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Abstract We propose an incremental dialogue framework which combines proba-
bilistic Type Theory with Records and order-theoretic models of probability. The
probabilistic record type lattices at the core of the framework allow the efficient
computation of type judgements of utterance meaning in situated dialogue. It models
reference processing in simple reference domains in a psycholinguistically plausible
way– that is, in a strictly left-to-right, word-by-word fashion where the probabilities
assigned to the referents in a scene change intuitively as anutterance continues. Fur-
thermore, the model can process disfluent referring expressions such as ‘the yell-,
uh, purple square’ while making use of the information the disfluency conveys to
reflect psycholinguistic results. We conclude this proof ofconcept is a useful step
towards generative, learnable, probabilistic dialogue models which can include the
existing insights of non-probabilistic type-theoretic counterparts in future.

1 Introduction

This chapter1 addresses the issue of incorporating probabilistic type-theoretic infer-
ence into an incremental dialogue framework, using processing of referring expres-
sions (that is, their interpretation and generation) as a test case. Within our frame-
work, we model reference processing in a psycholinguistically plausible way– that
is, in a strictly left-to-right, word-by-word, incremental fashion. We additionally
show how the model is capable of processing disfluent referring expressions while
making use of the information the disfluency conveys to reflect psycholinguistic
results on the effect on processing speed.
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Our model incorporates probabilistic Type Theory with Records (Cooper et al,
2014) and order-theoretic models of probability (Knuth, 2005) into a formal dia-
logue system that reflects the psycholinguistic evidence.

The remainder of the chapter is as follows: In Section 2 we introduce the chal-
lenge of modelling reference processing, and overview someprevious approaches.
In Section 3 we describe the semantic and dialogue frameworkwe use and how we
enrich it with probabilistic record type lattices. In Section 4 we describe how our
model can simulate psycholinguistic results in reference processing and we finish
with a discussion and conclusion.

2 Background on reference processing models

There has been significant work on simple referential communication games in psy-
cholinguistics and computational and formal models of communication. These ref-
erence games are usually posed as a human-human situation where an instruction
giver and instruction follower have access to the same visual scene with simple
objects, and the instructor produces an utterance to make the instructee select the
object(s) he or she refers to. A typical referring expression (RE) produced by an in-
struction giver in a simple domain of coloured shapes would be “the yellow square”–
these simple noun phrases are the ones we focus on here.

From a speech production perspective, Levelt (1989)’s seminal work modelled
speaker strategies for producing REs in such a simple objectnaming game. He
showed how the production process could be split into three separate stages of
conceptualization(choosing the elements or properties of the objects the speaker
intends to vocalize),syntactic formulation(choosing the lexical items to convey the
content, linearising their order and checking lexical agreements) andarticulation
(speaking). He also showed how speakers use informationally redundant features
of the target object, orover-specification, violating Grice’s Maxim of Quantity that
speakers should say no more than is necessary to convey theircommunicative in-
tention (Grice, 1975), a result that has been supported in subsequent accounts. An
example of over-specification is when an adjective is included unnecessarily in an
RE– for instance in a reference situation with three objectsof a red lamp, red hat
and red glove, ‘the red lamp’ would be over-specified when referring to the lamp,
where ‘the lamp’ would suffice to distinguish it uniquely.

In the natural language generation (NLG) community, referring expression gen-
eration (REG) has been widely studied in terms of the conceptualization and for-
mulation (includingsurface realization) levels– see (Krahmer and Van Deemter,
2012) for a comprehensive survey. The incremental algorithm (IA) (Dale and Re-
iter, 1995), the most well-known REG algorithm, is an iterative feature selection
procedure that operates on logical properties of objects ina visual scene (such as
colour=yellow for yellow objects). The IA computes thedistractor set of refer-
ents (i.e. those not intended for selection) which each property used in a RE could
cause to be inferred. From this, the IA gives a utility value to each property based
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on its ability to determine the referent in a non-greedy manner– it iterates over the
properties in terms of a fixed preference order (whereby say,colour properties would
rank above shape properties, and would therefore be used first), not just their ability
to determine the referent uniquely, and adds them if they reduce the number of dis-
tractors. The IA stops when the combination of properties determines the referent
unambiguously. This was designed to be consistent with over-specification phenom-
ena in that certain types of properties will be selected if they have any discrimination
ability, even if the final RE generated is not optimally brief. More recently Frank and
Goodman (2012) investigate property preference and discriminatory power empiri-
cally in a Bayesian model of REG based on information-theoretic surprisal in terms
of how much REs reduce uncertainty about their intended referent, a measure which
they claim correlates strongly to human judgements of whichRE best describes a
given target (obtained from a multiple choice study rather than allowing open an-
swers).

2.1 Incrementality

While Dale and Reiter’s IA deals with incrementality in terms of the property se-
lection procedure, it does not model theleft-to-right, word-by-wordsurface-level
incrementality of reference processing, which is the aspect we focus on here. That
is to say, as opposed to modelling the selection of linguistic content in REG and
the interpretation of REs on the level of complete utterances, we wish to model the
inference listeners make as a referring expression is spoken in real time. We assume
the key requirement of incremental reference processing, in line with incremental
semantics desiderata in general, is to yield the maximal information available from
an utterance as it is processed (Hough et al, 2015).

Existing models closest to our own are the incremental REG models described by
Guhe (2007) and Fernández (2013) and the incremental reference resolution model
proposed by Kennington and Schlangen (2014). Guhe (2007)’sapproach to REG
is to model a fine-grained incremental conceptualizer whichpasses conceptual in-
crements (partial logical forms) to an incremental syntactic formulator, allowing
piece-meal processing. While not focussing on reference processing, the incremen-
tal conceptualization is a point of departure we use in our model below.

Fernández (2013), on the other hand, takes a more purely linguistic, syntax-level
perspective. Fernández sketches a novel solution to modelling over-specification, ar-
guing the phenomenon may be caused more by the affordances of incremental left-
to-right word-by-word information processing in different languages, rather than
salience of properties as proposed by Dale and Reiter (1995)’s IA. She argues prop-
erties seemingly redundant when considering the RE as a whole unit may in fact
be important when considering their incremental word-by-word contribution to ref-
erence resolution, that is, theirincremental informativity. The paper gives cross-
linguistic evidence from Spanish speakers based on Rubio-Fernández (2011)’s ex-
perimental results, arguing over-generation of redundantadjectives is less common
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in languages where such adjectives can be added post-nominally. Fernández exem-
plifies a domain where the only red lamp in a scene is the referent, and it is possible
to individuate it from its object type (i.e. the property that it is a lamp) alone, where
describing its colour is redundant, however still partially discriminative as there is
another red object in the domain. For an English speaker “thered lamp” would be
a typical over-specified description, whereas in Spanish “la lámpara roja” (“the red
lamp”) would be less common, and “la lámpara” would be a morecommon RE.
This cross-linguistic difference is due to the fact the post-nominal “roja” does not
add any reference information incrementally after “la lámpara”, which on its own
has sufficient discriminatory power, while the English “red”, although not uniquely
determining the referent, narrows the reference set and so is incrementally infor-
mative. Fernández uses this example to sketch a REG system that uses a variant
of Dale and Reiter (1995)’s IA for content selection interleaved with a TAG-based
syntactic formulator that is strictly left-to-right incremental in its tree construction.
She emphasizes the importance of tightly coupling the REG procedure with an in-
terpretation component of a dialogue system but does not give details of how this
could be done.

On the interpretation side of reference, reference resolution, Kennington and
Schlangen (2014)’s incremental system models the role of the hearer or instructee.
The system continuously incrementally outputs a distribution of possible referents
conditioning on the logical values of properties of the objects in the scene and the
words used to refer to those properties spoken by the instructor. The model forms
part of situateddialogue processing, as it continuously updates its referent distri-
butions based on perceptual data, and not necessarily just linguistic data. The con-
ditional probabilities are calculated using a generative model (of the speaker) and
implemented using Markov Logic networks. Kennington et al (2014)’s development
of the model uses incremental semantic representations built up word-by-word by
an incremental rMRS (robust Minimal Recursion Semantics) parser (Peldszus et al,
2012) as part of the property set it conditions on, boosting results from using simple
n-gram models.

Motivated by incremental approaches such as those just described, this chap-
ter presents an incremental dialogue-motivated account ofreference identification
which models the speaker in terms of incremental NLG and the hearer in terms of
incremental interpretation of utterances in reference identification games.

2.2 Self-repair

In addition to modelling incremental processing of fluent utterances, the model aims
to reflect the evidence from Brennan and Schober (2001)’s evidence thatself-repair
can speed up semantic processing (or at least reference identification) in such games.
An incorrect RE being partly vocalized and then repaired in the instructions in con-
junction with a filled pause interregnum “uh” (e.g. “the yell-, uh, purple square”)
yields quicker response times to select the correct object from the onset of the target
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(“purple”) than in the case of the fluent instructions which communicate the same
final target referent (e.g. “the purple square”), with no significant effect on accuracy.
This suggests that the repaired material itself is semantically processed, and infer-
ence is made available immediately from it. While these psycholinguistic results are
striking, there has been little attention paid to this phenomenon, and we also address
this in our model.

