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Abstract

Many streams of real-world data, such as conversationsady bwmve-
ments, consist of relatively coherent segments, each ctesized by par-
ticular topics or controllers. Making sense of these datgires simul-
taneously segmenting the sequences and inferring thetwgteucf the
segments. We present a hierarchical Bayesian model thabeased
to break a sequence of utterances or movements into segmémtif-
ferent distributions over topics or controllers. We apgiistmodel to
a database of meetings, showing that its unsupervised segtion is
competitive with other approaches, and a database of huarahrhove-
ments, revealing some of the controllers for motions of tech

1 Introduction

Natural text or conversation streams, such as radio newseeting discussions, often
consist of a progression of semantically coherent segmektsarticular topic or set of
topics will be relevant for some number of utterances, tinéilpoint at which the discussion
moves on to a new segment with a new distribution of topicsesufficient experience
with a domain such as radio news or technical meetings, pezgi make sophisticated
inferences about new data in that domain, inferring whemseds end as well as the set
of topics that characterize each segment.

The computational problems of identifying segments aneriirig their structure are heav-
ily intertwined. If we were told the location of segment bdanies, it would be straightfor-
ward to learn to analyze each segment using standard tagedmodels for unsupervised
categorization [1, 2, 3]. Likewise, if we were given a setagits and told the distribution
over topics at each point in the sequence, it would be stifaigtard to break the sequence
into topically coherent segments. However, in many casesmwst simultaneously dis-
cover both the segment boundaries and the underlying topics

The task of simultaneously segmenting a sequence andfiglagtihe structure of the seg-
ments arises throughout perception, cognition, and actiorisual scene understanding,
one may think of object categories as analogous to topids| [4;hen consider watching a
movie: within scenes, the “topics” (object categories) @astant, but change arbitrarily



across scenes. Also, within a single image, the topics inpameof the image may be
coherent but unrelated to those in another region of the saage (e.g., pedestrians on a
street in the foreground, with boats on a lake in the backgipun the human motor sys-
tem, complex movements can be generated from a basis sattodlbers [6]. A sequence
of actions can be segmented into movements, each of whietsdra a characteristic set
of controllers (“motor topics”), with little coherence ass movement segments. Building
a system that learns to understand language, visual sa@nastion sequences requires
solving the joint problems of inferring segment boundasied discovering a set of topics
or basis elements that can characterize the structure bfssggnent.

In this paper, we develop a formal framework for solving thgsnt inference problems.
We define a hierarchical Bayesian model for sequential datehacan be used to simulta-
neously divide a sequence into segments that have a comrsipibbaliion over topics and
infer the topics themselves. We build on previous work orbptilistic topic models that
can infer a set of topics from a corpus in which words are @igicthto documents [1, 2, 3].
By treating each segment of a sequence as a “document”, puagh extends these mod-
els to the case in which the boundaries between documentsiknewn, providing a fully
generative analogue of the model described in [7]. We agps/rhodel to two kinds of
data: a corpus of technical meetings, and a database of hamahmovements.

2 Learning topics and segments

In specifying our model, we will use terminology appropei&br linguistic data. Assume
we have a corpus df utterances, ordered in sequence. Tkieutterance consists d¥,,
words, chosen from a vocabulary of sidé. The set of words associated with théh
utterance are denoted,,, and indexed as, ;. The entire corpus is representedsoy

Following previous work on probabilistic topic models [1,3, we will model each ut-
terance as being generated from a particular distributi@n topics, where each topic is a
probability distribution over words. The utterances adeoed sequentially, and we assume
a Markov structure on the distribution over topics: withthigrobability, the distribution
for utteranceu is the same as for utteranae- 1; otherwise, we sample a new distribution
over topics. This pattern of dependency is produced by &suga binary switching vari-
able with each utterance, indicating whether its topic & thme as that of the previous
utterance. The joint states of all the switching variablefrg segments that should be
semantically coherent, because their words are genenatibe lsame topic vector. We will
first describe this generative model in more detail, and thigcuss inference in this model.

