

below).

Each such possible set of boundaries corresponds to a candidate sequence tuple

〈cs1 . . . csn〉. Importantly, this means that these csi are not independent, e.g. when pro-

cessing “John arrives”, a hypothesis for ‘John’ is only compatible with certain hypothe-

ses for ‘arrives’. This is reflected below in how probabilities are assigned to the word

hypotheses.

4.4 Hypothesis Generalisation

DS’s general computational actions can apply at any point before the application of a

lexical action, thus providing strategies for adjusting the syntactic context in which a

word is parsed. Removing computational actions on the left of a candidate sequence

will leave a more general albeit equivalent hypothesis: one which will apply success-

fully in more syntactic contexts. However, if a computational subsequence seems to

occur whenever a word is observed, we would like to lexicalise it, including it within

the lexical entry for a more efficient and constrained grammar. We therefore want to

generalise over our candidate sequence tuples to partition them into portions which

seem to be achieved lexically, and portions which are better achieved by computational

actions alone.

We therefore group the candidate sequence tuples produced by splitting, storing

them as members of equivalence classes which form our final word hypotheses. Two

tuples belong to the same equivalence class if they can be made identical by removing

only computational actions from the beginning of either one. We implement this via

a single packed data-structure which is again a DAG, as shown in Fig. 7; this repre-

sents the full set of candidate sequences by their intersection (the solid central common



10

First Training Example: ‘john’ in fixed object position;

Sequence intersected: 〈LH : content-dec : put(Ty(e));put(Fo(John′))〉:

S F
LH:content-dec:put(Ty(e));put(Fo(John’))

Second Training Example: ‘john’ in subject position;

Sequence intersected: 〈CA : intro, CA : predict, LH : content-dec :
put(Ty(e));put(Fo(John′))〉

S F
LH:content-dec:put(Ty(e));put(Fo(John’))

invisible invisible

CA:intro CA:predict

Third Training Example: ‘john’ on unfixed node, i.e. left-dislocated object;

Sequence intersected: 〈CA : star-adj, LH : content-dec : put(Ty(e));put(Fo(John′))〉

S F
LH:content-dec:put(Ty(e));put(Fo(John’))

invisible invisible

CA:intro CA:predict

invisible

CA:star-adj

Fig. 7. Incremental intersection of candidate sequences; CA=Computational Action, LH=Lexical

Hypothesis

path) and differences (the dotted diverging paths at beginning). Nodes here therefore no

longer represent single trees, but sets of trees. Figure 7 shows this process over three

training examples containing the unknown word ‘John’ in different syntactic positions.

The ‘S’ and ‘F’ nodes mark the start and finish of the intersection – initially the entire

sequence. As new candidate sequences arrive, the intersection – the maximal common

path – is reduced as appropriate. Word hypotheses thus remain as general as possible.

In our probabilistic framework, these DAGs themselves are our lexical entries, with

associated probabilities (see below). If desired, we can form traditional DS lexical ac-

tions: the DAG intersection corresponds to the THEN clause, with the IF clauses being

a type requirement obtained from the pointed node on all partial trees in the initial ‘S’

node. As lexical hypotheses within the intersection are identical, and were constrained

when formed to add type information before formula information (see Section 4.2), any

type information must be common across these partial trees. In Figure 7 for ‘john’, this

is ?Ty(e), i.e. a requirement for type e, common to all three training examples.

4.5 Probability Estimation

The set of possible word hypotheses induced as above can of course span a very large

space: we must therefore infer a probability distribution over this space to produce a

useful grammar. This can be estimated from the observed distribution of hypotheses, as

these are constrained to be compatible with the target tree for each sentence; and the es-

timates can be incrementally updated as we process each training example. For this pro-

cess of probability estimation, the input is the output of the splitting and generalisation

procedure above, i.e. for the current training sentence S = 〈w1 . . . wn〉 a set HT of Hy-

pothesis Tuples (sequences of word hypotheses), each of the form HTj = 〈hj
1 . . . h

j
n〉,

where h
j
i is the word hypothesis for wi in HTj . The desired output is a probability dis-



11

tribution θw over hypotheses for each word w, where θw(h) is the posterior probability

p(h|w) of a given word hypothesis h being used to parse w.

