Probabilistic Record Type Lattices for
Incremental Reference Processing

Julian Hough and Matthew Purver

Abstract We propose an incremental dialogue framework which contbjmeba-
bilistic Type Theory with Records and order-theoretic medsd probability. The
probabilistic record type lattices at the core of the framewallow the éficient
computation of type judgements of utterance meaning imttlidialogue. It models
reference processing in simple reference domains in a pigghuistically plausible
way—that is, in a strictly left-to-right, word-by-word fai®n where the probabilities
assigned to the referents in a scene change intuitively aemance continues. Fur-
thermore, the model can process disfluent referring exioressuch as ‘the yell-,
uh, purple square’ while making use of the information th&fldency conveys to
reflect psycholinguistic results. We conclude this proo€oificept is a useful step
towards generative, learnable, probabilistic dialoguel@ewhich can include the
existing insights of non-probabilistic type-theoreticioterparts in future.

1 Introduction

This chapt@ addresses the issue of incorporating probabilistic tyyeitetic infer-

ence into an incremental dialogue framework, using proegss referring expres-
sions (that is, their interpretation and generation) asiadase. Within our frame-
work, we model reference processing in a psycholinguityipdausible way— that
is, in a strictly left-to-right, word-by-word, incrememtiashion. We additionally
show how the model is capable of processing disfluent refggekpressions while
making use of the information the disfluency conveys to refisycholinguistic
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Our model incorporates probabilistic Type Theory with Relso/Cooper et al,
2014) and order-theoretic models of probability (Knuth02pinto a formal dia-
logue system that reflects the psycholinguistic evidence.

The remainder of the chapter is as follows: In Secfibn 2 wedhice the chal-
lenge of modelling reference processing, and overview gomeous approaches.
In Sectior B we describe the semantic and dialogue framewenkse and how we
enrich it with probabilistic record type lattices. In Sectid we describe how our
model can simulate psycholinguistic results in referencegssing and we finish
with a discussion and conclusion.

2 Background on reference processing models

There has been significant work on simple referential comoation games in psy-
cholinguistics and computational and formal models of camitation. These ref-
erence games are usually posed as a human-human situatiwa am instruction
giver and instruction follower have access to the same Vistene with simple
objects, and the instructor produces an utterance to makmstructee select the
object(s) he or she refers to. A typical referring expras$RE) produced by an in-
struction giver in a simple domain of coloured shapes woaelttte yellow square”—
these simple noun phrases are the ones we focus on here.

From a speech production perspective, Levelt (1989)’s saihmwork modelled
speaker strategies for producing REs in such a simple obgeing game. He
showed how the production process could be split into thegemte stages of
conceptualizatior{choosing the elements or properties of the objects thekepea
intends to vocalizegyntactic formulatiorfchoosing the lexical items to convey the
content, linearising their order and checking lexical agnents) andrticulation
(speaking). He also showed how speakers use informatyoredundant features
of the target object, aover-specificationviolating Grice’s Maxim of Quantity that
speakers should say no more than is necessary to convetimemunicative in-
tention (Grice, 1975), a result that has been supportediisefjuent accounts. An
example of over-specification is when an adjective is inetuidnnecessarily in an
RE- for instance in a reference situation with three objett red lamp, red hat
and red glove, ‘the red lamp’ would be over-specified wheerrafg to the lamp,
where ‘the lamp’ would sfice to distinguish it uniquely.

In the natural language generation (NLG) community, ré@igrexpression gen-
eration (REG) has been widely studied in terms of the conedightion and for-
mulation (includingsurface realizatioh levels— seel (Krahmer and Van Deemter,
2012) for a comprehensive survey. The incremental algoriitf\) (Dale and Re-
iter,11995), the most well-known REG algorithm, is an iteatfeature selection
procedure that operates on logical properties of objects\visual scene (such as
colour=yellow for yellow objects). The IA computes ttdistractor set of refer-
ents (i.e. those not intended for selection) which eachgnypsed in a RE could
cause to be inferred. From this, the IA gives a utility valaesach property based
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on its ability to determine the referent in a non-greedy neantit iterates over the
properties in terms of a fixed preference order (wherebycsdgur properties would
rank above shape properties, and would therefore be usgdrisjust their ability
to determine the referent uniquely, and adds them if theyaedhe number of dis-
tractors. The IA stops when the combination of propertigsmgines the referent
unambiguously. This was designed to be consistent with-specification phenom-
ena in that certain types of properties will be selectedafthave any discrimination
ability, even if the final RE generated is not optimally bridbre recently Frank and
Goodmani(2012) investigate property preference and digtaitory power empiri-
cally in a Bayesian model of REG based on information-thiéosearprisal in terms
of how much REs reduce uncertainty about their intendedeafea measure which
they claim correlates strongly to human judgements of wkEhbest describes a
given target (obtained from a multiple choice study rathantallowing open an-
swers).

2.1 Incrementality

While Dale and Reiter’s IA deals with incrementality in tevrof the property se-
lection procedure, it does not model tledt-to-right, word-by-wordsurface-level
incrementality of reference processing, which is the aspedocus on here. That
is to say, as opposed to modelling the selection of linguistintent in REG and
the interpretation of REs on the level of complete utteraneg wish to model the
inference listeners make as a referring expression is spiokeal time. We assume
the key requirement of incremental reference processmltiné with incremental
semantics desiderata in general, is to yield the maximatinétion available from
an utterance as it is processed (Houghlet al, 2015).

Existing models closest to our own are the incremental RE@aisalescribed by
Guhe (2007) and Fernandez (2013) and the incrementaéreferresolution model
proposed by Kennington and Schlangen (2014). Guhe (208@psoach to REG
is to model a fine-grained incremental conceptualizer wpiaéses conceptual in-
crements (partial logical forms) to an incremental syntafiirmulator, allowing
piece-meal processing. While not focussing on referencegssing, the incremen-
tal conceptualization is a point of departure we use in oudl@hbelow.

Fernandez (2013), on the other hand, takes a more purglyiitic, syntax-level
perspective. Fernandez sketches a novel solution to iiregleVer-specification, ar-
guing the phenomenon may be caused more byftieedances of incremental left-
to-right word-by-word information processing infiéirent languages, rather than
salience of properties as proposed by Dale and Reiter (5995)She argues prop-
erties seemingly redundant when considering the RE as aewlot may in fact
be important when considering their incremental word-tmréhcontribution to ref-
erence resolution, that is, tha@imcremental informativity The paper gives cross-
linguistic evidence from Spanish speakers based on RubinaRdez (2011)'s ex-
perimental results, arguing over-generation of redunddjetctives is less common
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in languages where such adjectives can be added post-rigmi@anandez exem-
plifies a domain where the only red lamp in a scene is the nefeaed it is possible
to individuate it from its object type (i.e. the propertytitds a lamp) alone, where
describing its colour is redundant, however still parfiaiscriminative as there is
another red object in the domain. For an English speakerrgdidamp” would be
a typical over-specified description, whereas in Spaniaté&inpara roja” (“the red
lamp”) would be less common, and “la lampara” would be a nmmamon RE.
This cross-linguistic dference is due to the fact the post-nominal “roja” does not
add any reference information incrementally after “la ffara”, which on its own
has stficient discriminatory power, while the English “red”, altigh not uniquely
determining the referent, narrows the reference set and swiementally infor-
mative. Fernandez uses this example to sketch a REG sybktdnuges a variant
of Dale and Reiter (1995)'s IA for content selection intexled with a TAG-based
syntactic formulator that is strictly left-to-right inareental in its tree construction.
She emphasizes the importance of tightly coupling the REf@gqature with an in-
terpretation component of a dialogue system but does netdgtails of how this
could be done.

On the interpretation side of reference, reference resoluKennington and
Schlangen(2014)’s incremental system models the roleeohéarer or instructee.
The system continuously incrementally outputs a distiilubdf possible referents
conditioning on the logical values of properties of the clgan the scene and the
words used to refer to those properties spoken by the irtstruthe model forms
part of situateddialogue processing, as it continuously updates its refatistri-
butions based on perceptual data, and not necessarilyrjgsidtic data. The con-
ditional probabilities are calculated using a generativelet (of the speaker) and
implemented using Markov Logic networks. Kennington eP&l14)’s development
of the model uses incremental semantic representatiottsupuivord-by-word by
an incremental rMRS (robust Minimal Recursion Semanties¥er(Peldszus et al,
2012) as part of the property set it conditions on, boostsgits from using simple
n-gram models.

Motivated by incremental approaches such as those justidedg¢ this chap-
ter presents an incremental dialogue-motivated accourgfefence identification
which models the speaker in terms of incremental NLG and #zdr in terms of
incremental interpretation of utterances in referencatifleation games.

