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Abstract
Many streams of real-world data, such as conversations or body move-
ments, consist of relatively coherent segments, each characterized by par-
ticular topics or controllers. Making sense of these data requires simul-
taneously segmenting the sequences and inferring the structure of the
segments. We present a hierarchical Bayesian model that canbe used
to break a sequence of utterances or movements into segmentswith dif-
ferent distributions over topics or controllers. We apply this model to
a database of meetings, showing that its unsupervised segmentation is
competitive with other approaches, and a database of human hand move-
ments, revealing some of the controllers for motions of the hand.

1 Introduction

Natural text or conversation streams, such as radio news or meeting discussions, often
consist of a progression of semantically coherent segments. A particular topic or set of
topics will be relevant for some number of utterances, untilthe point at which the discussion
moves on to a new segment with a new distribution of topics. Given sufficient experience
with a domain such as radio news or technical meetings, people can make sophisticated
inferences about new data in that domain, inferring when segments end as well as the set
of topics that characterize each segment.

The computational problems of identifying segments and inferring their structure are heav-
ily intertwined. If we were told the location of segment boundaries, it would be straightfor-
ward to learn to analyze each segment using standard topic-based models for unsupervised
categorization [1, 2, 3]. Likewise, if we were given a set of topics and told the distribution
over topics at each point in the sequence, it would be straightforward to break the sequence
into topically coherent segments. However, in many cases, we must simultaneously dis-
cover both the segment boundaries and the underlying topics.

The task of simultaneously segmenting a sequence and identifying the structure of the seg-
ments arises throughout perception, cognition, and action. In visual scene understanding,
one may think of object categories as analogous to topics [4,5]. Then consider watching a
movie: within scenes, the “topics” (object categories) areconstant, but change arbitrarily



across scenes. Also, within a single image, the topics in onepart of the image may be
coherent but unrelated to those in another region of the sameimage (e.g., pedestrians on a
street in the foreground, with boats on a lake in the background). In the human motor sys-
tem, complex movements can be generated from a basis set of controllers [6]. A sequence
of actions can be segmented into movements, each of which draws on a characteristic set
of controllers (“motor topics”), with little coherence across movement segments. Building
a system that learns to understand language, visual scenes,or action sequences requires
solving the joint problems of inferring segment boundariesand discovering a set of topics
or basis elements that can characterize the structure of each segment.

In this paper, we develop a formal framework for solving these joint inference problems.
We define a hierarchical Bayesian model for sequential data which can be used to simulta-
neously divide a sequence into segments that have a common distribution over topics and
infer the topics themselves. We build on previous work on probabilistic topic models that
can infer a set of topics from a corpus in which words are divided into documents [1, 2, 3].
By treating each segment of a sequence as a “document”, our approach extends these mod-
els to the case in which the boundaries between documents areunknown, providing a fully
generative analogue of the model described in [7]. We apply this model to two kinds of
data: a corpus of technical meetings, and a database of humanhand movements.

2 Learning topics and segments

In specifying our model, we will use terminology appropriate for linguistic data. Assume
we have a corpus ofU utterances, ordered in sequence. Theuth utterance consists ofNu

words, chosen from a vocabulary of sizeW . The set of words associated with theuth
utterance are denotedwu, and indexed aswu,i. The entire corpus is represented byw.

Following previous work on probabilistic topic models [1, 2, 3], we will model each ut-
terance as being generated from a particular distribution over topics, where each topic is a
probability distribution over words. The utterances are ordered sequentially, and we assume
a Markov structure on the distribution over topics: with high probability, the distribution
for utteranceu is the same as for utteranceu−1; otherwise, we sample a new distribution
over topics. This pattern of dependency is produced by associating a binary switching vari-
able with each utterance, indicating whether its topic is the same as that of the previous
utterance. The joint states of all the switching variables define segments that should be
semantically coherent, because their words are generated by the same topic vector. We will
first describe this generative model in more detail, and thendiscuss inference in this model.

2.1 A hierarchical Bayesian model

We are interested in where changes occur in the set of topics discussed in a sequence of
utterances. To this end, letcu indicate whether a change in the distribution over topics
occurs at theuth utterance and letP (cu = 1) = π. The distribution over topics associated
with theuth utterance will be denotedθ(u), and is a multinomial distribution overT topics,
with the probability of topict beingθ

(u)
t . If cu = 0, thenθ(u) = θ(u−1). Otherwise,θ(u) is

drawn from a symmetric Dirichlet distribution with parameterα. The distribution is thus

P (θ(u)|cu, θ(u−1)) =

{

δ(θ(u), θ(u−1)) cu = 0
Γ(Tα)
Γ(α)T

∏T

t=1(θ
(u)
t )α−1 cu = 1

, (1)

whereδ(·, ·) is the Dirac delta function, andΓ(·) is the generalized factorial function. This
distribution is not well-defined whenu = 1, so we setc1 = 1 and drawθ(1) from a
symmetric Dirichlet(α) distribution accordingly.