3 Incorporating probability into type judgements and dialogue
states

To meet the challenges outlined, we present a reversible reference processing model
(i.e. one that works both in interpretation and generation with minor parametric
changes), situated within the incremental dialogue framework DyLan (‘Dynamics
of Language’, Purver et al, 2011). While DyLan is capable of incremental seman-
tic processing, we would like a dialogue model to be able to reflect the uncertainty
of reference as a referring expression progresses and allowprobabilistic reasoning
about the reference situation in general, which is an uncontroversial view for mod-
ern cognitive models (Chater et al, 2006). For this to becomepossible, the model
should generate distributions over type judgements in a reference situation rather
than just allow binary type judgements. In the following subsections we explain
the probabilistic type theoretic and lattice theoretic mathematical tools we use to
achieve incremental probabilistic type judgements in DyLan.

3.1 Probabilistic TTR

Firstly, we briefly describe the chosen semantic representation framework for our
model, Type Theory with Records (TTR, Cooper, 2005, 2012).2

In TTR, the principal logical form of interest is therecord type(abbreviated ‘RT’
largely from here), consisting of sets offieldsof the form [l : T] containing a label
l, from a set of labels, and a typeT, from a type ordering, representing the central
type-theoretic judgementl : T, that an object labelledl is of typeT. RTs can be
witnessed (i.e. judged as inhabited) byrecordsof that type, where a record is a
semantic object structured isomorphically to a RT, consisting of sets of label-value
pairs [l = v]. See Figure 1 for examples of RTs and records.

The central type judgement in TTR that a records is of record typeR, i.e. s : R,
can be made from the component type judgements of individualfields ofR, e.g. the
one-field record [l = v] is of record type [l : T′] just in case typev is of typeT′.
This single-field RT check is generalisable to records and RTs with multiple fields:

2 We only introduce the elements of TTR relevant to the phenomena discussed below. See Cooper
(2012) and Cooper (Chapter 3, this volume) for a detailed formal description.
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R1 :
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l1 : T1
l2 : T2
l3 : T3(l1)
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
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




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

R2 :

[

l1 : T1
l2 : T2′

]

R3 : []

S1 =



















l1 = a
l2 = b
l3 = c



















S2 =

[

l1 = a
l2 = b′

]

S3 = []

Fig. 1: Example TTR record types (top row) and records (bottom).

a records is of RT R if s includes fields with labels matching those in the fields of
R in a one-to-one relation, such that all fields inR are matched to a field ins, and
all label-matched fields ins have a value of the same type as their corresponding
field in R (or, their value is a subtype of the corresponding type inR, see below). A
record type check can be defined as in Definition 1. Thus it is possible for the record
s to have more fields than RTR and fors : R to still hold, but not vice-versa:s : R
cannot hold if RTRhas more fields than the records.

Definition 1. Record type check:
For a recordsand and record typeR, s : R is true iff for every field [l : T] in R there
is a field [l = v] in s such thatv : T.

Fields can have values representing predicate type (which,following Cooper
(2012), we call aPType) judgements, such asl3 : T3(l1) in Fig. 1, and consequently
fields can bedependenton fields preceding them (i.e. represented graphically higher
up) in the RT, e.g. in Fig. 1,l1 is bound in thePTypejudgement fieldl3, sol3 depends
on l1.

Semantically, the boolean judgement of whether type judgements aretrueor false
is determined by a model, ortype system(Cooper, 2012). A type system consists of
(i) a partially ordered set of types (type hierarchy), ordered by the subtype relation
as will be explained further below, of which the supremum is the typeType, (ii) a
set of labelled objects (type inhabitants) which is disjoint from the type hierarchy,
and (iii) a valuation functionA(T) which maps each typeT in the type hierarchy
to a subset of the set of type inhabitants. Therefore, in terms of judgements,l : T′

is true iff the object labelledl in the type system is a member of the setA(T′); i.e.
l : T′ iff l ∈ A(T′). In terms of record types and records, if the fieldl : T′ in a RT is
true according to the type system, then the judgement in a record l = v is true iff v is
of typeT′; i.e. givenl : T′ is true, thenl = v is true iff v : T′ (wherev : T′ is true iff
v ∈ A(T′) is true). In addition to judgements that atomic objects areof a given type,
and records are of a given record type, it is possible to make judgements that a type
is of another type inductively from their order in the type hierarchy.
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3.1.1 The subtype relation

In line with the semantic interpretation requirement of incremental interpretation
and NLG models yielding the maximal information from an utterance as it is pro-
cessed (Hough et al, 2015), a strongly incremental account will require checking
whether RTs under construction are consistent with the RTs representing domain
concept RTs provided by a conceptualizer incrementally. Todo this we make use of
the⊑ (‘is a subtype of’) relation, which issubsumptivein TTR, that is if RTR1 is a
subtype of RTR2 (i.e. R1 ⊑ R2) then there are no objects of typeR1 that are not of
typeR2, or in the sense of the phrase from Description Logic,R1 is subsumed by R2.

Operationally, subtype relation checking can be defined forRTs in terms of fields
as simply:R1 ⊑ R2 iff for all fields [l : T2] in R2, R1 contains [l : T1] whereT1 ⊑

T2. In Fig. 1, it will be the case thatR1 ⊑ R3, R2 ⊑ R3 andR1 ⊑ R2 iff T2 ⊑ T2′ .
The transitive nature of this relation (i.e. iff R1 ⊑ R2 andR2 ⊑ R3 then R1 ⊑ R3)
can be used effectively for type-theoretic inference as will be describedbelow. An
operational definition for a subtype check, adapted from (Fernández, 2006, p.96),
is given in Definition 2. IfR1 hasn fields andR2 hasm fields, assuming naively a
uniform cost for each type check on the type hierarchy, the complexity of this check
can beO(n×m) in the worst case where every field in one RT needs to be compared
against every field in the other.3 Note that the label-matching conventions for type
checking are extremely useful for computability here, as the complexity would be
far greater if unconstrained re-labelling was permitted.

Definition 2. Subtype relation check:
For record typesR1 and R2, R1 ⊑ R2 holds just in case for each field [l : T2] in
R2 there is a field [l : T1] in R1 such thatT1 ⊑ T2. This relation is reflexive and
transitive.

While we do not discuss the full stratified type hierarchy forTTR here, we note
that for all types,T1 ⊑ T2 implies thatT1 : T2, but does not implyT2 : T1 unless
T2 ⊑ T1, a consistency that extends to RT judgements. There are manycomplexities
here which we will not deal with as regards type stratification– again see Cooper
(2012) for details. We do not believe these complexities affect TTR’s suitability for
dialogue modelling and the discussion here.

We use the notion ofmanifest(singleton) types, e.g.Ta, the typeT of which only
a is a witness. Here, we represent manifest RT fields such as [l : Ta] whereTa ⊑ T
by using the syntactic sugar [l=a : T] following Cooper (2012). The subtype relation
effectively allows progressive instantiation of fields in a monotonic fashion, as the
addition of fields to an RTR, and the manifestation of fields inR, leads toR′ where
R′ ⊑ R. This is practically useful for an incremental dialogue system in terms of
meeting the strong incremental interpretation and minimization of re-computation
requirements of incremental semantics (Hough et al, 2015) and for other reasons of
incremental utterance processing as we will explain.

3 The cost of the subtype check for a field may be more costly if itis dependent (i.e. aPType,
however this is not important for the discussion here.
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3.1.2 Meet types and the merge operation

We make use of themeet typeof two or more RTs and an operation to yield an
equivalentRT to the meet type.4 As Cooper (2012) explains, the meet type of two
RTs results in a type that is no longer an RT, even if the objects it witnesses are
records. However, an RT extensionally equivalent to the meet type of two RTsR1

andR2 is the yield of a merge operationR1 ⋗ R2 (Larsson, 2010). Operationally,
in the simplest case merge can be characterized as union of fields of two RTs, for
example forR1 andR2 in (1). In the event of label-type clashes between labels in
two RTs (i.e. cases whereR1 containsl1 : T1 andR2 containsl1 : T2), in this chapter
we assume all examples like thisT1 andT2 are incompatible (disjoint in the type
hierarchy), in which case the resultingR1 ⋗ R2 is⊥.

if R1 =

[

l1 : T1

l2 : T2

]

andR2 =

[

l2 : T2

l3 : T3

]

R1∧R2 ≡ R1 ⋗ R2 =





















l1 : T1

l2 : T2

l3 : T3





















(1)

3.1.3 Join types and the minimal common supertype operation

Here we also define a dual of the merge operation, not found in the TTR literature,
which is necessary for the analysis below: what we call theminimal common su-
pertypeoperator ⋖ . While technically the minimal common supertype ofR1 and
R2 is thejoin type R1∨R2, here, for reasons that will become apparent below in the
discussion on type lattices, we are also interested in isolating the minimal common
supertype of two RTsR1 andR2 which is still a non-disjunctive RT, which, when
there are no clashing type judgements, amounts to field intersection as below in (2).
Where there are label-type clashes between fields in two RTs,i.e. whereR1 contains
l1 : T1 andR2 containsl1 : T2, in the examples in this chapter we assume the minimal
common supertype ofT1 andT2 is the most general typeType, and in these cases
the field is omitted in the result ofR1 ⋖ R2. Note the minimal common supertype RT
of multiple RTs is generallynot equivalent to their join type as will be explained.

if R1 =

[

l1 : T1

l2 : T2

]

andR2 =

[

l2 : T2

l3 : T3

]

(2)

R1 ⋖ R2 =
[

l2 : T2

]

4 In TTR two typesT1 andT2 are equivalent iff for any objecta in the domain such that iff a : T1
thena : T2 and vice-versa. This extends to record types.
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3.1.4 Going probabilistic

While classical type theory has been the predominant mathematical framework in
natural language semantics for many years (Montague, 1974,inter alia), it is only re-
cently that probabilistic type theory has been discussed for this purpose. Similarly,
type-theoretic representations have been used within dialogue models (Ginzburg,
2012); and probabilistic modelling is common in dialogue systems (Young et al,
2013, inter alia), but combinations of the two remain scarce. In this chapter this
connection is made, taking Cooper et al (2014, 2015)’s probabilistic TTR as the
principal point of departure for modelling incremental inference in dialogue as de-
scribed above.