2.2 Self-repair

In addition to modelling incremental processing of fluem¢rgnces, the model aims
to reflect the evidence from Brennan and Schaober (2001 )3deewe thaself-repair
can speed up semantic processing (or at least referend#icgion) in such games.
An incorrect RE being partly vocalized and then repaired@ihstructions in con-
junction with a filled pause interregnum “uh” (e.g. “the yellih, purple square”)
yields quicker response times to select the correct ohjest the onset of the target
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(“purple”) than in the case of the fluent instructions whidmenunicate the same
final target referent (e.g. “the purple square”), with nan#figant efect on accuracy.
This suggests that the repaired material itself is semahtiprocessed, and infer-
ence is made available immediately from it. While these pslinguistic results are
striking, there has been little attention paid to this plreanon, and we also address
this in our model.

3 Incorporating probability into type judgements and dialogue
states

To meet the challenges outlined, we present a reversitdeaeée processing model
(i.e. one that works both in interpretation and generatiéth \wminor parametric
changes), situated within the incremental dialogue fraotkvdyLan (‘Dynamics
of Language’, Purver etial, 2011). While DyLan is capablencfémental seman-
tic processing, we would like a dialogue model to be able fiecethe uncertainty
of reference as a referring expression progresses and pitavabilistic reasoning
about the reference situation in general, which is an umowetsial view for mod-
ern cognitive models (Chater et al, 2006). For this to becpossible, the model
should generate distributions over type judgements in ereate situation rather
than just allow binary type judgements. In the following settions we explain
the probabilistic type theoretic and lattice theoretic meatatical tools we use to
achieve incremental probabilistic type judgements in DyLa

3.1 Probabilistic TTR

Firstly, we briefly describe the chosen semantic repretientramework for our
model, Type Theory with Records (TTR, Cocper, 2005, :2@12).

In TTR, the principal logical form of interest is tecord typg(abbreviated ‘RT’
largely from here), consisting of sets figldsof the form [ : T] containing a label
I, from a set of labels, and a tyfde from a type ordering, representing the central
type-theoretic judgement: T, that an object labelledis of typeT. RTs can be
witnessed (i.e. judged as inhabited) ®cordsof that type, where a record is a
semantic object structured isomorphically to a RT, coimgistf sets of label-value
pairs [ = \]. See Figuréll for examples of RTs and records.

The central type judgement in TTR that a recaiid of record typeR, i.e.s: R,
can be made from the component type judgements of indiviiklds of R, e.g. the
one-field recordl[= V] is of record typel[: T’] just in case types is of typeT’.
This single-field RT check is generalisable to records ansl\&ith multiple fields:

2 We only introduce the elements of TTR relevant to the phemaniiscussed below. See Codper
(2012) and Cooper (Chapter 3, this volume) for a detailech&bdescription.
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Fig. 1: Example TTR record types (top row) and records (lm}to

a recordsis of RT Rif sincludes fields with labels matching those in the fields of
R in a one-to-one relation, such that all fieldsRrare matched to a field ig and

all label-matched fields i have a value of the same type as their corresponding
field in R (or, their value is a subtype of the corresponding typR,isee below). A
record type check can be defined as in Definifibn 1. Thus itssibde for the record
sto have more fields than RR and fors: Rto still hold, but not vice-versas: R
cannot hold if RTR has more fields than the recosd

Definition 1. Record type check
For arecordsand and record typR, s: Ris true tf for every field [ : T] in Rthere
isafield[ = V]in ssuchthaw:T.

Fields can have values representing predicate type (whidlowing [Cooper
(2012), we call @ Typeg judgements, such ds: T3(l1) in Fig.[d, and consequently
fields can belependentn fields preceding them (i.e. represented graphicallydrigh
up) inthe RT, e.g. in Figl1; is bound in thé®Typgudgement fields, sol; depends
onlj.

Semantically, the boolean judgement of whether type jucesardrue or false
is determined by a model, type systeniCooper, 2012). A type system consists of
(i) a partially ordered set of typegype hierarchy, ordered by the subtype relation
as will be explained further below, of which the supremunhis typeT ype (i) a
set of labelled objectdype inhabitantswhich is disjoint from the type hierarchy,
and (iii) a valuation functiolA(T) which maps each typé€ in the type hierarchy
to a subset of the set of type inhabitants. Therefore, indehjudgementd,: T’
is true ff the object labelled in the type system is a member of the 8T"); i.e.
I:T7iff | € A(T’). In terms of record types and records, if the field” in a RT is
true according to the type system, then the judgement in@dée: v is true ff vis
of typeT’; i.e. givenl : T” is true, therl = vis true it v: T’ (wherev: T’ is true it
ve A(T’) is true). In addition to judgements that atomic objectsadre given type,
and records are of a given record type, it is possible to madkggments that a type
is of another type inductively from their order in the typetairchy.
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3.1.1 The subtype relation

In line with the semantic interpretation requirement ofréraental interpretation
and NLG models yielding the maximal information from an tdatece as it is pro-
cessed/ (Hough et/al, 2015), a strongly incremental accoilnteguire checking
whether RTs under construction are consistent with the Rpsesenting domain
concept RTs provided by a conceptualizer incrementallgdithis we make use of
theC (‘is a subtype of") relation, which isubsumptivén TTR, that is if RTRy is a
subtype of RTR; (i.e. Ry C Rp) then there are no objects of type that are not of
typeRy, or in the sense of the phrase from Description LoBids subsumed byR
Operationally, subtype relation checking can be define®iarin terms of fields
as simply:R; C Ry iff for all fields [ : To] in Ry, Ry contains|[: T1] whereT; C
To. In Fig.[d, it will be the case tha®; C R3, R, T R andR; C Ry iff T, C Ty,
The transitive nature of this relation (i.6¢f Ry C R, andR, C Rz thenR; C Ry)
can be usedftectively for type-theoretic inference as will be descritbetbw. An
operational definition for a subtype check, adapted fromr{&edez, 2006, p.96),
is given in Definitiod 2. IfR; hasn fields andR, hasm fields, assuming naively a
uniform cost for each type check on the type hierarchy, tmegexity of this check
can beO(nx m) in the worst case where every field in one RT needs to be cadpar
against every field in the othémote that the label-matching conventions for type
checking are extremely useful for computability here, @&adbmplexity would be
far greater if unconstrained re-labelling was permitted.

Definition 2. Subtype relation check

For record typef; and Ry, Ry C Ry holds just in case for each fieltl :[ T9] in
Ro there is a fieldl[: Tq] in Ry such thafT, C T,. This relation is reflexive and
transitive.

While we do not discuss the full stratified type hierarchyTaiR here, we note
that for all types,T1 C T, implies thatT; : T», but does not implyT, : T1 unless
To C T4, a consistency that extends to RT judgements. There are coanglexities
here which we will not deal with as regards type stratifioati@gain see Cooper
(2012) for details. We do not believe these complexittésch TTR’s suitability for
dialogue modelling and the discussion here.

We use the notion ahanifesi(singleton) types, e.d.a, the typeT of which only
ais a witness. Here, we represent manifest RT fields such:agj whereTaC T
by using the syntactic sugdcj : T] following(Cooper|(2012). The subtype relation
effectively allows progressive instantiation of fields in a rotumic fashion, as the
addition of fields to an RR, and the manifestation of fields R leads taR’ where
R C R This is practically useful for an incremental dialogueteys in terms of
meeting the strong incremental interpretation and mirétiin of re-computation
requirements of incremental semantics (Hough/et al, [20d&¥ar other reasons of
incremental utterance processing as we will explain.

8 The cost of the subtype check for a field may be more costlyis dtependent (i.e. RType
however this is not important for the discussion here.
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3.1.2 Meet types and the merge operation

We make use of theneet typeof two or more RTs and an operation to yield an
equivalentRT to the meet typ.As Cooper{(2012) explains, the meet type of two
RTs results in a type that is no longer an RT, even if the objgavitnesses are
records. However, an RT extensionally equivalent to thetryge of two RTsR;
andR; is the yield of a merge operatid®y A R, (Larsson| 2010). Operationally,
in the simplest case merge can be characterized as unioridsf éietwo RTs, for
example forR; andR; in (). In the event of label-type clashes between labels in
two RTs (i.e. cases wheR containd; : T; andR; containdj : T5), in this chapter
we assume all examples like thid andT2 are incompatible (disjoint in the type
hierarchy), in which case the resultifg A Ry is L.

o [T |l T2
if Rl_[|2 T, andRz_[l3 T

|;|_ZT;|_ (1)
RIAR=RiAR=|lo : T2

|3ZT3

3.1.3 Join types and the minimal common supertype operation

Here we also define a dual of the merge operation, not fourlteiTTR literature,
which is necessary for the analysis below: what we callrttieimal common su-
pertypeoperatorVv . While technically the minimal common supertypeRyf and

R is thejoin type R V Ry, here, for reasons that will become apparent below in the
discussion on type lattices, we are also interested intisgléhe minimal common
supertype of two RT®; andR, which is still a non-disjunctive RT, which, when
there are no clashing type judgements, amounts to fieldset&on as below i {2).
Where there are label-type clashes between fields in twoiRTsyhereR; contains

I1: T1 andR, containd; : Ty, in the examples in this chapter we assume the minimal
common supertype df; andTz is the most general typEype and in these cases
the field is omitted in the result &, v R,. Note the minimal common supertype RT
of multiple RTs is generallpot equivalent to their join type as will be explained.

|3 .
RlVR2=[|2 . Tz]

andR; = [IZ : TZ} (2)

4In TTR two typesT; and T, are equivalentff for any objecta in the domain such thaffia: T;
thena: T, and vice-versa. This extends to record types.
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3.1.4 Going probabilistic

While classical type theory has been the predominant madtieah framework in
natural language semantics for many years (Montague| Irtfédalia), it is only re-
cently that probabilistic type theory has been discussethie purpose. Similarly,
type-theoretic representations have been used withiogli@l models_(Ginzburg,
2012); and probabilistic modelling is common in dialogustems [(Young et al,
2013, inter alia), but combinations of the two remain scaheghis chapter this
connection is made, taking Cooper etlal (2014, 2015)’s gitisdc TTR as the
principal point of departure for modelling incrementaldrénce in dialogue as de-
scribed above.