2.1 A hierarchical Bayesian model

We are interested in where changes occur in the set of tofEcagbed in a sequence of
utterances. To this end, lef, indicate whether a change in the distribution over topics
occurs at theth utterance and le®(c,, = 1) = . The distribution over topics associated
with theuth utterance will be denoteti®), and is a multinomial distribution ovért topics,
with the probability of topic beingd!™). If ¢, = 0, theng™ = g(v=1) Otherwisef™ is
drawn from a symmetric Dirichlet distribution with pararaet. The distribution is thus
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whered(-, -) is the Dirac delta function, arid(-) is the generalized factorial function. This
distribution is not well-defined when = 1, so we sete; = 1 and drawf(") from a
symmetric Dirichlet«) distribution accordingly.

Asin[1, 2, 3], we assume that each toficis a multinomial distributions’’) over words,
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Figure 1: Graphical models indicating the dependenciesngmariables in A) the topic
segmentation model and B) the hidden Markov model used aspaison.

and the probability of the word under that topic igﬁfﬂ). Theuth utterance is generated by
sampling a topic assignmesy ; for each wordi in that utterance wittP(z,, ; = t|9(“>) =
6{*), and then sampling aword, ; from ¢\, with P(w,, ; = w|z,; = j, o)) = oD If
we assume that is generated from a symmetric Béta distribution, eacky'?) is generated
from a symmetric Dirichlgl3) distribution, we obtain a joint distribution over all of the
variables with the dependency structure shown in Figure 1A.

2.2 Inference

Assessing the posterior probability distribution overitoghangese, given a corpusw,
can be simplified by integrating out the parameteks, andr. According to Bayes rule,

P(w|z)P(z|c)P(c)
e P(W[2)P(z]c)P(c)’ (2

EvaluatingP(c) requires integrating over. Specifically, we have
/ P(c|m)P ['(2y) T(n1 +9)'(no +7)
(v T(N+2y) 7

wheren; is the number of utterances for whieh = 1, andng is the number of utterances
for which¢,, = 0. ComputingP(w|z) proceeds along similar lines
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whereA?, is theT-dimensional cross-product of the multinomial simplexiéhpoints,

n'! is the number of times wora is assigned to topitin z, andn'” is the total number
of words assigned to topidn z. To evaluateP(z|c) we have

P(zc) = /A _ P(@l6)P(]c) db. )
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The fact that the,, variables effectively divide the sequence of utterancts segments
that use the same distribution over topics simplifies sgltire integral and we obtain:

a)\"™ r n{) 4
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wherelf; = {u|c, = 1} andidy = {ulc, = 0}, andS,, denotes the set of utterances that
share the same topic distribution (i.e. belong to the samgment) as..

Equations 3, 4, and 6 allow us to evaluate the numerator oéxpesssion in Equation 2.
However, computing the denominator of this expressiontisatable. Consequently, we
sample from the posterior distribution using Markov chaiarite Carlo (MCMC) [8]. We
will use Gibbs sampling, drawing the topic assignment faheaord,z,, ;, conditioned on
all other topic assignments,_(, ;), all topic change indicators;, and all wordsw, and
then drawing the topic change indicator for each utterangeconditioned on all other
topic change indicators, ,, all topic assignments, and all wordsw.

The conditional probabilities we need can be derived dydodbm Equations 3, 4, and 6.

The conditional probability of,, ; indicates the probability thas,, ; should be assigned to
a particular topic, given other assignments, the curregrhgatation, and the words in the
utterances. Cancelling constant terms, we obtain

i, +8 Y +a
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where all counts (i.e. the terms) exclude,, ;. The conditional probability of,, indicates
the probability that a new segment should staut.ainh samplinge,, from this distribution,
we are splitting or merging segments. Cancelling constants, we obtain
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whereS], is S, for the segmentation when, = 1, S}, is S, for the segmentation when
¢, = 0, and all counts (e.gu;) excludec,,. For this paper, we fixed, 3 and~ at0.01.

3 Results

3.1 Simulated data

To analyze the properties of this algorithm we first applied simulated data (Figure 2).
The dataset was a sequence of 10,000 words out of a vocabfizBy Each segment in this
dataset consisted of 100 successive words that sharedtiegspic distribution, with each
subsequence of 10 words defined to be one utterance. Thewopicassignments were
chosen such that when the words are aligned a5 grid the topics were binary bars.
The topic distributions for the different segments werendrérom a Dirichlet distribution
with 8 = 0.1. The resulting word sequence was supplied to the inferdgoeitam, which
was run for 200,000 iterations, with samples collectedraitery 1,000 iterations to min-
imize autocorrelation. Figure 2 shows the inferred topardwdistributions and segment
boundaries, which correspond well with those used to géaéhna data.