At the time of writing there had been no methods for practicalintegration of prob-
abilistic type-theoretic inference into a dialogue system; here we discuss computa-
tionally efficient methods for implementation. We argue for their efficacy in simple
referential communication domains, but simultaneously suggest the methods could
be extended to larger domains and additionally used for real-time learning in future
work.

Given that TTR has a highly flexible rich type system, variants have been con-
sidered with type judgements corresponding to real number valued perceptual data
used in conjunction with linguistic context, such as those representing visual infor-
mation (Larsson, 2011; Dobnik et al, 2013), demonstrating its potential for situated,
embodied and multi-modal dialogue systems. The possibility of integration of per-
ceptron learning (Larsson, 2011) and Naive Bayes learning (Cooper et al, 2014) into
TTR show how linguistic processing and probabilistic conceptual inference can be
treated in a uniform way within the same formal system.

Probabilistic TTR as described by Cooper et al (2014, 2015) replaces the cat-
egoricals : T judgement, the judgement that it istrue or false that an objects is
of type T, with the real number valuedp(s : T) = v wherev ∈ [0,1].5 The authors
show how standard probability theoretic and Bayesian equations can be applied to
type judgements and how an agent might learn from experiencein a simple classi-
fication game. In their example, the agent is presented with instances of a situation
with associated type judgements and it learns with each round by updating its set
of probabilistic type judgements to best predict the type ofobject in focus – in this
case updating the probability judgement that something is an apple given its ob-
served colour and shape, i.e.p(s : Tapple|s : TS hp, s : TCol) whereS hp∈ {shp1, shp2}

andCol ∈ {col1,col2}. From a cognitive modelling perspective, these judgements
can be viewed as learning concepts from probabilistic perceptual information, and
if framed as a language acquisition scenario these conceptscould be associated with

5 Several people we have discussed this with are not convinceda type judgement can be probabilis-
tic. We remain agnostic to the plausibility of a non-conditional judgement such as this one being
real-valued, however we do think real-valuedconditionalprobability judgements are realistic. We
thank David Schlangen and Arash Eshghi for discussions on this. The view we set out below can
be cashed out purely in terms of conditional type judgements, however the conditional judgement
may at times be notationally suppressed where appropriate and in a consistent manner– these cases
will be noted where they crop up.
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words. We use similar methods in the toy reference domain below, but show how
complex type judgements can be constructed efficiently, and how conditional proba-
bilistic judgements can be made incrementally without exhaustive iteration through
individual type classifiers, as the mechanisms in Cooper et al (2014, 2015) and Ken-
nington and Schlangen (2014)’s models require.

For the exposition of probabilistic TTR, we repeat some of Cooper et al.’s calcu-
lations and show some equivalences not described by the authors. We describe our
efficient order-theoretic and graphical methods for generating and incrementally re-
trieving probabilities in Section 3.2.

Cooper et al (2015), under the assumption that type judgements can be real-
valued, define conditional probability of an object being oftype R2 given it is of
typeR1 as in (3). This is the most important judgement in probabilistic TTR, due to
the framework’s motivation: an agent can judge a situations is of a given situation
type, given the evidence that it is of other situation types.In this way an agent is
positioned as a classifier of situations given the evidence available to it. Here we
assumes can be a record, not just a basic type, and soR1 andR2 can be record
types.

p(s : R2|s : R1) =
p(s : R1∧R2)

p(s : R1)
(3)

Given classical probability theoretic equivalences, theydefine the probability of a
situation being of a meet (conjunctive) and join (disjunctive) types of two basic types
or RTs in terms of the standardproductrule in (4) andsumrule (5) in probability
theory:

p(s : R1∧R2) = p(s : R1)p(s : R2|s : R1) (4)

p(s : R1∨R2) = p(s : R1)+ p(s : R2)− p(s : R1∧R2) (5)

It is practically useful, as we will describe below, that thejoin probability can be
computed in terms of the meet. Given the classical probability theoretic definitions
for the meet and the join type they show it is possible to sustain the below:

p(s : R1∧R2) ≤ p(s : R1) (6)

p(s : R1∧R2) ≤ p(s : R2)

p(s : R1) ≤ p(s : R1∨R2)

p(s : R2) ≤ p(s : R1∨R2)

Also, there are equivalences between meet types, join typesand subtypes in terms
of type judgements as described above, in that assuming ifR1 ⊑ R2 thenp(s : R2|s :
R1) = 1, we have:
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if R1 ⊑ R2

p(s : R1∧R2) = p(s : R1)

p(s : R1∨R2) = p(s : R2)

p(s : R1) ≤ p(s : R2)

(7)

We return to an explanation for these classical probabilityequations holding
within probabilistic TTR below in terms of record type lattices. We make a remark
here that the meet type probability of two conjuncts is the same as the probability
of the RT result from the merge operation of those conjuncts in (8). This is the case
due to the extensional equivalence of a (non record type) meet typeR1∧R2 and the
resulting record type from the operationR1 ⋗ R2 as shown in Definition 1. For this
reason, all the∧ conjunctions in the above equations can be replaced by⋗ and the
equations will still hold. The same is not true of the relationship between the join∨
type and the ⋖ operation as we will explain.

p(s : R1∧R2) = p(s : R1 ⋗ R2) (8)

Through the subtype relation, merge operator and minimal common super type
operator, we will now be able to show why these classical probability theoretic equa-
tions hold in TTR, due to the structure of record type lattices, and how these are
useful objects for incremental dialogue processing.

3.2 Probabilistic Record Type lattices

To support efficient reference processing, we represent dialogue domain concepts as
partially ordered sets (posets) of RT judgements. This is inspired by the use of RT
lattices in automatic grammar learning by Eshghi et al (2013), however here they
are fleshed out in a formal way to provide an interface to a general reasoning system
and probabilistic TTR.

A poset has several advantages over an unordered set of un-decomposed record
types: the possibility of incremental type checking; increased speed of type check-
ing, particularly for pairs of or multiple type judgements;immediate use of type
judgements to guide system decisions; inference from negation; efficient construc-
tion of a question under discussion (QUD) structure that includes question relevance
values contingent on probability; and modelling the learning of type judgements. We
leave the final two challenges for future work, but discuss the others here.

From a set of RTs which are semantically disjoint (i.e. for any two RTs in this set,
their record inhabitants in the type system are disjoint), it is possible to construct a
valid record type lattice. As per set-theoretic lattices, RT lattices can be visualised
as Hasse diagrams such as those in Fig. 2, however here the ordering arrows show
⊑ (‘is a subtype of’) relations from descendant to ancestor nodes, rather than the
normal set inclusion relation.
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(a)

R3 = [] = ⊤

R1 =

[

a : T1
b : T2

]

R2 =

[

a : T2
b : T1

]

R0 = ⊥

(b)

R8 = [] = ⊤

R4 =
[

b : T1

]

R5 =
[

a : T1

]

R6 =
[

b : T2

]

R7 =
[

a : T2

]

R1 =

[

a : T1
b : T1

]

R2 =

[

a : T1
b : T2

]

R3 =

[

a : T2
b : T2

]

R0 = ⊥

Fig. 2: Record Type lattices ordered by the subtype relation, adapted from Eshghi
et al (2013). While (a) happens to be complemented, RT lattices are not in general,
as (b) shows.

To characterize a RT latticeL ordered by⊑, we adapt Knuth (2005)’s description
of lattices in line with standard order theory.L is a partially ordered set of RTs
closed under themeetand join operations, whereby all pairs of elements have a
unique element that is their meet and a unique one that is their join. This is to say,
for a pair of RT elementsRx andRy, their lower bound is the set of allRz ∈ L such
thatRz ⊑ Rx andRz ⊑ Ry, and their unique greatest lower bound is their meet. The
meet of any two RTsRx andRy in L is the RT resulting fromRx ⋗ Ry, and, given (1),
is also extensionally equivalent to the meet typeRx∧Ry. Dually, if the unique least
upper bound exists forRx andRy this is their join inL and in TTR terms is the result
of Rx ⋖ Ry, butnotnecessarily extensionally equivalent to the join typeRx∨Ry. This
is due to the fact that the result ofRx ⋖ Ry may be extensionally equivalent to the
minimal common supertype of other pairs of RTs inL (and consequently may be
the type of different objects or records which are not of typeRx or Ry), soRx ⋖ Ry

can be a more general type than the disjunctive typeRx∨Ry. For example in Fig. 2
(b), the join element in the lattice ofR1 andR3, consistent with the join being the⋖

operator, isR8, the empty record type, as they have no fields in common. However
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this is not equivalent to the disjunctive join type as the empty record type includes
all objects of typeR2 as well, not just those of typeR1 andR3.