At the time of writing there had been no methods for practigaigration of prob-
abilistic type-theoretic inference into a dialogue systbere we discuss computa-
tionally efficient methods for implementation. We argue for théiicacy in simple
referential communication domains, but simultaneousggest the methods could
be extended to larger domains and additionally used forthea learning in future
work.

Given that TTR has a highly flexible rich type system, vasdmve been con-
sidered with type judgements corresponding to real numaleied perceptual data
used in conjunction with linguistic context, such as thegaesenting visual infor-
mation (Larssan, 2011; Dobnik el al, 2013), demonstratmpgatential for situated,
embodied and multi-modal dialogue systems. The possilafiintegration of per-
ceptron learning (Larsson, 2011) and Naive Bayes leari@ogper et al, 2014) into
TTR show how linguistic processing and probabilistic cqtaal inference can be
treated in a uniform way within the same formal system.

Probabilistic TTR as described by Cooper et al (2014, 20&places the cat-
egoricals: T judgement, the judgement that ittisie or falsethat an object is
of type T, with the real number valueg(s: T) = v wherev e [0,1]@ The authors
show how standard probability theoretic and Bayesian éoustan be applied to
type judgements and how an agent might learn from experiengsimple classi-
fication game. In their example, the agent is presented witances of a situation
with associated type judgements and it learns with eachddyrupdating its set
of probabilistic type judgements to best predict the typeljéct in focus — in this
case updating the probability judgement that somethingia@ple given its ob-
served colour and shape, is: TappidS: Tshp S: Tcor) WwhereS hpe {shp, shp)
andCol € {col;,coly}. From a cognitive modelling perspective, these judgements
can be viewed as learning concepts from probabilistic eues information, and
if framed as a language acquisition scenario these concepls be associated with

5 Several people we have discussed this with are not convimtgee judgement can be probabilis-
tic. We remain agnostic to the plausibility of a non-coratithl judgement such as this one being
real-valued, however we do think real-valuezhditionalprobability judgements are realistic. We
thank David Schlangen and Arash Eshghi for discussions isnThe view we set out below can
be cashed out purely in terms of conditional type judgemédmwever the conditional judgement
may at times be notationally suppressed where approprigaténa consistent manner— these cases
will be noted where they crop up.
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words. We use similar methods in the toy reference domaiowhdiut show how

complex type judgements can be constructédiently, and how conditional proba-
bilistic judgements can be made incrementally without ewstige iteration through
individual type classifiers, as the mechanisms in Coopdr(g0d4, 2015) and Ken-
nington and Schlangen (2014)’s models require.

For the exposition of probabilistic TTR, we repeat some obj@zr et al.’s calcu-
lations and show some equivalences not described by therauilVe describe our
efficient order-theoretic and graphical methods for genegativd incrementally re-
trieving probabilities in Section 3.2.

Cooper et all(2015), under the assumption that type judgenem be real-
valued, define conditional probability of an object beingygde R, given it is of
typeR;y as in [3). This is the most important judgement in probailiETR, due to
the framework’s motivation: an agent can judge a situasigmof a given situation
type, given the evidence that it is of other situation typeghis way an agent is
positioned as a classifier of situations given the evidewedable to it. Here we
assumes can be a record, not just a basic type, andrs@nd R, can be record

types.

p(s: RiARy)
_— 3

o(s:R) ®
Given classical probability theoretic equivalences, tbefine the probability of a
situation being of a meet (conjunctive) and join (disjune}itypes of two basic types
or RTs in terms of the standaploductrule in (4) andsumrule (8) in probability
theory:

p(s: Rals: Ry) =

p(s: RiARp) = p(s: Ri)p(s: Rals: Ri) (4)
p(s: RiVRy) = p(s: Ry) + p(s: Rz) — p(s: RiARz) (5)

Itis practically useful, as we will describe below, that thim probability can be
computed in terms of the meet. Given the classical prolighiieoretic definitions
for the meet and the join type they show it is possible to sustee below:

p(s: RiARz) < p(s:Ru) (6)
p(s: RiARz) < p(s: Rz)
p(s:Ry) < p(s:RiVRy)
p(s:R2) < p(s:RiVRy)

n

Also, there are equivalences between meet types, join typsubtypes in terms
of type judgements as described above, in that assumRgdfR, thenp(s: Ry|s:
Ri1) = 1, we have:
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fRICR
p(s: RiARz) = p(s: Ri)
p(s: R1VRe) = p(s: Rz)
p(s:Ry) < p(s: Ry)

(7)

We return to an explanation for these classical probabdiyations holding
within probabilistic TTR below in terms of record type lats. We make a remark
here that the meet type probability of two conjuncts is theesas the probability
of the RT result from the merge operation of those conjumc{8). This is the case
due to the extensional equivalence of a (non record typej tyeeR; A R; and the
resulting record type from the operati® A Ry as shown in Definitiofi]1. For this
reason, all the\ conjunctions in the above equations can be replaced tand the
equations will still hold. The same is not true of the relasibip between the join
type and thev operation as we will explain.

P(s: RiARy) = p(s: RiARy) (8)

Through the subtype relation, merge operator and minimalncon super type
operator, we will now be able to show why these classical glodity theoretic equa-
tions hold in TTR, due to the structure of record type lattjcend how these are
useful objects for incremental dialogue processing.

3.2 Probabilistic Record Type lattices

To support éicient reference processing, we represent dialogue doroaoepts as
partially ordered setgppset$ of RT judgements. This is inspired by the use of RT
lattices in automatic grammar learning lby Eshghi et al (30h8wever here they
are fleshed out in a formal way to provide an interface to ag@neasoning system
and probabilistic TTR.

A poset has several advantages over an unordered set otomgesed record
types: the possibility of incremental type checking; irased speed of type check-
ing, particularly for pairs of or multiple type judgemenisimediate use of type
judgements to guide system decisions; inference from rwgafticient construc-
tion of a question under discussion (QUD) structure thdtighes question relevance
values contingent on probability; and modelling the leagrof type judgements. We
leave the final two challenges for future work, but discussathers here.

From a set of RTs which are semantically disjoint (i.e. for amo RTs in this set,
their record inhabitants in the type system are disjoihi}, possible to construct a
valid record type lattice. As per set-theoretic lattices,|&tices can be visualised
as Hasse diagrams such as those in[Big. 2, however here #wngrdrrows show
C (‘is a subtype of’) relations from descendant to ancestatesorather than the
normal set inclusion relation.
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Re=[ =

) T/ \ ) T2
b : T2 b.T1
) \RO/
DT\
R4=[bZT1] Rs = a:Tl] Re = bITz] R; = aZTz]
S LS 1 I 18]
(b) ’:/

Fig. 2: Record Type lattices ordered by the subtype relatidiapted from Eshghi
et al (2013). While (a) happens to be complemented, RT ésttére not in general,
as (b) shows.

To characterize a RT lattideordered byc, we adapt Knuth (2005)’s description
of lattices in line with standard order theolly.is a partially ordered set of RTs
closed under theneetandjoin operations, whereby all pairs of elements have a
unique element that is their meet and a unique one that isjtiei This is to say,
for a pair of RT elementBy andRy, their lower bound is the set of &f; € L such
thatR; E Ry andR; C Ry, and their unique greatest lower bound is their meet. The
meet of any two RT®y andRy in L is the RT resulting fronfr A Ry, and, givenl{L),
is also extensionally equivalent to the meet tffzen Ry. Dually, if the unique least
upper bound exists fd®, andRy this is their join inL and in TTR terms is the result
of Ry v Ry, butnotnecessarily extensionally equivalentto the join tige’ Ry. This
is due to the fact that the result B v R, may be extensionally equivalent to the
minimal common supertype of other pairs of RTsLirfand consequently may be
the type of diterent objects or records which are not of typeor Ry), SORy vV Ry
can be a more general type than the disjunctive §peR,. For example in Fid.12
(b), the join element in the lattice & andR3, consistent with the join being the
operator, isRg, the empty record type, as they have no fields in common. Hemwev
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this is not equivalent to the disjunctive join type as the gmpcord type includes
all objects of typeR, as well, not just those of type; andRs.