To compare with a similar but simpler model we applied a 1@dtédden Markov model

(HMM) to the same data, using a similar Gibbs sampling atbori HMMs are often used
for text segmentation (e.g., [9]). The key difference betwéhe two models is shown in
Figure 1. In the HMM, all variation in the content of utterasds modeled at a single
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Figure 2: Simulated data. A) Inferred topics. B) Posterimbabilities of segment bound-
aries under the topic segmentation model and HMM, averagedtbe last 100 samples.

level, with each segment having a distribution over wordsesponding to a single state.
The hierarchical structure of the topic segmentation maftii@lvs variation in content to be
expressed at two levels, with each segment being produoaddrlinear combination of
the distributions associated with each topic. Consequeht topic segmentation model
can often capture the content of a sequence of words by paisyka single segment with
a novel distribution over topics, while the HMM has to freqtlg switch between states.

3.2 Segmenting meetings

We applied the algorithm to the ICSI meeting corpus [10],chigonsists of text transcripts
of spoken multi-party meetings. We compared the resulisadifferent human-annotated
segmentations produced independently for certain partidrihe corpus [11, 12]. These
data were not supplied to the model: topic inference and satation was completely
unsupervised, and the human judgments were only used toadgglerformance.

Data from all meetings were merged into a single datasectirgtined 746,605 word to-
kens. We sampled for 200,000 iterations of MCMC, taking dampvery 1,000 iterations.
Figure 3A shows the most indicative words for the topics rirdfe at the last iteratioh.
Figure 3B shows an example of how the inferred topic segntientarobabilities at each
utterance compare with the segment boundaries as judgedrogrhraters. This rela-
tionship is further quantified in Figure 3C where ROC curvesnsthat the segmentation
probabilities can indeed be used to predict segmentationdexies placed by humans. The
boundaries that are placed by the topic segmentation moeleifeen close to the bound-
aries placed by humans. Because the HMM cannot combineehifféopics it places a
lot of segmentation boundaries, resulting in inferior perfance. Using stemming and a
bigram representation, however, might improve its peréomoe [9].

To quantitatively compare models and address the questioovomany topics we should
be using we varied the number of topics. We assessed pernficemssing theP;, error
measure proposed by [13], which intuitively provides a measf the probability that two
points drawn from the meeting will biecorrectly separated by a hypothesized segment
boundary — thus, loweP; figures indicate better agreement with the human-annotated
results. For the numbers of segments we are dealing withsalibha of segmenting the
discourse into equal-length segments givey, af about 50%. We optimized a threshold
on the posterior probability of a segment boundary for eaodet finding P, of 28.4%,
29.7%, 32.9% and 29.0% when using 2, 5, 10 or 20 topics respbctSegmentation qual-
ity is thus hardly affected by the overall number of topicedisUsing a similar procedure
with a 10 state HMM we find &, value of 37.5%, although this performance is actually

1The ICSI corpus is drawn mainly from meetings of the ICSI spegroup — thus topics discussed
include speech recognition techniques, meeting recoythiagiware setup etc.
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Figure 3: Results from segmenting the meetings databas@hé)words most indicative

for each topic. B) Probability of a segment boundary, coragavith human segmentation,
for an arbitrary subset of the data. C) ROC curves for predjdegmentation boundaries
defined by humans and the conditional probability of the nhptieing a boundary at an

offset. D) Subjective topic coherence ratings.

achieved by exploiting aanti-correlation between the HMM segment boundaries and hu-
man judgments. Performance of our model exceeds that ohanohsupervised system,
based upon lexical coherence, which givegiaof 31.9% [11]. Combining the bound-
aries obtained by the topic segmentation algorithm witleotbatures in a supervised way
should allow reaching even better segmentation.