Re-estimation Given some prior estimate of θ′w, we can use a new training example

to produce an updated estimate θ′′w directly. We assign each hypothesis tuple HTj a

probability based on θ′w; the probability of a sequence 〈hj
1 . . . h

j
n〉 is the product of the

probabilities of the hi’s within it (by the Bayes chain rule):

p(HTj|S) =

n
∏

i=1

p(hj
i |wi) =

n
∏

i=1

θ′wi
(hj

i ) (1)

Now, for any word w and possible hypothesis h, we can re-estimate the probability

p(h|w) as the normalised sum of the probabilities of all observed tuples HTj which

contain h, that is the set of tuples, HT h = {HTj|h ∈ HTj}:

θ′′w(h) = p(h|w) =
1

Z

∑

HTj∈HTh

p(HTj|S) =
1

Z

∑

HTj∈HTh

n
∏

i=1

θ′wi
(hj

i ) (2)

where Z , the normalising constant, is the sum of the probabilities of all the HTj’s:

Z =
∑

HTj∈HT

n
∏

i=1

θ′wi
(hj

i )

Incremental update Our procedure is now to update our overall esimate θw incremen-

tally: after the N th example, our new estimate θNw is a weighted average of the previous

estimate θN−1
w and the new value from the current example θ′′w from equation (2), with

weights reflecting the amount of evidence on which these estimates are based:

θNw (h) =
N − 1

N
θN−1
w (h) +

1

N
θ′′w(h) (3)

Note that for training example 1, the first term’s numerator is zero, so θN−1
w is

not required and the new estimates are equal to θ′′w. However, to produce θ′′w we need

some prior estimate θ′w; in the absence of any information, we simply assume uniform

distributions θ′w = θ0w over the lexical hypotheses observed in the first training example.

In subsequent training examples, there will arise new hypothesesh not seen in previ-

ous examples, and for which the prior estimate θ′w gives no information. We incorporate

these hypotheses into θ′w by discounting the probabilities assigned to known hypothe-

ses, reserving some probability mass which we then assume to be evenly distributed

over the new unseen hypotheses. For this we use the same weight as in equation (3):

θ′w(h) =







N−1
N

θN−1
w (h) if h in θN−1

w

1
Nu

∑

h∈θ
N−1

w

1
N
θN−1
w (h) otherwise

(4)

where Nu here is number of new unseen hypotheses in example N . Given (4), we

can now more accurately specify the update procedure in (3) to be:



12

θNw (h) = θ′w(h) +
1

N
θ′′w(h) (5)

Non-incremental estimation Using this incremental procedure, we use the estimates

from previous sentences to assign prior probabilities to each hypothesis tuple (i.e. each

possible path through the hypothesised parse DAG), and then derive updated posterior

estimates given the observed distributions. Such a procedure could similarly be applied

non-incrementally at each point, by repeatedly re-estimating and using the new esti-

mates to re-calculate tuple probabilities in a version of the Expectation-Maximisation

algorithm [23]. However, this would require us to keep all HT sets from every training

example; this would be not only computationally demanding but seems psycholinguisti-

cally implausible (requiring memory for all lexical and syntactic dependencies for each

sentence). Instead, we restrict ourselves here to assuming that this detailed information

is only kept in memory for one sentence; intermediate versions would be possible.

4.6 Pronouns

Standard approaches to grammar induction treat pronouns simply as entries of a partic-

ular syntactic category. Here, as we learn from semantic annotations, we can learn not

only their anaphoric nature, but syntactic and semantic constraints on their resolution.

To achieve this, we assume one further general strategy for lexical hypothesis forma-

tion: a copying operation from context whereby the semantic content (formula and type

decorations) can be copied from any existing type-compatible and complete node on

Tcur (possibly more than one) accessible from the current pointed node via some finite

tree modality. This assumption therefore provides the general concept of anaphoricity,

but nothing more: it can be used in hypothesis formation for any word, and we rely on

observed probabilities of its providing a successful parse to rule it out for words other

than pronouns. By requiring access via some tree modality (↑0, ↓∗ etc), we restrict it to

intrasentential anaphora here, but the method could be applied to intersentential cases

where suitable LFs are available.

This modal relation describes the relative position of the antecedent; by storing this

as part of the hypothesis DAG, and subjecting it to a generalisation procedure similar to

that used for computational actions in Section 4.4, the system learns constraints on these

modal relations. The lexical entries resulting can therefore express constraints on the

possible antecedents, and grammatical constraints on their presence, akin to Principles

A and B of Government and Binding theory (see [5], chapter 2); in this paper, we

evaluate the case of relative pronouns only (see below).

5 Evaluation

5.1 Parse coverage

This induction method has been implemented and tested over a 200-sentence artificial

corpus. The corpus was generated using a manually defined DS grammar, with words

randomly chosen to follow the distributions of the relevant POS types and tokens in the



13

CHILDES maternal speech data [24] - see Table 1. 90% of the sentences were used as

training data to induce a grammar, and the remaining 10% used to test it. We evaluate

the results in terms of both parse coverage and semantic accuracy, via comparison with

the logical forms derived using the original, hand-crafted grammar.