The decision not to include disjunctive and conjunctivestydirectly orlL, only
using RTs and operations that yield new RTs, is motivatedrbiihg the size (and
therefore complexity) of the lattice, and also by keepingsistency in the type
hierarchy: the limitation of the lattice to types that ardyoof record type means
this is a record type lattice. As just shown, while the exi@mally equivalent RTs
for meet types are included L elements representing join types are notin general.
In summary, given the ordering relatianthe join and meet operations under which
the lattice is closed are and » [§

We now introduce other relevant terminology. One elenoewersanother if it
is a direct successor to it in the subtype hierarthlyas a greatest element)(and
least element), with theatomsbeing the elements that cover in Fig.[2 (b) if
Ry is viewed asL , the atoms ar&;, R, andRs. Join-irreducibleelements are those
which cannot be expressed as the join of two other elementBigil2 (a) the only
join-irreducible elements are the atoms anchowever in Fig[ R (b) they consist of
the L, the atoms an&, andR;.

In line with standard lattice theory, given the charactgian of the meet and
join operations asv and A, a RT latticeL ordered by the subtype relation obeys
the following rules for any three elementsy andzin L:

XV X=X XA X=X (L1. Idempotency)
XVY=yVX XAYy=YyAX (L2. Commutativity)
XVyV=(XVY)VZ XA(YAZ =(XAY)AZ (L3. Associativity)
XV (XAY)=XA(XVY)=X (L4. Absorption)

Assuming RT lattices are bounded they satisfy the followiantity laws:

XV 1L =x(I1.)
XAT=x(I2))
XA L=1(3.)
xvT=T(4)

RT lattices ordered by the subtype relation disributive latticesas they obey the
two distributivity relations:

6 Graphically, the join of two elements can be found by follogithe connecting edges upward
until they first converge on a single RT, eRy. vV R, = Rs in Fig.[2 (a), and the meet can be found
by following the lines downward until they connect to give tlesult of their merge operation, e.g.
Rs ARg = Ry.
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XA(YV2)=(XAY)V(XAZ (D1. Distributivity of A over V)
XV (YAZ =(XVY)A(XY2) (D2. Distributivity of v over A)

A final piece of lattice terminology is that a RT elemd®t has acomplementf
there is a unique elemenRy such thaRy vV =Ry = T andRy A =Ry = L. The lattice
Fig.[2 (a) iscomplementeds this holds for every element, Bg complement®;
and vice-versa. However RT lattices in general are digisiblbut not necessarily
complemented, as shown in Hig. 2 (b), where it can be seeexfonple, thaRs is
complemented bRy, R4 andRs.

3.2.1 Adding probability to lattices

To explain the incorporation of probabilities into RT la#s, it is necessary to draw
on|Knuth (2005)’s work on generalizing a Boolean algebrehtogrobability cal-
culus through the use of real-valued inclusion measuresttiods. Knuth shows
how a Boolean algebra of logical statements can be exprassadistributed com-
plemented lattice of propositions ordered by the implmaif—) relation, a lattice
he calls theassertion latticgsee Fig[B). The assertion lattice is isomorphic to the
power set of its atomic elements, and so it can also be seenased by the subset
inclusion relationc, with its meet being set intersectionand its join set uniow
and complement the complement set operatdrhe assertion lattice is distributed
and complemented, so the Boolean operatoasidVv and- happily coincide with
N, Uand~.

avkvn

™

avk avn kvn
| >
a k n

1

Implies —

Fig. 3: An assertion lattice of propositioAg from|Knuth (2005).

Knuth's Inquiry Calculusextends Boolean algebra to the probability calculus
by characterizing conditional probabilify(x|y) as the real-valuedegreeto which
statemeny implies x in the assertion lattice. This is calculated in terms of trodu-
sion functionZ(x, y) for distributive lattices— that is, the degree to whicimcludes

y.
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1 ify—->x
P(y) = Z(xy) =10 if xAy=1 9)
p otherwise, where@ p<1

If (8) is viewed as a lazy evaluation function, when the fived tases do not apply,
the third case can be calculated by Bayes’ theorem, which can also be fated

purely through the inclusion measure between pairs of ai¢sria the lattice by

addingT as a conjunct of the conditional. Knuthésmalog of Bayes’ theorem for
distributed latticess in (10):

PIT)PMYIXAT) _ Z(X T)Z(Y, XA T)
p(YIT) Z(y,T)
The standard probability sum and product rules for any tvatestents are also
derivable through a similar technique, using the degreeabfision of join and meet
elements oft — see Knuth/ (2005) equations 7-10. When the product rulepbesp
to the numerator i (10), we get the standard equation foditional probability,
which can again be formulated analogously in terms of thiigicn function:

P(Xly) = p(XlyA T) = (10)

P(XAYIT) _ Z(XAY,T)
p(YIT) Z(y,T)
All these calculations are possible through using the degfénclusionZ(x, T)

initially assigned axiomatically (as a probability prido)each join-irreducible ele-

mentx of the assertion lattice (which are atoms in a Boolean kiti@ll other prob-

abilities can be calculated in terms of these using Knuttcle-theoretic analogs
to the standard probability equations. Knuth shows howetezpiations hold for
any distributed lattice. More detail on this will follow whexplaining probability

in RT lattices.

p(Xly) = p(Xly A T) = (11)

3.2.2 Probabilistic RT lattice construction and inference

Having established RT lattices as distributive, we can_usetiK (2005)’s insights
to imbue them with probability values for each element. Asitndid for sets of
statements ordered by the relation ‘implies’, we show howrssistent probability
calculus for RT lattices ordered by the relation ‘is a subtgf’ falls out naturally
from their structure, showing haw Cooper etlal (2014, 2G18}uations for proba-
bilistic TTR shown in Section 31 can be derived in terms afavalued inclusion
function on lattices.

To introduce probabilistic RT lattices, we show one graplhjcin Fig.[4 and
use this as a guide for explanation. It shows a well-knowabdity theoretic ex-
ample of the possible outcomes of two consecutive coin $oS8®e sample space
for the possible outcomes here, whéte= heads tossedndT = tails tossedis
{HH,HT,TH,TT,. In the spirit of probabilistic TTR, we take each of thesecontes
to be a judgement that a situation is of a given record typk aprobability value.
These four situation types are modelled as the atoms dfFig. their meet types are
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ATOMS:

[HHII=1
[HTII=1 _ pIHHIHIHTIHITHI+ITTI _
ITHI =1 T=0 (2] =t

TTi=1
IUi=1+1+1+1=4
H=[H : HeaadHHLTHLAIHT) T[T+ Tails|TTLAHTLTH)

H : Head
‘\HET_'T .

[
H : Heads [|HH|+|HT|| Ho= H : Heads [IHH]|+[THI|
E1: First(H) {1 ~|E2 : SecondH) [}

IHT|-+THI

[

- T2- |

_[T s Tails U HTILTT) [T ¢ Tails JymHiTT)
~|E2 : SecongT) [[H] a

| E1 : First(T) ]

H : Heads

H : Heads
T : Tails
E2 : SecondH)

IHTII

ITHI _ . Tai
T T2aH=|T : Tails

H2aT=

E2 : SecondTl)

H : Heads H : Heads

H : Heads T Tails T Tails T : Tails
HH = |E1 : First(H) J—‘m“ HT =21 FrsicH) —U"m TH= g1 Brsi(n) J—l‘m‘ TT=|E1: First(T) J—L‘M‘
E2 : SecondH) Eo . Eo . s E2 : SecondTl)

Q y
=

Fig. 4: Probabilistic record type lattide with uniform atomic probabilities for 4
possible outcome situations for two tosses of a coin.

physically impossible situations stipulated a priori asldast element with prob-
ability O, consistent with assigning prior values to joireducible elements (Knuth,
2005,(2006). Each atom is a pair of an RT (shown on the left),aprobability
value of the situatiors being of that type (on the right of each element).