The decision not to include disjunctive and conjunctive types directly onL, only
using RTs and operations that yield new RTs, is motivated by limiting the size (and
therefore complexity) of the lattice, and also by keeping consistency in the type
hierarchy: the limitation of the lattice to types that are only of record type means
this is a record type lattice. As just shown, while the extensionally equivalent RTs
for meet types are included inL, elements representing join types are not in general.
In summary, given the ordering relation⊑, the join and meet operations under which
the lattice is closed are ⋖ and ⋗ .6

We now introduce other relevant terminology. One elementcoversanother if it
is a direct successor to it in the subtype hierarchy.L has a greatest element (⊤) and
least element (⊥), with theatomsbeing the elements that cover⊥; in Fig. 2 (b) if
R0 is viewed as⊥ , the atoms areR1, R2 andR3. Join-irreducibleelements are those
which cannot be expressed as the join of two other elements– in Fig. 2 (a) the only
join-irreducible elements are the atoms and⊥, however in Fig. 2 (b) they consist of
the⊥, the atoms andR4 andR7.

In line with standard lattice theory, given the characterization of the meet and
join operations as ⋖ and ⋗ , a RT latticeL ordered by the subtype relation obeys
the following rules for any three elementsx, y andz in L:

x ⋖ x= x; x ⋗ x= x (L1. Idempotency)

x ⋖ y= y ⋖ x; x ⋗ y= y ⋗ x (L2. Commutativity)

x ⋖ (y ⋖ z) = (x ⋖ y) ⋖ z; x ⋗ (y ⋗ z) = (x ⋗ y) ⋗ z (L3. Associativity)

x ⋖ (x ⋗ y) = x ⋗ (x ⋖ y) = x (L4. Absorption)

Assuming RT lattices are bounded they satisfy the followingidentity laws:

x ⋖ ⊥ = x (I1.)

x ⋗ ⊤ = x (I2.)

x ⋗ ⊥ = ⊥ (I3.)

x ⋖ ⊤ = ⊤ (I4.)

RT lattices ordered by the subtype relation aredistributive latticesas they obey the
two distributivity relations:

6 Graphically, the join of two elements can be found by following the connecting edges upward
until they first converge on a single RT, e.g.R1 ⋖ R2 = R5 in Fig. 2 (a), and the meet can be found
by following the lines downward until they connect to give the result of their merge operation, e.g.
R5 ⋗ R6 =R2.
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x ⋗ (y ⋖ z) = (x ⋗ y) ⋖ (x ⋗ z) (D1. Distributivity of ⋗ over ⋖ )

x ⋖ (y ⋗ z) = (x ⋖ y) ⋗ (x ⋖ z) (D2. Distributivity of ⋖ over ⋗ )

A final piece of lattice terminology is that a RT elementRx has acomplementif
there is a unique element¬Rx such thatRx ⋖ ¬Rx =⊤ andRx ⋗ ¬Rx =⊥. The lattice
Fig. 2 (a) iscomplementedas this holds for every element, asR1 complementsR2

and vice-versa. However RT lattices in general are distributive but not necessarily
complemented, as shown in Fig. 2 (b), where it can be seen, forexample, thatR3 is
complemented byR1, R4 andR5.

3.2.1 Adding probability to lattices

To explain the incorporation of probabilities into RT lattices, it is necessary to draw
on Knuth (2005)’s work on generalizing a Boolean algebra to the probability cal-
culus through the use of real-valued inclusion measures on lattices. Knuth shows
how a Boolean algebra of logical statements can be expressedas a distributed com-
plemented lattice of propositions ordered by the implication (→) relation, a lattice
he calls theassertion lattice(see Fig. 3). The assertion lattice is isomorphic to the
power set of its atomic elements, and so it can also be seen as ordered by the subset
inclusion relation⊆, with its meet being set intersection∩ and its join set union∪
and complement the complement set operator∼. The assertion lattice is distributed
and complemented, so the Boolean operators∧ and∨ and¬ happily coincide with
∩, ∪ and∼.

Fig. 3: An assertion lattice of propositionsA3 from Knuth (2005).

Knuth’s Inquiry Calculusextends Boolean algebra to the probability calculus
by characterizing conditional probabilityp(x|y) as the real-valueddegreeto which
statementy impliesx in the assertion lattice. This is calculated in terms of the inclu-
sion functionZ(x,y) for distributive lattices– that is, the degree to whichx includes
y:
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p(x|y) = Z(x,y) =



























1 if y→ x

0 if x∧y= ⊥

p otherwise, where 0≤ p≤ 1

(9)

If (9) is viewed as a lazy evaluation function, when the first two cases do not apply,
the third casep can be calculated by Bayes’ theorem, which can also be formulated
purely through the inclusion measure between pairs of elements in the lattice by
adding⊤ as a conjunct of the conditional. Knuth’sanalog of Bayes’ theorem for
distributed latticesis in (10):

p(x|y) = p(x|y∧⊤) =
p(x|⊤)p(y|x∧⊤)

p(y|⊤)
=

Z(x,⊤)Z(y, x∧⊤)
Z(y,⊤)

(10)

The standard probability sum and product rules for any two statements are also
derivable through a similar technique, using the degree of inclusion of join and meet
elements of⊤ – see Knuth (2005) equations 7-10. When the product rule is applied
to the numerator in (10), we get the standard equation for conditional probability,
which can again be formulated analogously in terms of the inclusion function:

p(x|y) = p(x|y∧⊤) =
p(x∧y|⊤)

p(y|⊤)
=

Z(x∧y,⊤)
Z(y,⊤)

(11)

All these calculations are possible through using the degree of inclusionZ(x,⊤)
initially assigned axiomatically (as a probability prior)to each join-irreducible ele-
mentx of the assertion lattice (which are atoms in a Boolean lattice)– all other prob-
abilities can be calculated in terms of these using Knuth’s lattice-theoretic analogs
to the standard probability equations. Knuth shows how these equations hold for
any distributed lattice. More detail on this will follow when explaining probability
in RT lattices.

3.2.2 Probabilistic RT lattice construction and inference

Having established RT lattices as distributive, we can use Knuth (2005)’s insights
to imbue them with probability values for each element. As Knuth did for sets of
statements ordered by the relation ‘implies’, we show how a consistent probability
calculus for RT lattices ordered by the relation ‘is a subtype of’ falls out naturally
from their structure, showing how Cooper et al (2014, 2015)’s equations for proba-
bilistic TTR shown in Section 3.1 can be derived in terms of a real-valued inclusion
function on lattices.

To introduce probabilistic RT lattices, we show one graphically in Fig. 4 and
use this as a guide for explanation. It shows a well-known probability theoretic ex-
ample of the possible outcomes of two consecutive coin tosses. The sample space
for the possible outcomes here, whereH = heads tossedandT = tails tossed, is
{HH,HT,TH,TT}. In the spirit of probabilistic TTR, we take each of these outcomes
to be a judgement that a situation is of a given record type with a probability value.
These four situation types are modelled as the atoms of Fig. 4, as their meet types are
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ATOMS:
‖HH‖ = 1
‖HT‖ = 1
‖TH‖ = 1
|TT‖ = 1

‖L‖ = 1+1+1+1= 4

⊤ = [] ‖HH‖+‖HT‖+‖TH‖+‖TT‖
‖L‖ = 1

H =
[

H : Heads
]

‖HH‖+‖TH‖+‖HT‖
‖L‖ T =

[

T : Tails
]

‖TT‖+‖HT‖+‖TH‖
‖L‖

HaT=

[

H : Head
T : Tails

]

‖HT‖+‖TH‖
‖L‖

H1=

[

H : Heads
E1 : First(H)

]

‖HH‖+‖HT‖
‖L‖ H2=

[

H : Heads
E2 : S econd(H)

]

‖HH‖+‖TH‖
‖L‖ T2=

[

T : Tails
E2 : S econd(T)

]

‖HT‖+‖TT‖
‖L‖ T1=

[

T : Tails
E1 : First(T)

]

‖TH‖+‖TT‖
‖L‖

H2aT=





















H : Heads
T : Tails
E2 : S econd(H)





















‖TH‖
‖L‖ T2aH=





















H : Heads
T : Tails
E2 : S econd(T)





















‖HT‖
‖L‖

HH =





















H : Heads
E1 : First(H)
E2 : S econd(H)





















‖HH‖
‖L‖ HT =





























H : Heads
T : Tails
E1 : First(H)
E2 : S econd(T)





























‖HT‖
‖L‖ TH =





























H : Heads
T : Tails
E1 : First(T)
E2 : S econd(H)





























‖TH‖
‖L‖ TT =





















T : Tails
E1 : First(T)
E2 : S econd(T)





















‖TT‖
‖L‖

⊥ = 0

Fig. 4: Probabilistic record type latticeL with uniform atomic probabilities for 4
possible outcome situations for two tosses of a coin.

physically impossible situations stipulated a priori as the least element⊥ with prob-
ability 0, consistent with assigning prior values to join-irreducible elements (Knuth,
2005, 2006). Each atom is a pair of an RT (shown on the left), and a probability
value of the situations being of that type (on the right of each element).