Word class Type Token Type% Token%
noun 119 362 76.3% 48.7%
verb 29 263 18.6% 35.4%

determiner 3 56 1.9% 7.5%
pronoun 5 62 3.2% 8.4%

Total 156 743 100.00% 100.00%
Total of 200 sentences

Min, Max and Mean sentence lengths : 2, 6, 3.7 words

Mean tokens per word = 4.01
Table 1. Training and test corpus distributions and means

The induced hypotheses for each word were ranked according to their probability;

three separate grammars were formed using the top one, top two and top three hypothe-

ses and were then used independently to parse the test set. Table 2 shows the results,

discounting sentences containing words not encountered in training at all (for which no

parse is possible). We give the percentage of test sentences for which a complete parse

was obtained; and the percentage of those for which one of the top 3 parses resulted in

a logical form identical to the correct one.

Parsing Coverage Same Formula

Top one 26% 77%

Top two 77% 79%

Top three 100% 80%

Table 2. Test parse results: showing percentage parsability, and percentage of parses deriving the

correct semantic content for the whole sentence

As Table 2 shows, when the top three hypotheses are retained for each word, we

obtain 80% formula derivation accuracy. Manual inspection of the individual actions

learned revealed that the words which have incorrect lexical entries at rank one were

those which were sparse in the corpus - we did not control for the exact frequency of

occurrence of each word. The required frequency of occurrence varied across differ-

ent categories; while transitive verbs require about four occurrences, intransitive verbs

require just one. Count nouns were particularly sparse (see type/token ratios in Table 1).

As we have not yet evaluated our method on a real corpus, the results obtained are

difficult to compare directly with other baselines such as that of [25] who achieve state-

of-the-art results; cross-validation of this method on the CHILDES corpus is work in

progress, which will allow direct comparison with [25].

Lexical Ambiguity We introduced lexically ambiguous words into the corpus to test

the ability of the system to learn and distinguish between their different senses; 10%



14

of word types were ambiguous between 2 or 3 different senses with different syntactic

category. Inspection of the induced actions for these words shows that, given appropri-

ately balanced frequencies of occurrence of each separate word sense in the corpus, the

system is able to learn and distinguish between them. 57% of the ambiguous words had

lexical entries with both senses among the top three hypotheses, although in only one

case were the two senses ranked one and two. This was the verb ‘tramped’ with transi-

tive and intransitive readings, with 4 and 21 occurrences in the corpus respectively.

5.2 Pronouns

For pronouns, we wish to learn both their anaphoric nature (resolution from context) and

appropriate syntactic constraints. Here, we tested on relative pronouns such as ‘who’ in

“John likes Mary, who runs”: the most general lexical action hypothesis learned for

these is identical to hand-crafted versions of the action (see [5], chapter 3):

who

IF ?Ty(e)
〈↑∗↑L〉Fo(X)

THEN put(Ty(e))
put(Fo(X))
put(〈↓〉⊥)

ELSE ABORT

This action instructs the parser to copy a semantic type and formula from a type Ty(e)
node at the modality 〈↑∗↑L〉, relative to the pointed node. The system has therefore

learnt that pronouns involve resolution from context (note that many other hypotheses

are possible, as pronouns are paired with different LFs in different sentences). It also

expresses a syntactic constraint on relative pronouns, that is, the relative position of

their antecedents 〈↑∗↑L〉 (the first node above a dominating LINK tree relation – i.e. the

head of the containing NP).

Of course, relative pronouns are a special case: the modality from which their an-

tecedents are copied is relatively fixed. Equivalent constraints could be learned for other

pronouns, given generalisation over several modal relations; e.g. locality of antecedents

for reflexives is specified in DS via a constraint 〈↑0↑
∗
1↓0〉 requiring the antecedent to

be in some local argument position. In learning reflexives, this modal relation can come

from generalisation over several different modalities obtained from different training

examples; this will require larger corpora.

6 Conclusions and Future work

In this paper we have outlined a novel method for the probabilistic induction of new

lexical entries in an inherently incremental and semantic grammar formalism, Dynamic

Syntax, with no independent level of syntactic phrase structure. Our method learns from

sentences paired with semantic trees representing the sentences’ predicate-argument

structures, assuming only very general compositional mechanisms. While the method

still requires evaluation on real data, evaluation on an artificial but statistically repre-

sentative corpus demonstrates that the method achieves good coverage. A further bonus



15

of using a semantic grammar is that it has the potential to learn both semantic and syn-

tactic constraints on pronouns: our evaluation demonstrates this for relative pronouns,

but this can be extended to other pronoun types.

Our research now focusses on evaluating this method on real data (the CHILDES

corpus), and on reducing the level of supervision by adapting the method to learn from

sentences paired not with trees but with less structured LFs, using Type Theory with

Records [26] and/or the lambda calculus. Other work planned includes the integration

of the actions learned into a probabilistic parser.