For each atonirx we assign a prior probability judgement of a situation being
judged of its record type with probability 1, simulating hdom trials, as we use
a uniform distribution for this disjunction of situationggs, assuming a fair coin.
Following[Cooper et al (2014, 2015), the prior judgemensoRy is stored in a
setRy, whose sum of probability judgements we nottRgl|. The prior assignments
are in fact probability values when normalized over the stith® values of all the
atomic probability judgements, a set we will ch]lwhich in terms of a probability
sample space is equivalent to ttertain event||L|| normalizes the sum of probabil-
ity judgements for each record type judgemiéRy| to give its prior probability%
= p(s: Ry) in line with standard probability assumptions— consetjy¢he real val-
ued judgements initially assigned to the atoms need notirsfam to unity/(Knuth,
2005). In Knuth’s terms, these initial assignments arenlision valueZ(Ry, T),
also equivalent to the unconditional probabilgfs : Ry).

Therole of TTR here would be trivial if the atoms were simplen-decomposible
type judgements— the only knowledge of the situation akbgléo an agent reason-
ing with type judgements would be a single probability vedttached to each atom—
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for instance, given the uniform assignment of priors onddagalculate the prob-
ability of tossing two heads g¥s: HH) = . However, in reality, an agent might
like to know the probability of other events, such as the evleat heads will be
tossed at least once, or the probability that the secondddass, or a conditional
probability of a heads on the second toss given a heads omnrghtofis. One could
use ac-algebra and generate all possible subsets of outcomegveothis does
not capture what the types of interest for an agent might bethts purpose, the
possible outcomes, rather than being atomic, can be stagtith relevant type
judgements on the situation, for which record types proddetural representa-
tion. For example, the event of two heads tosses can be egpieelthrough a record
type including the heads toss outcome type judgenténtiHead$ and two fields
with PTypejudgements£El and E2 which are dependent oH, representing the
outcome of both the first and second tossing events beingeHygads as in [12).

H : Heads
E1l : First(H) (12)
E2 . Secon@H)

The choice of representation for the atoms’ RT situatiore$ygetermines which
type judgements can be made and represents the agent’sdtakiee entire situ-
ation. The atoms in Fidg.l4 all have the same amount of stredtinformation for
each outcome ak(112), which we hope is intuitively relevanafcoin-tossing situa-
tion. A model of how an agent decides to a frame a situatioey®hd the scope of
this chapter.

From the atomic situation types, one can build a RT latticetvincludes all pos-
sible minimal common supertype judgements of the situaama the type judge-
ments required to ensure the merge operation charactehieeneet, all with the
unconditional probabilityp(s: Ry) ‘stored’ at each elemerRy. This is achieved
through a simple bottom-up graph-based construction gireewhich consumes
the atoms incrementally, running in time polynomial in thember of atoms, de-
tailed fully in|Hough and Purver (fcmg). It terminates whehnainimal common
supertypes have been generated bytheperation defined in simple cases by field
intersection[(R), and added to the lattice, leaving the maky common super-
type of the whole lattice as an element labeltedpossibly the empty type [ ]).
The unconditional probability for each type judgement iggkated, in the spirit of
Knuth's inquiry calculus, purely in terms of the unconditéd probability assigned
to the atoms— upon generating the minimum common supertfypgooelements
the algorithm ‘stores’ the atomic judgements the two elemenntain at that new
element in a set, so that no judgements are unnecessariyerbtwice within the
elements, consistent with the inclusion-exclusion pphebf lattice joins|(Knuth,
2005%). Consequently every element’s probability is giveterms of the atomic type
judgements it contains, normalized by the sum of all atomniiggmentgL||.

The resulting latticel in our example is as in Fi@l4. A label is given to each
record type inL, for exampleH is used for H : Head$- these labels are for ex-
planation, and in reality the algorithm would simply labet telement&y..R, for a
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lattice withn+ 1 elementd If one checks Fid.J4, all the expected prior probabilities
given on the right side of each record type make sense— fongbea the probability

of a heads event, i.@(s: H), is IHHEHHRTL - 2 the probability of tossing heads
first, p(s: H1), is IMHIHHTL = 2 and the probability of tossing tails firgi(s: T1), is

also3, calculated fromTHHTT!

3.2.3 Conditional probability, meets, joins and negativeypes

A RT lattice L such as Fid.l4 can be used as a reasoning system to make a&gren
in light of partial information becoming available from angwing situation— in
our case of modelling incremental reference processisggisiemantic information
from an utterance in progress. We model the principal imfeegask as predicting
the likelihood of relevant type judgemerRg € L of a situations, given judgements
of the forms: Ry, we have so far. To do this we use conditional probability grdg
ments from Knuth's work on distributive lattices descriladxbve, but here using the
C relation in place of- to give [13).

The fact that conditional probability in probabilistic TTéan be formulated in
terms of theZ inclusion measure on distributed lattices gives rise tonéerésting
formulation of type judgements: the likelihood of a sitoatbeing of typeRy given
it is of type Ry is the degree to whicRy C Ry. We note, as per Knuth’s work, that
unconditional probabilities are the degree to which thenelet includesr, so that
Z(Rx, T) = p(s: Ry) andZ(Rx A Ry, T) = p(s: Rx A Ry) for all elements.

1 ifRyCRx
p(s:Rxs:Ry) =Z(R.,R) =70 ifR\AR/ =1 (13)
p otherwise, where@ p<1

In cases where the first two cases do not apply, in the third ttees real-valued
degree oRy C Ry, can be calculated using the TTR analog rules of Knuth’siiyqu
calculus, and also using Cooper et al.’s conditional préipalzalculation [3) in
Section(3.1L, replacing the with A to be in line with the meet operation of the
RT lattice. This gives[{14), which is equivalent to CooperkEs equation due to
Remark|[(8).

p(s: Ry ARy)
p(s: Ry)

A conditional probability analog for record types can aledftwrmulated as if(15),
adapting Knuth’s equation for distributive latticEs](1dere theZ function again
functions as in[(13). We show, givel{Ry, T) = p(s: Ry) andZ(Ry A Ry, T) = p(s:

p(s: Rys: Ry = (14)

7 The naming convention for the record types we use is hogeifutiliitive for discussion purposes
here-H1 is the label for the RT judgement that the first throw is heddsfor the RT judgement
that the second throw is tails, and so arns used in the labels to denote ‘and’, ldaT stands for
the judgement that there is a heads and tails event in thitiit, and so on.



Probabilistic Record Type Lattices for Incremental RafeseProcessing 19

Rx A Ry) for all elements and the equivalenee= A, Cooper et al.'s equation can
be derived from the inclusion measures:

) ) ) ) p(s:RxARys: T)
p(s:Rus:Ry) = p(s:Rus:RyAT) = p(SR—y|ST)
p(s: Ry ARyls: T)
T p(s:Rjs:T)
Z(R« ARy, T)
TTZR.T)
_ p(s:R«AR)
~ p(siR)
_ p(s:R«ARy)
I CHLY)

(Knuth,[2005)

(Cooper et al, 2014, 2015) (15)

If each atomRy is assigned an initial probability valu&Ry, T), Knuth'’s inclusion
measure analog will work. To illustrate, returning to ouinctossing example, given
the first toss is a heads, an agent might like to know the piibityatif the second
toss being heads, i.@(s: H2|s: H1). Through Knuth'’s formulation, we need the
numeratorZ(H1 A H2, T), which can be found on the lattice &(HH, T), which
is 711, and the denominatat(H1, T), which is % giving the expected overall result

p(s: H2|s: H1) = % As shown at the bottom of (15), Cooper et al's equation is

equivalent to Knuth's measure, and for this exang{ldH, T) = p(s: HH) = %1 and
Z(H1,T)=p(s: H1) = 1.

Similarly, Knuth’s product and sum rule analogs will worktivihis formulation
for RT lattices to find the probability of meet and join typ@mne can derive Cooper
et al.’s equation again from Knuth's, giveliRy, T) = p(s: Rx) and the identity law
R« A T = Ry. The below holds for all the meets in the lattieeas well as the meet
types, due to their equivalence.

p(s: Ry ARy) = p(s: Rys: T)p(s: Rys: RyA T) (Knuth,[2005)
=p(s:Rys: T)p(s: RyIs: Ry A T)
=Z(Rx, T)Z(Ry,Rx A T)
=Z(Rx, T)Z(Ry,Ry)
=p(s: Ryp(s: Ryls: Ry) (Cooper et al, 2014, 2015)
=p(s:RxARy) (equivalent element on RT lattice)  (16)

In our adaptation of Knuth’s formulation, given this is eeplent toZ(Ry, T)Z(Ry, Rx),

it can be said the probability of a situation being of tyfyeand of typeR, is the de-
gree to which they have subtypes in common. To illustrateuinronning example,
an agent may want to know the probability of the situationtaoning a heads toss
and a tails toss, i.gp(s: H AT). In Knuth’s formulation we would need(H, T),
which is% and Z(T,H), which can be calculated through conditional probability
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given in [I5), givingzg(ﬁ ﬂf) = Z(Z'?HaTT’T) = 2, and so, giver§ x £ = 1 we get the
expected result. More straightforwardly in practice hogrethis value could be
stored on the lattice 84 AT = H A T, and the probability can be found directly on
an element A T = HaT, wherep(s: HaT) = 1.