For each atomRx we assign a prior probability judgement of a situation being
judged of its record type with probability 1, simulating 4 random trials, as we use
a uniform distribution for this disjunction of situation types, assuming a fair coin.
Following Cooper et al (2014, 2015), the prior judgement ofs : Rx is stored in a
setRx, whose sum of probability judgements we notate‖Rx‖. The prior assignments
are in fact probability values when normalized over the sum of the values of all the
atomic probability judgements, a set we will callL, which in terms of a probability
sample space is equivalent to thecertain event. ‖L‖ normalizes the sum of probabil-
ity judgements for each record type judgement‖Rx‖ to give its prior probability‖Rx‖

‖L‖

= p(s : Rx) in line with standard probability assumptions– consequently the real val-
ued judgements initially assigned to the atoms need not in fact sum to unity (Knuth,
2005). In Knuth’s terms, these initial assignments are the inclusion valuesZ(Rx,⊤),
also equivalent to the unconditional probabilityp(s : Rx).

The role of TTR here would be trivial if the atoms were simple,non-decomposible
type judgements– the only knowledge of the situation available to an agent reason-
ing with type judgements would be a single probability valueattached to each atom–
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for instance, given the uniform assignment of priors one could calculate the prob-
ability of tossing two heads asp(s : HH) = 1

4 . However, in reality, an agent might
like to know the probability of other events, such as the event that heads will be
tossed at least once, or the probability that the second tossis tails, or a conditional
probability of a heads on the second toss given a heads on the first toss. One could
use aσ-algebra and generate all possible subsets of outcomes, however this does
not capture what the types of interest for an agent might be. For this purpose, the
possible outcomes, rather than being atomic, can be structured with relevant type
judgements on the situation, for which record types providea natural representa-
tion. For example, the event of two heads tosses can be represented through a record
type including the heads toss outcome type judgement [H : Heads] and two fields
with PTypejudgementsE1 and E2 which are dependent onH, representing the
outcome of both the first and second tossing events being of typeHeads, as in (12).





















H : Heads
E1 : First(H)
E2 : S econd(H)





















(12)

The choice of representation for the atoms’ RT situation types determines which
type judgements can be made and represents the agent’s ‘take’ on the entire situ-
ation. The atoms in Fig. 4 all have the same amount of structured information for
each outcome as (12), which we hope is intuitively relevant for a coin-tossing situa-
tion. A model of how an agent decides to a frame a situation is beyond the scope of
this chapter.

From the atomic situation types, one can build a RT lattice which includes all pos-
sible minimal common supertype judgements of the situation, and the type judge-
ments required to ensure the merge operation characterizesthe meet, all with the
unconditional probabilityp(s : Rx) ‘stored’ at each elementRx. This is achieved
through a simple bottom-up graph-based construction procedure which consumes
the atoms incrementally, running in time polynomial in the number of atoms, de-
tailed fully in Hough and Purver (fcmg). It terminates when all minimal common
supertypes have been generated by the⋖ operation defined in simple cases by field
intersection (2), and added to the lattice, leaving the maximally common super-
type of the whole lattice as an element labelled⊤ (possibly the empty type [ ]).
The unconditional probability for each type judgement is calculated, in the spirit of
Knuth’s inquiry calculus, purely in terms of the unconditional probability assigned
to the atoms– upon generating the minimum common supertype of two elements
the algorithm ‘stores’ the atomic judgements the two elements contain at that new
element in a set, so that no judgements are unnecessarily counted twice within the
elements, consistent with the inclusion-exclusion principle of lattice joins (Knuth,
2005). Consequently every element’s probability is given in terms of the atomic type
judgements it contains, normalized by the sum of all atomic judgements‖L‖.

The resulting latticeL in our example is as in Fig. 4. A label is given to each
record type inL, for exampleH is used for [H : Heads]– these labels are for ex-
planation, and in reality the algorithm would simply label the elementsR0..Rn for a
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lattice withn+1 elements.7 If one checks Fig. 4, all the expected prior probabilities
given on the right side of each record type make sense– for example, the probability
of a heads event, i.e.p(s : H), is ‖HH‖+‖TH‖+‖HT‖

‖L‖ = 3
4 , the probability of tossing heads

first, p(s : H1), is ‖HH‖+‖HT‖
‖L‖ = 1

2 , and the probability of tossing tails first,p(s : T1), is
also 1

2, calculated from‖TH‖+‖TT‖
‖L‖ .

3.2.3 Conditional probability, meets, joins and negative types

A RT latticeL such as Fig. 4 can be used as a reasoning system to make inferences
in light of partial information becoming available from an ongoing situation– in
our case of modelling incremental reference processing this is semantic information
from an utterance in progress. We model the principal inference task as predicting
the likelihood of relevant type judgementsRx ∈ L of a situations, given judgements
of the forms : Ry we have so far. To do this we use conditional probability judge-
ments from Knuth’s work on distributive lattices describedabove, but here using the
⊑ relation in place of→ to give (13).

The fact that conditional probability in probabilistic TTRcan be formulated in
terms of theZ inclusion measure on distributed lattices gives rise to an interesting
formulation of type judgements: the likelihood of a situation being of typeRx given
it is of typeRy is the degree to whichRy ⊑ Rx. We note, as per Knuth’s work, that
unconditional probabilities are the degree to which the element includes⊤, so that
Z(Rx,⊤) = p(s : Rx) andZ(Rx ⋗ Ry,⊤) = p(s : Rx ⋗ Ry) for all elements.

p(s : Rx|s : Ry) = Z(Rx,Ry) =



























1 if Ry ⊑ Rx

0 if Rx ⋗ Ry = ⊥

p otherwise, where 0≤ p≤ 1

(13)

In cases where the first two cases do not apply, in the third case the real-valued
degree ofRy ⊑ Rx, can be calculated using the TTR analog rules of Knuth’s inquiry
calculus, and also using Cooper et al.’s conditional probability calculation (3) in
Section 3.1, replacing the∧ with ⋗ to be in line with the meet operation of the
RT lattice. This gives (14), which is equivalent to Cooper etal.’s equation due to
Remark (8).

p(s : Rx|s : Ry) =
p(s : Rx ⋗ Ry)

p(s : Ry)
(14)

A conditional probability analog for record types can also be formulated as in (15),
adapting Knuth’s equation for distributive lattices (11),where theZ function again
functions as in (13). We show, givenZ(Rx,⊤) = p(s : Rx) andZ(Rx ⋗ Ry,⊤) = p(s :

7 The naming convention for the record types we use is hopefully intuitive for discussion purposes
here–H1 is the label for the RT judgement that the first throw is heads,T2 for the RT judgement
that the second throw is tails, and so on.a is used in the labels to denote ‘and’, soHaT stands for
the judgement that there is a heads and tails event in this situation, and so on.
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Rx ⋗ Ry) for all elements and the equivalence⋗ ≡ ∧, Cooper et al.’s equation can
be derived from the inclusion measures:

p(s : Rx|s : Ry) = p(s : Rx|s : Ry∧⊤) =
p(s : Rx∧Ry|s : ⊤)

p(s : Ry|s : ⊤)
(Knuth, 2005)

=
p(s : Rx ⋗ Ry|s : ⊤)

p(s : Ry|s : ⊤)

=
Z(Rx ⋗ Ry,⊤)

Z(Ry,⊤)

=
p(s : Rx ⋗ Ry)

p(s : Ry)

=
p(s : Rx∧Ry)

p(s : Ry)
(Cooper et al, 2014, 2015) (15)

If each atomRx is assigned an initial probability valueZ(Rx,⊤), Knuth’s inclusion
measure analog will work. To illustrate, returning to our coin-tossing example, given
the first toss is a heads, an agent might like to know the probability of the second
toss being heads, i.e.p(s : H2|s : H1). Through Knuth’s formulation, we need the
numeratorZ(H1 ⋗ H2,⊤), which can be found on the lattice byZ(HH,⊤), which
is 1

4, and the denominatorZ(H1,⊤), which is 1
2, giving the expected overall result

p(s : H2|s : H1) = 1
2. As shown at the bottom of (15), Cooper et al.’s equation is

equivalent to Knuth’s measure, and for this exampleZ(HH,⊤) = p(s : HH) = 1
4 and

Z(H1,⊤) = p(s : H1) = 1
2.