7 Acknowledgements

We would like to thank Ruth Kempson for helpful comments and discussion. This work

was supported by the EPSRC, RISER project (Ref: EP/J010383/1), and in part by the

EU, FP7 project, SpaceBook (Grant agreement no: 270019).

References

1. Crocker, M., Pickering, M., Clifton, C., eds.: Architectures and Mechanisms in Sentence

Comprehension. Cambridge University Press (2000)

2. Ferreira, V.: Is it better to give than to donate? Syntactic flexibility in language production.

Journal of Memory and Language 35 (1996) 724–755

3. Howes, C., Purver, M., McCabe, R., Healey, P.G.T., Lavelle, M.: Predicting adherence to

treatment for schizophrenia from dialogue transcripts. In: Proceedings of the 13th Annual

Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL 2012 Confer-

ence). (2012) 79–83

4. Kempson, R., Meyer-Viol, W., Gabbay, D.: Dynamic Syntax: The Flow of Language Under-

standing. Blackwell (2001)

5. Cann, R., Kempson, R., Marten, L.: The Dynamics of Language. Elsevier, Oxford (2005)

6. Gargett, A., Gregoromichelaki, E., Kempson, R., Purver, M., Sato, Y.: Grammar resources

for modelling dialogue dynamically. Cognitive Neurodynamics 3(4) (2009) 347–363

7. Charniak, E.: Statistical Language Learning. MIT Press (1996)

8. Gold, E.M.: Language identification in the limit. Information and Control 10(5) (1967)

447–474

9. Klein, D., Manning, C.D.: Natural language grammar induction with a generative

constituent-context mode. Pattern Recognition 38(9) (2005) 1407–1419

10. Pereira, F., Schabes, Y.: Inside-outside reestimation from partially bracketed corpora. In:

Proceedings of the 30th Annual Meeting of the Association for Computational Linguistics.

(1992) 128–135

11. Steedman, M.: The Syntactic Process. MIT Press, Cambridge, MA (2000)

12. Zettlemoyer, L., Collins, M.: Online learning of relaxed CCG grammars for parsing to logical

form. In: Proceedings of the Joint Conference on Empirical Methods in Natural Language

Processing and Computational Natural Language Learning (EMNLP-CoNLL). (2007)

13. Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., Steedman, M.: Inducing probabilistic CCG

grammars from logical form with higher-order unification. In: Proceedings of the 2010

Conference on Empirical Methods in Natural Language Processing. (2010) 1223–1233

14. Sato, Y., Tam, W.: Underspecified types and semantic bootstrapping of common nouns

and adjectives. In: Proceedings of Language Engineering and Natural Language Semantics.

(2012)



16

15. Lombardo, V., Sturt, P.: Incremental processing and infinite local ambiguity. In: Proceedings

of the 1997 Cognitive Science Conference. (1997)

16. Ferreira, F., Swets, B.: How incremental is language production? evidence from the pro-

duction of utterances requiring the computation of arithmetic sums. Journal of Memory and

Language 46 (2002) 57–84

17. Hale, J.: A probabilistic Earley parser as a psycholinguistic model. In: Proceedings of

the 2nd Conference of the North American Chapter of the Association for Computational

Linguistics. (2001)

18. Collins, M., Roark, B.: Incremental parsing with the perceptron algorithm. In: Proceedings

of the 42nd Meeting of the ACL. (2004) 111–118

19. Clark, S., Curran, J.: Wide-coverage efficient statistical parsing with CCG and log-linear

models. Computational Linguistics 33(4) (2007) 493–552

20. Blackburn, P., Meyer-Viol, W.: Linguistics, logic and finite trees. Logic Journal of the

Interest Group of Pure and Applied Logics 2(1) (1994) 3–29

21. Sato, Y.: Local ambiguity, search strategies and parsing in Dynamic Syntax. In: The Dy-

namics of Lexical Interfaces. CSLI Publications (2011)

22. Purver, M., Eshghi, A., Hough, J.: Incremental semantic construction in a dialogue system.

In: Proceedings of the 9th International Conference on Computational Semantics. (2011)

365–369

23. Dempster, A., Laird, N., Rubin, D.B.: Maximum likelihood from incomplete data via the EM

algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 39(1) (1977)

1–38

24. MacWhinney, B.: The CHILDES Project: Tools for Analyzing Talk. Third edn. Lawrence

Erlbaum Associates, Mahwah, New Jersey (2000)

25. Kwiatkowski, T., Goldwater, S., Zettlemoyer, L., Steedman, M.: A probabilistic model of

syntactic and semantic acquisition from child-directed utterances and their meanings. In:

Proceedings of the Conference of the European Chapter of the Association for Computa-

tional Linguistics (EACL). (2012)

26. Cooper, R.: Records and record types in semantic theory. Journal of Logic and Computation

15(2) (2005) 99–112