The probability of the situation being of the disjunctivénjdype can be de-
rived in a similar manner from Knuth’s inclusion measure aflyability, and via the
equivalencen = A. It is possible to derive Cooper et al.'s standard join phiba
ity definition, givenZ(Ry, T) = p(s: Rx) andZ(Rx A Ry, T) = p(s: Ry A Ry) for all
elements:

P(S: RxVRy) = P(S: Ryls: T)+ p(S: Ryls: T) = p(s: ReARyIs: T) (Knuth,[2005)
=p(s:Rds: T)+p(s: Ryls: T)—p(s: ReARyIS: T)
=Z(R, T)+Z(R;, T) - Z(R« ARy, T)
=p(s:R)+p(s:R)-p(s: ReARy)

=p(s:R)+p(s:R)—p(s: RyARy) (Cooper et al, 2014, 2015)
a7

In our running example, the agent may want to know the prditatiat there will
be a heads tossed first or a tails tossed secon@(seH1Vv T2). Before deriving this
calculation, it is worth noting that there is no element amltiitice which represents
an appropriate type judgement of this event. If one were $arag the equivalence
of v andv in TTR, as Fig[# shows, the result bfL v T2 is T, meaningp(s:
H1v T2) = 1, which is not the probability op(s: H1Vv T2), as there is an outcome
TH which should not be included in this type judgement. Disjiugcprobabilities
are available through both Knuth and Cooper et al's equstfon the sum rule
in terms of the A operator. In our example, we can calculg(a: H1), p(s: T2
and p(s: H1 A T2) through simply taking their probability value directly anpre-
computed lattice, or through Knuth’s inquiry calculus. $agrobabilities ar@(s:
H1) =3, p(s: T2) = § andp(s: HLAT2) = p(s: HT) = %, which, when plugged
into Cooper et al.’s equation in_(IL7) give the expec%ed

It is worth noting that Knuth’s inquiry calculus equatioril $iold for the lattice
join v, only if each element is expressed as the atoms of which itj@ésnai.e.
H1 = HH v HT, as the inclusion-exclusion principle for the generalized rule
calculation requires all the disjuncts as[inl(18), where wmegalize a join operation
asL and meet operation on any lattice. If we take! to be v, thenR;...R, must
be atoms for this to give the correct value, however] i§ v, then this calculation
will work for any lattice element without having to represés constituent atoms.
Given the equivalence = A, N can be either of these in the below.
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n
P(RIUR, -+ URYIT) = > p(RIT) (18)
i=1

- > p(ROR)IT)
i<j

+ > p(ROR;NRAT)
i<j<k

where ifuis v, Ry...Ry must be atoms in the RT lattice.
otherwise ifu is v, Ry...R, can be any record types.
M can bea or A

While the conditional equations above condition on positixpe judgements, an
agent may want to condition on negative RT judgements, shiat dbtain the prob-
ability that a situation is of a RT in light of evidence thaisitnot of a given RT. As
shown above, an RT lattice is distributive but not guarashteebe complemented,
so we cannot be guaranteed to find a unique complement eleménas was the
case for Knuth's Boolean lattices, however we can stillgalep(s: Ry|s: —=Ry) by
obtainingp(s: Ry) in L modulo the probability mass & and that of its subtypes

as in [19).

(5 Rys: -RY) {0 if Ry C Ry (19)
P(S-RyIS: ~Rx) =) p(sR)-p(sRcA R)) -

W otherwise
In our running example, an agent may know the first toss is @atll, and given this
information wants to calculate the probability that theitt be a heads, i.ep(s: H|

. ) CH)_ H A
s: =H1). Through[I®) the probability '87(‘:3('1:)7)‘)—(2(1;451) =3-hHsa-H=1

3.2.4 Hficiency gains through graphical search

While all calculations can be done algebraically in termthefatoms’ probabilities,
the computational advantage of a pre-constructed finiteedais that the subtype
relation judgements and atomic, meet and join probakslitguired for[(113) {(119)
can be found#iciently through graphical search algorithms by charasitegi_ as a
Directed Acyclic Graph (DAG). In Fidg.l4, the elements can&ersas nodes, and the
subtype relation ordering arrows can be viewed as readtyabilges which make
1 the source and the sink. With this characterisation, R, is reachable froniy
thenRyC Ry.

In DAG terms, the meet of two RTRy andR,, Ry A Ry, can be found at their
lowest common ancestor (LCA) node — epds: H1 A H2) in Fig.[4 can be found as
;11 directly at nodeHH. Note if Ry is reachable fronRy, i.e. Ry E Ry, then due to the
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equivalences listed in{7) and by Remdrk (B)s: Rx A Ry) can be found directly
at Ry. If the meet of two nodes is (e.g.HH andHT in Fig.[4), then their meet
probability is 0 ag(s: L)=0.

As for the minimal common supertype (join element) of two AR;sand Ry,

Rx vV Ry, this can be found at their highest common descendent (HOBg & e.g.
p(s: HH v HT) in Fig.[4 can be found a§directly at nodeH1. Note if Ry is reach-
able fromRy, i.e. if Ry C Ry, then due to the equivalence available for this ordering
situationRy vV Ry = Ry, thenp(s: Ry vV R)) can be found directly at nodg,. If the
join of two nodes ist (e.g.H andT in Fig.[4), then their minimal common supertype
probability is 1 ag(s: T)=1.

Finding the lattice meet or join of two nodes, due to the symniced equivalence
of finding the LCA node and finding the HCD node (with just a reesn the reach-
ability relation for the HCD case), is a LCA search problemddAG (Aho et al,
1976), for which there are widely developed affidogent algorithms.

3.3 DS-TTR and the DyL an dialogue framework

Moving towards a dialogue application, if we consider thenad in Fig[4 to be do-
main concepts, or possibilgformation state¢Traum and Larsson, 2003; Ginzburg,
2012), for a dialogue system, it is easy to see graphicallythe RT latticel. can be
used for incremental inference in terms of a downward sefaoch the initial under-
specifiedT state. The DyLan framework (Purver etlal, 2011) we use heesans
with RTs incrementally as information states in this way+nasementally specified
RTs become available from the interpretation process theynatched to those in
L to determine how far down towards the final states our custné allows us to
be. In terms of linguistic processing fidirent sequences of words or utterances lead
to different paths to these atoms, and one can make probabilitgiueigts about
the likelihood of the final states, or indeed any other stateoded irL as shown
above.

To achieve this we need a semantic construction processaifd¢ypes, which,
in line with our motivation of modelling incremental refae processing, should
be word-by-word incremental. For this purpose we use TTRhinad with the
grammar formalism Dynamic Syntax (DS, Kempson et al, 20GrCet al, 2005,
inter alia) in DS-TTR (Purver et al, 2011; Eshghi €tlal, 2012, 2013) Witegrates
TTR representations into inherently incremental DS parsin

While we do not go into detail here, and refer the reader tovéhet gl 2011;
Eshghi et al, 2012, 2013), DS-TTR yields incremental typlggments as words are
processed strongly incrementally (left-to-right, worghlord). We show example
DS-TTR record type output for the utterance “the yellow sqUi Fig.[H. As in this
chapter we are concerned with reference processing, weonsider the embedded
record type labelledin these record types, which represents the restrictor mftan
term, representing the proof type of a unique referent of gyfCann et al, 2005).
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The utterances we deal with here are definite referring espeas which refer to
unique objects in a scene.

the [r [x:e]]

ce
col : yellow(x)]]

yellow
X=y(rxr) - €
X e
r col : yellow(x)
square shp : squarégx)

X=yrxr) - €

Fig. 5: Incremental semantic construction by DS-TTR.

3.3.1 Extending DyLan with probability

Given DyLan’s DS-TTR parser provides RTs incrementallyd #me context of a
situation represented by an RT lattices available, it becomes possible to make
probabilistic judgements on a word-by-word basis abouttad6&Ts of interest,
such as the possible final states of the dialogue. In linelkithth (2005), we will
call the set of RTs of interest tleentral issugor |. Here we assume &y € | are
disjoint in L, such as the atoms, ensuring a valid probability distrdyutiTo make
inference about the degree to whicls resolved that is, given current evidenéy
whether the agent can predjafs: Ry|s: Ry) = 1 for someRy € |, or the confidence
it has in its best prediction and its competitor hypothesies,interpretation pro-
cess only need output a conditional probability distribulPRyE| (s:RyIs:Ry). Itis
straightforward to characterize a standard Maximum Lil@did (ML) multi-class
probabilistic classifier for a central issliend conditioning type judgement Ry
in these terms, outputting the best ‘hard’ prediction asdpitobability (or confi-
dence in its prediction) by the standand) maxandmaxfunctions in [20) and{21),
respectivel

Ry = arg maxp(s: Ryls: Ry) (20)
Ryel
p=np(s: F§y|s: Ry) = rFrgzZpr(s: Ryls: Ry) (21)
Y

8 Technically thearg maxfunction returns a prediction set which may have multipenents, if
two or more type judgements have the same highest prolyatalitie.
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All conditional probabilitiesp(s: Ryls: Rx) can be found o using the equations
in Sectior 3.2 and direct look-up dnwhen used graphically.