Similarly, Knuth’s product and sum rule analogs will work with this formulation
for RT lattices to find the probability of meet and join types.One can derive Cooper
et al.’s equation again from Knuth’s, givenZ(Rx,⊤) = p(s : Rx) and the identity law
Rx ⋗ ⊤ = Rx. The below holds for all the meets in the lattice⋗ as well as the meet
types, due to their equivalence.

p(s : Rx∧Ry) = p(s : Rx|s : ⊤)p(s : Ry|s : Rx∧⊤) (Knuth, 2005)

= p(s : Rx|s : ⊤)p(s : Ry|s : Rx ⋗ ⊤)

= Z(Rx,⊤)Z(Ry,Rx ⋗ ⊤)

= Z(Rx,⊤)Z(Ry,Rx)

= p(s : Rx)p(s : Ry|s : Rx) (Cooper et al, 2014, 2015)

= p(s : Rx ⋗ Ry) (equivalent element on RT lattice) (16)

In our adaptation of Knuth’s formulation, given this is equivalent toZ(Rx,⊤)Z(Ry,Rx),
it can be said the probability of a situation being of typeRx and of typeRy is the de-
gree to which they have subtypes in common. To illustrate in our running example,
an agent may want to know the probability of the situation containing a heads toss
and a tails toss, i.e.p(s : H ∧T). In Knuth’s formulation we would needZ(H,⊤),
which is 3

4 andZ(T,H), which can be calculated through conditional probability
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given in (15), givingZ(T ⋗ H,⊤)
Z(H,⊤) =

Z(HaT,⊤)
Z(H,⊤) =

2
3, and so, given3

4 ×
2
3 =

1
2 we get the

expected result. More straightforwardly in practice however, this value could be
stored on the lattice asH∧T ≡ H ⋗ T, and the probability can be found directly on
an elementH ⋗ T = HaT, wherep(s : HaT) = 1

2.
The probability of the situation being of the disjunctive join type can be de-

rived in a similar manner from Knuth’s inclusion measure of probability, and via the
equivalence∧ ≡ ⋗ . It is possible to derive Cooper et al.’s standard join probabil-
ity definition, givenZ(Rx,⊤) = p(s : Rx) andZ(Rx ⋗ Ry,⊤) = p(s : Rx ⋗ Ry) for all
elements:

p(s : Rx∨Ry) = p(s : Rx|s : ⊤)+ p(s : Ry|s : ⊤)− p(s : Rx∧Ry|s : ⊤) (Knuth, 2005)

= p(s : Rx|s : ⊤)+ p(s : Ry|s : ⊤)− p(s : Rx ⋗ Ry|s : ⊤)

= Z(Rx,⊤)+Z(Ry,⊤)−Z(Rx ⋗ Ry,⊤)

= p(s : Rx)+ p(s : Ry)− p(s : Rx ⋗ Ry)

= p(s : Rx)+ p(s : Ry)− p(s : Rx∧Ry) (Cooper et al, 2014, 2015)
(17)

In our running example, the agent may want to know the probability that there will
be a heads tossed first or a tails tossed second, i.e.p(s: H1∨T2). Before deriving this
calculation, it is worth noting that there is no element on the lattice which represents
an appropriate type judgement of this event. If one were to assume the equivalence
of ⋖ and∨ in TTR, as Fig. 4 shows, the result ofH1 ⋖ T2 is ⊤, meaningp(s :
H1 ⋖ T2) = 1, which is not the probability ofp(s : H1∨T2), as there is an outcome
T H which should not be included in this type judgement. Disjunctive probabilities
are available through both Knuth and Cooper et al’s equations for the sum rule
in terms of the ⋗ operator. In our example, we can calculatep(s : H1), p(s : T2)
and p(s : H1 ⋗ T2) through simply taking their probability value directly ona pre-
computed lattice, or through Knuth’s inquiry calculus. These probabilities arep(s :
H1) = 1

2, p(s : T2) = 1
2 and p(s : H1 ⋗ T2) = p(s : HT) = 1

4, which, when plugged
into Cooper et al.’s equation in (17) give the expected3

4.
It is worth noting that Knuth’s inquiry calculus equations still hold for the lattice

join ⋖ , only if each element is expressed as the atoms of which it is ajoin, i.e.
H1 = HH ⋖ HT, as the inclusion-exclusion principle for the generalizedsum rule
calculation requires all the disjuncts as in (18), where we generalize a join operation
as⊔ and meet operation⊓ on any lattice. If we take⊔ to be ⋖ , thenR1...Rn must
be atoms for this to give the correct value, however, if⊔ is ∨, then this calculation
will work for any lattice element without having to represent its constituent atoms.
Given the equivalence ⋗ ≡ ∧, ⊓ can be either of these in the below.
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p(R1⊔R2⊔ · · ·⊔Rn|⊤) =
n
∑

i=1

p(Ri |⊤) (18)

−
∑

i< j

p(Ri ⊓Rj |⊤)

+
∑

i< j<k

p(Ri ⊓Rj ⊓Rk|⊤)

− · · ·

where if⊔ is ⋖ , R1...Rn must be atoms in the RT lattice.
otherwise if⊔ is∨, R1...Rn can be any record types.
⊓ can be∧ or ⋗

While the conditional equations above condition on positive type judgements, an
agent may want to condition on negative RT judgements, that is to obtain the prob-
ability that a situation is of a RT in light of evidence that itis not of a given RT. As
shown above, an RT lattice is distributive but not guaranteed to be complemented,
so we cannot be guaranteed to find a unique complement elementon L as was the
case for Knuth’s Boolean lattices, however we can still calculatep(s : Ry|s : ¬Rx) by
obtainingp(s : Ry) in L modulo the probability mass ofRx and that of its subtypes
as in (19).

p(s : Ry|s : ¬Rx) =















0 if Ry ⊑ Rx
p(s:Ry)−p(s:Rx ⋗ Ry)

p(s:⊤)−p(s:Rx) otherwise
(19)

In our running example, an agent may know the first toss is not heads, and given this
information wants to calculate the probability that there will be a heads, i.e.p(s : H|

s : ¬H1). Through (19) the probability isp(s:H)−p(s:H ⋗ H1)
p(s:⊤)−p(s:H1) = ( 1

2 −
1
4)÷ (1− 1

2) = 1
2.

3.2.4 Efficiency gains through graphical search

While all calculations can be done algebraically in terms ofthe atoms’ probabilities,
the computational advantage of a pre-constructed finite lattice is that the subtype
relation judgements and atomic, meet and join probabilities required for (13) - (19)
can be found efficiently through graphical search algorithms by characterisingL as a
Directed Acyclic Graph (DAG). In Fig. 4, the elements can be seen as nodes, and the
subtype relation ordering arrows can be viewed as reachability edges which make
⊥ the source and⊤ the sink. With this characterisation, ifRy is reachable fromRx

thenRx ⊑ Ry.
In DAG terms, the meet of two RTsRx andRy, Rx ⋗ Ry, can be found at their

lowest common ancestor (LCA) node – e.g.p(s: H1 ⋗ H2) in Fig. 4 can be found as
1
4 directly at nodeHH. Note if Ry is reachable fromRx, i.e.Rx ⊑ Ry, then due to the
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equivalences listed in (7) and by Remark (8),p(s : Rx ⋗ Ry) can be found directly
at Rx. If the meet of two nodes is⊥ (e.g.HH andHT in Fig. 4), then their meet
probability is 0 asp(s : ⊥)=0.

As for the minimal common supertype (join element) of two RTsRx and Ry,
Rx ⋖ Ry, this can be found at their highest common descendent (HCD) node – e.g.
p(s : HH ⋖ HT) in Fig. 4 can be found as12 directly at nodeH1. Note if Ry is reach-
able fromRx, i.e. if Rx ⊑ Ry, then due to the equivalence available for this ordering
situationRy ⋖ Rx = Ry, thenp(s : Rx ⋖ Ry) can be found directly at nodeRy. If the
join of two nodes is⊤ (e.g.H andT in Fig. 4), then their minimal common supertype
probability is 1 asp(s : ⊤)=1.

Finding the lattice meet or join of two nodes, due to the symmetrical equivalence
of finding the LCA node and finding the HCD node (with just a reverse in the reach-
ability relation for the HCD case), is a LCA search problem for a DAG (Aho et al,
1976), for which there are widely developed and efficient algorithms.

3.3 DS-TTR and the DyLan dialogue framework

Moving towards a dialogue application, if we consider the atoms in Fig. 4 to be do-
main concepts, or possibleinformation states(Traum and Larsson, 2003; Ginzburg,
2012), for a dialogue system, it is easy to see graphically how the RT latticeL can be
used for incremental inference in terms of a downward searchfrom the initial under-
specified⊤ state. The DyLan framework (Purver et al, 2011) we use here, reasons
with RTs incrementally as information states in this way– asincrementally specified
RTs become available from the interpretation process they are matched to those in
L to determine how far down towards the final states our currentstate allows us to
be. In terms of linguistic processing, different sequences of words or utterances lead
to different paths to these atoms, and one can make probability judgements about
the likelihood of the final states, or indeed any other statesencoded inL as shown
above.

To achieve this we need a semantic construction process of record types, which,
in line with our motivation of modelling incremental reference processing, should
be word-by-word incremental. For this purpose we use TTR combined with the
grammar formalism Dynamic Syntax (DS, Kempson et al, 2001; Cann et al, 2005,
inter alia) in DS-TTR (Purver et al, 2011; Eshghi et al, 2012, 2013) which integrates
TTR representations into inherently incremental DS parsing.

While we do not go into detail here, and refer the reader to (Purver et al, 2011;
Eshghi et al, 2012, 2013), DS-TTR yields incremental type judgements as words are
processed strongly incrementally (left-to-right, word-by-word). We show example
DS-TTR record type output for the utterance “the yellow square” in Fig. 5. As in this
chapter we are concerned with reference processing, we onlyconsider the embedded
record type labelledr in these record types, which represents the restrictor of aniota
term, representing the proof type of a unique referent of type e (Cann et al, 2005).
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The utterances we deal with here are definite referring expressions which refer to
unique objects in a scene.

the
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Fig. 5: Incremental semantic construction by DS-TTR.