To evaluate the quality of the inferred topics we did a psyttysical experiment in which
seven human observers rated (on a scale of 1 to 9) the sensahticence of 50 lists of
10 words (Figure 3D). Of these lists, 40 contained the mafitative words for each of
the 10 topics from different models: the topic segmentatrmdel, a topic model that
had the same number of segments but with fixed evenly spregmdesgation boundaries,
a topic model with random segmentation boundaries, and M&HThe other 10 lists
contained random samples of 10 words from the words of therdih lists. Figure 3 shows
that the topic segmentation model produced the most cohgrpies, but using an even
distribution of boundaries performs similarly. Topic dtyais thus not very susceptible
to the precise segmentation of the text. However, the tagmonentation model is able to
identify meaningful segment boundaries at the same timefaging topics.

3.3 Movement data

Prominent theories of motor control propose that the humavement system uses a num-
ber of controllers, and at given points in time switches lesmthem or adaptively com-
bines different controllers [6]. Such controllers coulther be high-level state-dependent
controllers or simple combinations between different nfessovhere several muscles are
controlled in conjunction [14]. Observing the movements@dple should make it possible
to infer the underlying controllers or “motor topics” froime movements they make.

Traditionally algorithms have been used that do not alloes $egmentation of natural
movements. For this reason inferring the properties of trerollers from natural move-
ments has not been possible. Instead, laboratory expetsraenused, where the onset and
the target is clearly defined [15]. In some cases more natuwwaements have been used,
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Figure 4: Inferring motor topics: A) for one typical contierlthe average evolution from
different starting states is shown. B) for each of the cdlgre random combinations be-
tween starting state and end state (after about 5 sec. seduime) are shown.

but without the segmentation only simple instantaneouisgts like principal components
[16] or nonnegative coding dimensions [17] could be analyze

We examined whether nonlinear controllers characterizegdsture-posture transitions
can be revealed by a topic segmentation approach. One headile subject aged 31
participated in this study. For 200 minutes his right handiemoents were measured using
a CyberGlove (Virtual Technologies, Palo Alto, CA). The sers were associated with 19
degrees of freedom of the hand and their readings was regtbgde lightweight backpack.
Sensors were sampled at 42.5 Hz. Vector quantization wabtosgescribe this dataset
by a codebook of 200 vectors (83% of variance explained). tfdresitions between such
states (4,260 bigrams) are used as input to the topic segtimmalgorithm. With that
much data (510,000 samples) we can characterize moverhénssibject makes during a
typical few hours of his life (including a brief visit to a Bish pub).

The model assumes that 10 stochastic controllers (equivedeopics), characterized by
their posture-posture transition probabilities (bigraegliencies), are used, and that during
each segment of movement a mixture of controllers may beectrigure 4 shows the
average behavior of the controllers. Most of the contrsl{@8 and 10) can be understood
as moving the hand towards a given posture, which include&ments such as grasping.
Some neural recordings [18] indicate that the nervous systes such a coding scheme.

Controller 1 deserves special attention as the transigmeeded by it are almost exclu-
sively transitions from each state to itself. It thus encokeeping the hand stationary.
Mixing controller 1 with any other controller allows slowerovements. This controller is
responsible for 39% of the transitions in the data. Corgrd@lencodes two different ending
positions. This might indicate that the number of contirsliesed was too small. Most of
the controller transitions (83%) happen within segmeniigievidence for the idea that
indeed controllers are combined in an adaptive way as pestiiy recent theories [6].

4 Conclusion

Probabilistic topic models can identify the topics expeesim a set of documents. Using
these models requires that words be divided into docum@ihis.is not the case in many
natural settings where language models are relevant, suctodeling the content of con-
versations or meetings. Neuroscience is moving from deiscrineural data for simple
stimuli and simple, well defined movements to analyzing peegively more natural data.
In their everyday life animals progress from one movemergetato the next and their



mind wanders from one thought to the next. Algorithms thatesthe problem of simul-
taneously identifying segments and their structure aresssry in order to make sense of
data produced from natural behavior, whether those dateecnispeech or action. We have
presented a hierarchical Bayesian model that can be usedviothis problem. This is a
fully generative model for sequence data, and extendsquewvork on topic models to
allow them to be applied in a range of novel settings. In aaldito providing an effective
method for identifying segments in meetings, this modellvamsed to identify some of
the basic controllers of human motion.
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