Here we assume the conditioning evidescd?, comes from a DS-TTR parse.
Mapping between DS-TTR'’s natural language semantics afwiniation states
(which may contain non-linguistic context), is not trivigee_Eshghi and L.emon,
2014, for discussion), however here we assume a simple typekavhich checks
the RT yielded by the latest worRy, against each RRy € L in a top-down graph
search fromr, until type matched, such thRy C Ry andRx C Ry,

Given the probabilistic prediction of dialogue states isgible, probabilistic Dy-
Lan interpretation can now be defined. Purverlet al (201vghe standard DyLan
interpretation process is DAG-based, whereby parsingistsnsf adding new edges
from the current right frontier vertex of the parse graphaneéw vertex, and linking
it to a RT concept. A probabilistic extension of this is thadtion DvLANINTERPRET
in Definition[3, taking arguments of the interpretation draprtexS; it is interpret-
ing from, the current word being consumedind the maximal RT compiled so far
maxRT DyLan is initialized by setting edg8; asSyp (the source of the DAG) and
maxRTas the empty record type [] before the first word is consumefdinational
call to the DS-TTR parsdDSTTRparsES;, w) outputs a tupléRy, p) of the output
Ry and probabilityp of the pars@ We call the conditional probability distribution
over RTs in the central issuethe variableHypotheseswhich is continuously up-
dated word-by-word.

Definition 3.

function DyLANINTERPRET(S;, W, maxRT
(Rw, py = DSTTRparsEs;, w) > Maximal semantics with probability from parsing word.
Hypotheses: Pr e (s: Ryls: Ry AmaxR7]  »Use parse output as conditioning evidence.
addEdgéS;, newVertef), Ry A maxR7 > Add new edge with new RT judgement.
end function

3.3.2 Modelling self-repairs

As|Hough and Purver (2012); Eshghi etal (2015) show, inttipg repaired speech
is naturally modelled in DyLan through backtracking oveenpretation edges in
light of an unlikely DS-TTR parse. We can learn or stipulatea-valued threshold
grammaticafor an acceptable level of grammaticality, and when a paisiegbility
from DSTTRparsgs;, w) falls below this, backtracking along the DAG is initiated.
With the probabilistic interpretation function in Defimiti[3, it is now also possible
to detect irrelevant content arising from interpretatioterms of the maximal prob-
ability in the distribution fronPr ¢/ (s: Rls: Ry A maxRT) being lower than a real-
valued thresholdelevan{fd Here we also allow low-relevance judgements to initi-
ate backtracking and then allow the negation of RTs linkdatdeécedges backtracked
over as conditioning negative type judgements for the stiesifier of the form

9 In future work, the probability value will be used for reasoning within RT lattices.
10 This version of relevance is simplified here, but Houah and/&u(2014a) and Hough and
Purver ((fcmg) characterize this information-theoretical
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Preei(s: Ryls: =Ry). This follows evidence that dialogue agents parse seiire
efficiently and that repaired dialogue content (reparandayengpecial status but
not removed from the discourse context (Hough and PurverZ 2Ginzburg et al,
2014). This gives a modified definition forvbanInTERPRET iN Definition[4.

Definition 4.
function DyLaNINTERPRET(S;), W, maxRT)
(Rw, p) = DSTTRpars(S;, w) > Maximal semantics with probability from parsing word.
Hypotheses: Prci(s: Ryls: Ry AmaxRT  » Use parse output as conditioning evidence.

if p<grammaticalor max . Hypotheses relevantthen > Repair detected?
Hypotheses: Prci(s: Ryls: —Rw) > Update hyps based on negative evidence.
Dylanintepre{S;_1, w, =Rw) > Backtrack through recursion.

addEdgé€S;, newVertex()Ry A maxRT> Successful, add new edge with new RT judgement.
end function

4 Simulating incremental reference processing

With the RT lattice based classification and prediction amal DyLan dialogue
framework at hand it becomes possible to model incremeetatence processing
consistent with over-specification phenomena land BrenndnSghober| (2001)’s
experimental results on repaired referring expressions.

We model a simple reference identification task where amuogir produces
utterances describing an object which an instructee comepigis and reacts to by
selecting the object they think best fits the descriptionwskdy as possible. The
visual stimulus available to both parties is as in Elg. 6.

Fig. 6: Visual scene for instructor and instructee in therefice identification game.

In this game we characterize the referent set of a purplasgyellow square and
yellow circle as mutually exclusive referent situationgggrecord types), which we
will label PSq YSqgand YC respectively for convenience, and will characterize as
the central issueeferents On the interpretation side, the challenge is to predict the
final reference situation type judgementRy, that the situatiors is of record type
Ry, given currently available evidence in the form of currgmiet judgement of the
situations: Ry. So, as instructions are heard word-by-word the heares toigre-
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X e X e X e
PSg=|col : purplgx) %_S”q' YSg= [col yellow(x) |—‘" YC= col yeIIow(x) Tq
shp : squarégx) shp : squaréx) shp : circle(x)

Ry=1=0
Fig. 7: The disjunction of three types of reference situadncoded as record types.

ATOMS:

IPSdl=1
Tveto1 [ s PSEYSEAYTL
Ivol=1
ILf=1+1+1=3 // \\
b ¥ e IPSq+1YSd IYSg+IYal
~|col : purplex) HLH Shp squarex) HLH CU| VGHOV‘(X) H 1T Shp clrcle(x) HLH
X ie X e X ie
PSg=[col : purple(x) ”'ﬁq‘ YSq= [col : yellow(x) |! I ”‘" yC=|col : yellow(x) ”—LCH‘
shp: squaréx) shp: squaréx) shp: circle(x)

1=

Fig. 8: Record type lattice with uniform atomic probabilities for a reference situ-
ation.

dict the maximally likely referent as ii.(22), which we fortate as an incremental
prediction task for a probabilistic TTR classifier as expéal above.

arg maxp(s: Ryls: Ry) (22)
Ryereferents
Initially, upon scanning the scene, the listener entestaidisjunction of possible

referent situations as in Fid.] 7. We assume before the gambdtun the atomic
situations will all have equal probabilit%l, effecting a uniform distribution. Then,
bottom-up the lattic& is built, resulting in that in Fid.18. Again, the labels for KT
are for convenience in the discussion here, where it can &eGdabels the RT
judgement that the object is a cirché for the judgement the object is yellow, and
so on—these same labels are used for short-hand in]Fig. Yiguilr
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the yellow |square
conditioning type judgemers:| T Y YSq
p(s: PSq (purple square) % 0 0
p(s: YSq (yellow square) |3 1 1
p(s: YO) (yellow circle) |3 2 0
the yellow |circle
conditioning type judgemerst:| T Y YC
p(s: PSq (purple square) |2 0 0
p(s: YSQ (yellow square) |3 2 0
p(s: YO) (yellow circle) |3 3 1
the purple |square
conditioning type judgemerst:| T P PSq
p(s: PSq (purple square) |2 1 1
p(s: YSQ (yellow square) |3 0 0
p(s: YO (yellow circle) |3 0 0

Fig. 9: Probability distributions for the objects given nraal incremental semantic
information.

4.1 Fluent utterances

After the lattice construction, whenyDanInTeErRPRET CONSUMeES the words of refer-
ring expressions incrementally, the probability disttibo word-by-word follows
the expected pattern in fluent utterances. We show the d¢onditprobability dis-
tribution overreferentsgenerated by the model just described at each word i Fig. 9
for three fluent referring expressions. The second row it ¢éalsle shows the in-
cremental type judgement dnby which the classifier conditions its output (i.e. the
evidence available to the agent so far in the utterance)lwlais described above
comes from an incremental DS-TTR parse and the maximal ggradémom Dyian-
INTERPRET. AS the conditioning RT judgements become available, thelitional
probability for each referent is calculated usihgl (13) dtd) (neet element proba-
bilities can be found graphically as described above iniGe2.4.

As can be seen in Fifl 9, we model over-specification in therautice “the yellow
circle”, which is not optimally brief in this reference sittion, as “the circle” would
be suficient to resolve the referent. While exhibiting informat#redundancy, the
change in the distribution word-by-word follows Fernan@013)’s principle of in-
cremental informativity, as “yellow” is more relevant thahe” as it reduces the en-
tropy of the central issue. “The purple square” is also ®peified by the speaker,
as “the purple one”, or “the purple” would befigient for resolution— DyLan re-
solves the referent upon processing “purple” due to the tfzat in this referent
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the yell- uh purple [square
conditioning type judgemers:| T Y Y -Y,P [PSq
p(s: PSq (purple square) % 0 0 11 1
p(s: YSq (yellow square) |3 1 1 0,0 0
p(s: YO) (yellow circle) |3 3 2 0,0 0

Fig. 10: Probability distributions for the objects givenximal incremental seman-
tic information in a repaired utterance.

situationp(s: PSds: P) = 1, and so again, the final “square” is informationally
redundant.