3.3.1 Extending DyLan with probability

Given DyLan’s DS-TTR parser provides RTs incrementally, and the context of a
situation represented by an RT latticeL is available, it becomes possible to make
probabilistic judgements on a word-by-word basis about a set of RTs of interest,
such as the possible final states of the dialogue. In line withKnuth (2005), we will
call the set of RTs of interest thecentral issue, or I . Here we assume allRy ∈ I are
disjoint in L, such as the atoms, ensuring a valid probability distribution. To make
inference about the degree to whichI is resolved, that is, given current evidenceRx

whether the agent can predictp(s : Ry|s : Rx) = 1 for someRy ∈ I , or the confidence
it has in its best prediction and its competitor hypotheses,the interpretation pro-
cess only need output a conditional probability distribution PRy∈I (s : Ry|s : Rx). It is
straightforward to characterize a standard Maximum Likelihood (ML) multi-class
probabilistic classifier for a central issueI and conditioning type judgements : Rx

in these terms, outputting the best ‘hard’ prediction and its probability (or confi-
dence in its prediction) by the standardarg maxandmaxfunctions in (20) and (21),
respectively.8

R̂y = arg max
Ry∈I

p(s : Ry|s : Rx) (20)

p̂= p(s : R̂y|s : Rx) =max
Ry∈I

p(s : Ry|s : Rx) (21)

8 Technically thearg maxfunction returns a prediction set which may have multiple elements, if
two or more type judgements have the same highest probability value.
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All conditional probabilitiesp(s : Ry|s : Rx) can be found onL using the equations
in Section 3.2 and direct look-up onL when used graphically.

Here we assume the conditioning evidences : Rx comes from a DS-TTR parse.
Mapping between DS-TTR’s natural language semantics and information states
(which may contain non-linguistic context), is not trivial(see Eshghi and Lemon,
2014, for discussion), however here we assume a simple type check which checks
the RT yielded by the latest word,Rw, against each RTRx ∈ L in a top-down graph
search from⊤, until type matched, such thatRw ⊑ Rx andRx ⊑ Rw.

Given the probabilistic prediction of dialogue states is possible, probabilistic Dy-
Lan interpretation can now be defined. Purver et al (2011) show the standard DyLan
interpretation process is DAG-based, whereby parsing consists of adding new edges
from the current right frontier vertex of the parse graph anda new vertex, and linking
it to a RT concept. A probabilistic extension of this is the function DylanInterpret
in Definition 3, taking arguments of the interpretation graph vertexSi it is interpret-
ing from, the current word being consumedw and the maximal RT compiled so far
maxRT. DyLan is initialized by setting edgeSi asS0 (the source of the DAG) and
maxRTas the empty record type [] before the first word is consumed. Afunctional
call to the DS-TTR parserDSTTRparse(Si ,w) outputs a tuple〈Rw, p〉 of the output
Rw and probabilityp of the parse.9 We call the conditional probability distribution
over RTs in the central issueI the variableHypotheses, which is continuously up-
dated word-by-word.

Definition 3.
function DylanInterpret(Si , w, maxRT)
〈Rw, p〉 =DSTTRparse(Si ,w) ⊲Maximal semantics with probability from parsing word.
Hypotheses= PRy∈I (s : Ry|s : Rw ⋗ maxRT) ⊲ Use parse output as conditioning evidence.
addEdge(Si ,newVertex(),Rw ⋗ maxRT) ⊲ Add new edge with new RT judgement.

end function

3.3.2 Modelling self-repairs

As Hough and Purver (2012); Eshghi et al (2015) show, interpreting repaired speech
is naturally modelled in DyLan through backtracking over interpretation edges in
light of an unlikely DS-TTR parse. We can learn or stipulate areal-valued threshold
grammaticalfor an acceptable level of grammaticality, and when a parse probability
from DSTTRparse(Si ,w) falls below this, backtracking along the DAG is initiated.
With the probabilistic interpretation function in Definition 3, it is now also possible
to detect irrelevant content arising from interpretation in terms of the maximal prob-
ability in the distribution fromPRy∈I (s : Ry|s : Rw ⋗ maxRT) being lower than a real-
valued thresholdrelevant.10 Here we also allow low-relevance judgements to initi-
ate backtracking and then allow the negation of RTs linked tothe edges backtracked
over as conditioning negative type judgements for the stateclassifier of the form

9 In future work, the probability valuep will be used for reasoning within RT lattices.
10 This version of relevance is simplified here, but Hough and Purver (2014a) and Hough and
Purver (fcmg) characterize this information-theoretically.
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PRy∈I (s : Ry|s : ¬Rw). This follows evidence that dialogue agents parse self-repairs
efficiently and that repaired dialogue content (reparanda) is given special status but
not removed from the discourse context (Hough and Purver, 2012; Ginzburg et al,
2014). This gives a modified definition for DylanInterpret in Definition 4.

Definition 4.
function DylanInterpret(Si , w, maxRT)
〈Rw, p〉 =DSTTRparse(Si ,w) ⊲Maximal semantics with probability from parsing word.
Hypotheses= PRy∈I (s : Ry|s : Rw ⋗ maxRT) ⊲ Use parse output as conditioning evidence.
if p< grammatical or maxRy∈I Hypotheses< relevantthen ⊲ Repair detected?

Hypotheses= PRy∈I (s : Ry|s : ¬Rw) ⊲ Update hyps based on negative evidence.
DylanIntepret(Si−1, w, ¬Rw) ⊲ Backtrack through recursion.

addEdge(Si ,newVertex(),Rw ⋗ maxRT)⊲ Successful, add new edge with new RT judgement.
end function

4 Simulating incremental reference processing

With the RT lattice based classification and prediction and the DyLan dialogue
framework at hand it becomes possible to model incremental reference processing
consistent with over-specification phenomena and Brennan and Schober (2001)’s
experimental results on repaired referring expressions.

We model a simple reference identification task where an instructor produces
utterances describing an object which an instructee comprehends and reacts to by
selecting the object they think best fits the description as quickly as possible. The
visual stimulus available to both parties is as in Fig. 6.

Fig. 6: Visual scene for instructor and instructee in the reference identification game.

In this game we characterize the referent set of a purple square, yellow square and
yellow circle as mutually exclusive referent situation types (record types), which we
will label PSq, YSqandYC respectively for convenience, and will characterize as
the central issuereferents. On the interpretation side, the challenge is to predict the
final reference situation type judgements : Ry, that the situations is of record type
Ry, given currently available evidence in the form of current type judgement of the
situations : Rx. So, as instructions are heard word-by-word the hearer tries to pre-
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Fig. 7: The disjunction of three types of reference situation encoded as record types.
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Fig. 8: Record type latticeL with uniform atomic probabilities for a reference situ-
ation.

dict the maximally likely referent as in (22), which we formulate as an incremental
prediction task for a probabilistic TTR classifier as explained above.

arg max
Ry∈referents

p(s : Ry|s : Rx) (22)

Initially, upon scanning the scene, the listener entertains a disjunction of possible
referent situations as in Fig. 7. We assume before the game has begun the atomic
situations will all have equal probability (1

3), effecting a uniform distribution. Then,
bottom-up the latticeL is built, resulting in that in Fig. 8. Again, the labels for RTs
are for convenience in the discussion here, where it can be seen C labels the RT
judgement that the object is a circle,Y for the judgement the object is yellow, and
so on– these same labels are used for short-hand in Fig. 9 and Fig. 10.
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the yellow square
conditioning type judgements : ⊤ Y YS q

p(s : PSq) (purple square) 1
3 0 0

p(s : YSq) (yellow square) 1
3

1
2 1

p(s : YC) (yellow circle) 1
3

1
2 0

the yellow circle
conditioning type judgements : ⊤ Y YC

p(s : PSq) (purple square) 1
3 0 0

p(s : YSq) (yellow square) 1
3

1
2 0

p(s : YC) (yellow circle) 1
3

1
2 1

the purple square
conditioning type judgements : ⊤ P PS q

p(s : PSq) (purple square) 1
3 1 1

p(s : YSq) (yellow square) 1
3 0 0

p(s : YC) (yellow circle) 1
3 0 0

Fig. 9: Probability distributions for the objects given maximal incremental semantic
information.

4.1 Fluent utterances

After the lattice construction, when DylanInterpret consumes the words of refer-
ring expressions incrementally, the probability distribution word-by-word follows
the expected pattern in fluent utterances. We show the conditional probability dis-
tribution overreferentsgenerated by the model just described at each word in Fig. 9
for three fluent referring expressions. The second row in each table shows the in-
cremental type judgement onL by which the classifier conditions its output (i.e. the
evidence available to the agent so far in the utterance), which, as described above
comes from an incremental DS-TTR parse and the maximal semantics from Dylan-
Interpret. As the conditioning RT judgements become available, the conditional
probability for each referent is calculated using (13) and (14) meet element proba-
bilities can be found graphically as described above in Section 3.2.4.

As can be seen in Fig. 9, we model over-specification in the utterance “the yellow
circle”, which is not optimally brief in this reference situation, as “the circle” would
be sufficient to resolve the referent. While exhibiting informational redundancy, the
change in the distribution word-by-word follows Fernández (2013)’s principle of in-
cremental informativity, as “yellow” is more relevant than“the” as it reduces the en-
tropy of the central issue. “The purple square” is also over-specified by the speaker,
as “the purple one”, or “the purple” would be sufficient for resolution– DyLan re-
solves the referent upon processing “purple” due to the factthat in this referent
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the yell- uh purple square
conditioning type judgements : ⊤ Y Y ¬Y, P PSq

p(s : PSq) (purple square) 1
3 0 0 1,1 1

p(s : YSq) (yellow square) 1
3

1
2

1
2 0,0 0

p(s : YC) (yellow circle) 1
3

1
2

1
2 0,0 0

Fig. 10: Probability distributions for the objects given maximal incremental seman-
tic information in a repaired utterance.

situation p(s : PSq|s : P) = 1, and so again, the final “square” is informationally
redundant.

4.2 Repaired utterances

We demonstrate how the model deals with a typical self-repaired utterance, “the
yell-, uh, purple square”, by showing how the probability distribution overrefer-
entschanges word-by-word in Fig. 10 and with reference to the temporal stages in
Fig. 11. We show how the model simulates Brennan and Schober (2001)’s finding of
disfluent spoken instructions speeding up object recognition, through describing the
stages T0-T5 in terms of the probability judgements made by the DylanInterpret
function as each word is consumed.

At T0: ‘the’ (not in Fig. 11, but in Fig. 10) the interpreter will only output
[x : e] = ⊤, giving a uniformp(s : Ry|s : ⊤) = 1

3 for Ry ∈ {PSq,YSq,YC}, equivalent
to the atomic priors. AtT1: ‘yell-’ , the best partial word hypothesis is now “yel-
low”;11 the interpreter therefore outputs a RT which matches the type judgement
s: Y (i.e. that the referent is a yellow object). Taking this judgement as the condition-
ing evidence, the classifier calculates the conditional distribution p(s: PSq|s: Y)= 0,
p(s : YSq|s : Y) = 0.5 andp(s : YC|s : Y) = 0.5 (see the schematic probability distri-
bution at stage T1 in Fig. 11 for the three objects).

T2: ‘uh’ does not add any information to the referent situation, and can be con-
sidered a forward-looking disfluency signal (Ginzburg et al, 2014), however atT3:
‘purple’ low probability in the DS-TTR parse causes a self-repair to be recognised,
enforcing backtracking on the parse graph which operates asper the definition for
DylanInterpret in Definition 4. The detection of a self-repair repairs the edges : Y,
so according to DylanInterpret, the type judgements : ¬Y, i.e. that this is not a
yellow object, is available as soon as the repair has been recognised. Using the neg-
ative conditioning type judgement, using (19), at T3 the classifier now shifts the
distribution top(s : PSq|s : ¬Y) = 1, p(s : YSq|s : ¬Y) = 0 andp(s : YC|s : ¬Y) =
0. The detection of the repair alone makes this distributionchange available, before

11 Although our current system does not have this capability, we assume a speech recognition
module which produces word hypotheses from partial words, progress on which has been made in
recent years (see Schlangen and Skantze, 2009).
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Fig. 11: Incremental interpretation of a repaired referring expression in DyLan. The
distribution over referents is shown in the bar graphs on theright. The conditioning
type judgements label the edges. Repaired edges are dashed.
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the judgements : P∧¬Y is made atT4, where the full semantic content of ‘purple’
is integrated into the conditioning evidence. The early useof the conditioning on
the negative type judgement resulting in reference resolution here can be seen as the
modelling of the speed up achieved by human subjects.

Finally at T5: ‘square’ given p(s : PSq|s : PSq) = 1, the distribution remains
unchanged. The last word could be taken as an instance of over-specification again
here, due to the lack of information gain in the conditional distribution ofreferents,
however, we follow Fernández (2013)’s idea that this is themost likely comple-
tion of the referring expression, due to the fact syntactic completeness is generally
preferred to incompleteness.

5 Discussion

We have presented a novel way of using Knuth (2005, 2006)’s work on probabilis-
tic lattices which has some nice predictions for small reference domains. DS-TTR,
whilst currently not fully implemented probabilistically, has potential for fully prob-
abilistic parsing and generation in practice.12

RT lattices show a nice derivation of the standard probability axioms of prob-
abilistic TTR, in line with the characterization of them as aset of types partially
ordered by⊑. This means, given prior assignment of values to the join-irreducible
elements, all other probabilities are derivable in terms ofthe degree to which types
include each other. We showed the equivalence of⋗ and∧, noted by Cooper (2012)
holds in terms of probability, while the natural join in RT lattices ⋖ is not equiv-
alent to disjunction∨ in type judgements, due to type lattices generally not being
complemented. There are many possible paths for research inprobabilistic TTR, but
hopefully this lattice characterization is useful for them.

One of the potential draw-backs of the approach is complexity blow-up and scal-
ability. There is exponentiation of the size of the latticesin the size of the dis-
joint atoms, however not necessarily in their constructiontime. The other obvious
difficulty when scaling to bigger domains is defining the domain oftype judge-
ments. However the motivation of TTR is a good one: an agent should only rea-
son with the relevant types to a situation, rather than regarding the whole universe
and all the type judgements therein, and using a Questions-Under-Discussion model
(Ginzburg, 2012) for relevant issues could help in this regard.

As for reference processing, our model captures over-specification phenomena in
REG in terms of probability, but not directly in terms of its decision process the way
Dale and Reiter (1995)’s Incremental Algorithm does. However given the cross-
linguistic evidence (Rubio-Fernández, 2011) this may notbe a weakness– given
over-specification may be tied to specific syntactic constructions in specific situa-
tions for a given language, it may not be appropriate to modelit in the conceptualiza-
tion stage only, but rather as a side-effect of incremental informativity (Fernández,

12 Seehttps://bitbucket.org/dylandialoguesystem/dsttr for the latest implementation.

https://bitbucket.org/dylandialoguesystem/dsttr
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2013), which our model captures in its incremental reference resolution. In addition,
our framework’s processing models how listeners process self-repairs realistically,
reasoning about the revocation of a type judgement itself rather than predicting the
outcome through positive evidence alone, in line with Brennan and Schober (2001)’s
results. We note that early use of the negative type judgement provides a model for
increased subsequent processing speed, however it does notstipulate exact timing at
which the negative type inference is made in terms of phonetic form. While beyond
the scope of the model here, Brennan and Schober (2001)’s results suggest this in-
formation becomes available very quickly upon detection ofthe substitution repair
onset.

5.1 Comparison to other probabilistic semantics approaches

While there has been considerable focus on probabilistic models of word and
sentence meaning, namely from the Distributional Semantics community, we feel
the above model seeks to address the lacuna in that work– namely denotational,
grounded meaning, and the interface to an update semantics for dialogue which can
leverage work on dialogue modelling. Given the general typetheoretic approach
here, as pioneered by non-probabilistic TTR (see Cooper, Chapter 3, this volume),
both of these challenges become possible– for example the probabilistic charac-
terization of Dobnik et al (2013)’s embodied semantics for robots and Ginzburg
(2012)’s comprehensive dialogue model KoS using TTR updatefunctions on di-
alogue state records are both feasible. Currently, no Distributional Semantics ap-
proach can provide convincing solutions for these challenges, and while distribu-
tional approaches to multi-modal meaning are being developed (Kennington and
Schlangen, 2015; Baroni, 2016), the incorporation of the core inferential tools made
available from a probabilistic type theory, such as degreesof inclusion, interesting
logical relations, quantification, and ontological knowledge, as shown here, and by
extension many interesting dialogue state update operations, are still not learnable
with the current techniques. This is not to say it is not possible, but concession that
certain insights from type theory as deployed in semantics and dialogue modelling
would have to be incorporated.

Asher, Abrusan and van de Cruys (Chapter 5, this volume) showhow character-
izing types as vectors of real numbers can be implemented, however utilizing this
to inform a type hierarchy or update semantics for dialogue directly is still an ongo-
ing challenge, and the vectors still take their values from word window contexts in
texts. The use of fixed dimensional vectors for word type meanings, whilst wholly
accepted in the Distributional Semantics community, is notsomething a lattice-
oriented model such as the above assumes, and the extent to which this is advan-
tageous or burdensome for computing similarity between word meanings should be
explored.

While our model aims at situated dialogue, it must still bridge the gap to the real
world. A model of word learning for an embodied agent has already had preliminary
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attention in Cooper et al (2014) in probabilistic TTR, and such an approach incor-
porating low-level real-valued information from sensors is a natural next step– char-
acterizing type judgements as classifiers is one way suggested in that work which
could achieve this in future.

6 Conclusion

We have discussed a dialogue model which incorporates incremental probabilistic
inference and efficient methods for constructing probabilistic RT lattices ordered by
the subtype relation, demonstrating their efficacy for realistic reference processing.
The model helps explain the experimental results on repaired referring expressions
(Brennan and Schober, 2001), and also has a probabilistic characterization of over-
specification in terms of incremental relevance. While we model a simple reference
domain here, this is intended to be a general interpretationand generation model for
dialogue. For this more general purpose, an order-based probabilistic semantics is
more suitable than a model conditioning on pre-defined properties of objects as is
the tendency for reference resolution and REG algorithms inthe literature. We wish
to explore the scalability of RT lattices to other domains and their learning capacity
in future work.
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