4.2 Repaired utterances

We demonstrate how the model deals with a typical self-regautterance, “the
yell-, uh, purple square”, by showing how the probabilitgtdbution overrefer-
entschanges word-by-word in Fig,JL0 and with reference to thepenal stages in
Fig.[11. We show how the model simulates Brennan and Sch2bei {’s finding of
disfluent spoken instructions speeding up object recagnithrough describing the
stages TO-T5 in terms of the probability judgements madehbyCv i ANINTERPRET
function as each word is consumed.

At TO: ‘the’ (not in Fig.[11, but in Fig[_I0) the interpreter will only ouitp
[x: g =T, giving a uniformp(s: Ry[s: T) = % for Ry € {PSqYSqYC}, equivalent
to the atomic priors. AT1: ‘yell-", the best partial word hypothesis is now “yel-
low”;11 the interpreter therefore outputs a RT which matches the jyggement
s:Y (i.e. that the referentis a yellow object). Taking this jedgent as the condition-
ing evidence, the classifier calculates the conditionafitligion p(s: PSqs: Y) =0,
p(s: YSqs:Y)=0.5andp(s: YJs:Y) = 0.5 (see the schematic probability distri-
bution at stage T1 in Fi§. 11 for the three objects).

T2: ‘uh’ does not add any information to the referent situation, amdbe con-
sidered a forward-looking disfluency signal (Ginzburg ePall4), however at3:
‘purple’ low probability in the DS-TTR parse causes a self-repairtodrognised,
enforcing backtracking on the parse graph which operatgeathe definition for
DyranInTerPRET in Definition[4. The detection of a self-repair repairs thgesl: Y,
so according to BanInTerprET, the type judgemend : —Y, i.e. that this is not a
yellow object, is available as soon as the repair has beegnéged. Using the neg-
ative conditioning type judgement, usirg119), at T3 thessifler now shifts the
distribution top(s: PSds: =Y) = 1, p(s: YSqs: —=Y) = 0 andp(s: YC|s: =Y) =
0. The detection of the repair alone makes this distributitange available, before

11 Although our current system does not have this capabili,assume a speech recognition
module which produces word hypotheses from partial wondsgyness on which has been made in
recent years (see Schlangen and Skantze) 2009).
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the judgemens: P A =Y is made aif4, where the full semantic content of ‘purple’
is integrated into the conditioning evidence. The early afsthe conditioning on
the negative type judgementresulting in reference reisilitere can be seen as the
modelling of the speed up achieved by human subjects.

Finally at T5: ‘square’ given p(s: PSds: PSq = 1, the distribution remains
unchanged. The last word could be taken as an instance okpeeification again
here, due to the lack of information gain in the conditioriatribution ofreferents
however, we follow _Fernandez (2013)’s idea that this is st likely comple-
tion of the referring expression, due to the fact syntaatimpleteness is generally
preferred to incompleteness.

5 Discussion

We have presented a novel way of using Knuth (2005, 2006)i& wo probabilis-

tic lattices which has some nice predictions for small rerfiee domains. DS-TTR,
whilst currently not fully implemented probabilisticallyas potential for fully prob-
abilistic parsing and generation in practice.

RT lattices show a nice derivation of the standard probgtdakioms of prob-
abilistic TTR, in line with the characterization of them aset of types partially
ordered byC. This means, given prior assignment of values to the joiediucible
elements, all other probabilities are derivable in termthefdegree to which types
include each other. We showed the equivalence @ndA, noted by Cooper (2012)
holds in terms of probability, while the natural join in RTitlaes v is not equiv-
alent to disjunctionv in type judgements, due to type lattices generally not being
complemented. There are many possible paths for reseapcbbabilistic TTR, but
hopefully this lattice characterization is useful for them

One of the potential draw-backs of the approach is compl&kiw-up and scal-
ability. There is exponentiation of the size of the lattiteshe size of the dis-
joint atoms, however not necessarily in their constructiore. The other obvious
difficulty when scaling to bigger domains is defining the domairlypg judge-
ments. However the motivation of TTR is a good one: an agemtildhonly rea-
son with the relevant types to a situation, rather than diggrthe whole universe
and all the type judgements therein, and using a QuestionietDiscussion model
(Ginzburg| 2012) for relevant issues could help in this rdga

As for reference processing, our model captures over-Ep&ton phenomenain
REG in terms of probability, but not directly in terms of itsaision process the way
Dale and Reiter (1995)'s Incremental Algorithm does. Hosvegiven the cross-
linguistic evidencel (Rubio-Fernandez, 2011) this may bmta weakness— given
over-specification may be tied to specific syntactic comsions in specific situa-
tions for a given language, it may not be appropriate to mibdethe conceptualiza-
tion stage only, but rather as a sidéeet of incremental informativity (Fernandez,

12 Seehttps://bitbucket.org/dylandialoguesystem/dsttr for the latest implementation.
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2013), which our model captures in its incremental refeegresolution. In addition,
our framework’s processing models how listeners procd§segmirs realistically,
reasoning about the revocation of a type judgement itstierghan predicting the
outcome through positive evidence alone, in line with Beenand Schober (2001)’s
results. We note that early use of the negative type judgeprerides a model for
increased subsequent processing speed, however it dostipddte exact timing at
which the negative type inference is made in terms of phoifietm. While beyond
the scope of the model here, Brennan and Schober [(2001)¥gesiggest this in-
formation becomes available very quickly upon detectiothefsubstitution repair
onset.

5.1 Comparison to other probabilistic semantics approaches

While there has been considerable focus on probabilistidaisoof word and
sentence meaning, namely from the Distributional Semamimenmunity, we feel
the above model seeks to address the lacuna in that work—Iynaemotational,
grounded meaning, and the interface to an update semamtid&fogue which can
leverage work on dialogue modelling. Given the general ty®retic approach
here, as pioneered by non-probabilistic TTR (see Coopexptéh 3, this volume),
both of these challenges become possible— for example titwabilistic charac-
terization of_ Dobnik et al (2013)'s embodied semantics fuvats and Ginzburg
(2012)'s comprehensive dialogue model KoS using TTR upflatetions on di-
alogue state records are both feasible. Currently, no iDigional Semantics ap-
proach can provide convincing solutions for these chaklengnd while distribu-
tional approaches to multi-modal meaning are being deeelqKennington and
Schlangen, 2015; Baroni, 2016), the incorporation of tire @dferential tools made
available from a probabilistic type theory, such as degodésclusion, interesting
logical relations, quantification, and ontological knodde, as shown here, and by
extension many interesting dialogue state update opemtare still not learnable
with the current techniques. This is not to say it is not guesibut concession that
certain insights from type theory as deployed in semanticscdalogue modelling
would have to be incorporated.

Asher, Abrusan and van de Cruys (Chapter 5, this volume) $tmwcharacter-
izing types as vectors of real numbers can be implementedg\er utilizing this
to inform a type hierarchy or update semantics for dialogtestly is still an ongo-
ing challenge, and the vectors still take their values froondwindow contexts in
texts. The use of fixed dimensional vectors for word type rivegm whilst wholly
accepted in the Distributional Semantics community, is sarhething a lattice-
oriented model such as the above assumes, and the extenticto tvis is advan-
tageous or burdensome for computing similarity betweerdwoeanings should be
explored.

While our model aims at situated dialogue, it must still ggdhe gap to the real
world. A model of word learning for an embodied agent hasaalyehad preliminary
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attention in_Cooper etlal (2014) in probabilistic TTR, andtsan approach incor-
porating low-level real-valued information from sensara inatural next step— char-
acterizing type judgements as classifiers is one way suggy@sthat work which
could achieve this in future.

6 Conclusion

We have discussed a dialogue model which incorporatesnrental probabilistic
inference andf@cient methods for constructing probabilistic RT latticedeyed by
the subtype relation, demonstrating thdii@cy for realistic reference processing.
The model helps explain the experimental results on repa@kerring expressions
(Brennan and Schaober, 2001), and also has a probabilisiracterization of over-
specification in terms of incremental relevance. While walel@ simple reference
domain here, this is intended to be a general interpretatidrgeneration model for
dialogue. For this more general purpose, an order-basdzhpiistic semantics is
more suitable than a model conditioning on pre-defined ptigseof objects as is
the tendency for reference resolution and REG algorithrtisdditerature. We wish
to explore the scalability of RT lattices to other domaind #reir learning capacity
in future work.
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