As in [1, 2, 3], we assume that each topicTj is a multinomial distributionφ(j) over words,
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Figure 1: Graphical models indicating the dependencies among variables in A) the topic
segmentation model and B) the hidden Markov model used as a comparison.

and the probability of the wordw under that topic isφ(j)
w . Theuth utterance is generated by

sampling a topic assignmentzu,i for each wordi in that utterance withP (zu,i = t|θ(u)) =

θ
(u)
t , and then sampling a wordwu,i from φ(j), with P (wu,i = w|zu,i = j, φ(j)) = φ

(j)
w . If

we assume thatπ is generated from a symmetric Beta(γ) distribution, eachφ(j) is generated
from a symmetric Dirichlet(β) distribution, we obtain a joint distribution over all of these
variables with the dependency structure shown in Figure 1A.

2.2 Inference

Assessing the posterior probability distribution over topic changes,c, given a corpus,w,
can be simplified by integrating out the parametersθ, φ, andπ. According to Bayes rule,

P (z, c|w) =
P (w|z)P (z|c)P (c)

∑

z,c P (w|z)P (z|c)P (c)
. (2)

EvaluatingP (c) requires integrating overπ. Specifically, we have

P (c) =

∫ 1

0

P (c|π)P (π) dπ =
Γ(2γ)

Γ(γ)2
Γ(n1 + γ)Γ(n0 + γ)

Γ(N + 2γ)
, (3)

wheren1 is the number of utterances for whichcu = 1, andn0 is the number of utterances
for whichcu = 0. ComputingP (w|z) proceeds along similar lines

P (w|z) =

∫

∆T
W

P (w|z, φ)P (φ) dφ =

(

Γ(Wβ)

Γ(β)W

)T T
∏

t=1

∏W

w=1 Γ(n
(t)
w + β)

Γ(n
(t)
· + Wβ)

, (4)

where∆T
W is theT -dimensional cross-product of the multinomial simplex onW points,

n
(t)
w is the number of times wordw is assigned to topict in z, andn

(t)
· is the total number

of words assigned to topict in z. To evaluateP (z|c) we have

P (z|c) =

∫

∆U
T

P (z|θ)P (θ|c) dθ. (5)



The fact that thecu variables effectively divide the sequence of utterances into segments
that use the same distribution over topics simplifies solving the integral and we obtain:

P (z|c) =

(

Γ(Tα)

Γ(α)T

)n1
∏

u∈U1

∏T

t=1 Γ(n
(Su)
t + α)

Γ(n
(Su)
· + Tα)

, (6)

whereU1 = {u|cu = 1} andU0 = {u|cu = 0}, andSu denotes the set of utterances that
share the same topic distribution (i.e. belong to the same segment) asu.

Equations 3, 4, and 6 allow us to evaluate the numerator of theexpression in Equation 2.
However, computing the denominator of this expression is intractable. Consequently, we
sample from the posterior distribution using Markov chain Monte Carlo (MCMC) [8]. We
will use Gibbs sampling, drawing the topic assignment for each word,zu,i, conditioned on
all other topic assignments,z−(u,i), all topic change indicators,c, and all words,w, and
then drawing the topic change indicator for each utterance,cu, conditioned on all other
topic change indicators,c−u, all topic assignmentsz, and all wordsw.

The conditional probabilities we need can be derived directly from Equations 3, 4, and 6.
The conditional probability ofzu,i indicates the probability thatwu,i should be assigned to
a particular topic, given other assignments, the current segmentation, and the words in the
utterances. Cancelling constant terms, we obtain

P (zu,i|z−(u,i), c,w) =
n

(t)
wu,i + β

n
(t)
· + Wβ

n
(Su)
zu,i + α

n
(Su)
· + Tα

, (7)

where all counts (i.e. then terms) excludezu,i. The conditional probability ofcu indicates
the probability that a new segment should start atu. In samplingcu from this distribution,
we are splitting or merging segments. Cancelling constant terms, we obtain

P (cu|c−u, z, w) ∝

8>>><>>>: QT
t=1 Γ(n

(S0
u)

t +α)

Γ(n
(S0

u)
· +Tα)

n0+γ

N+2γ
cu = 0

Γ(Tα)

Γ(α)T

QT
t=1 Γ(n

(S1
u−1)

t +α)

Γ(n
(S1

u−1
)

· +Tα)

QT
t=1 Γ(n

(S1
u)

t +α)

Γ(n
(S1

u)
· +Tα)

n1+γ

N+2γ
cu = 1

(8)

whereS1
u′ is Su′ for the segmentation whencu = 1, S1

u′ is Su′ for the segmentation when
cu = 0, and all counts (e.g.n1) excludecu. For this paper, we fixedα, β andγ at0.01.

3 Results

3.1 Simulated data

To analyze the properties of this algorithm we first applied it to simulated data (Figure 2).
The dataset was a sequence of 10,000 words out of a vocabularyof 25. Each segment in this
dataset consisted of 100 successive words that shared the same topic distribution, with each
subsequence of 10 words defined to be one utterance. The topic-word assignments were
chosen such that when the words are aligned in a5 × 5 grid the topics were binary bars.
The topic distributions for the different segments were drawn from a Dirichlet distribution
with β = 0.1. The resulting word sequence was supplied to the inference algorithm, which
was run for 200,000 iterations, with samples collected after every 1,000 iterations to min-
imize autocorrelation. Figure 2 shows the inferred topic-word distributions and segment
boundaries, which correspond well with those used to generate the data.

To compare with a similar but simpler model we applied a 10 state hidden Markov model
(HMM) to the same data, using a similar Gibbs sampling algorithm. HMMs are often used
for text segmentation (e.g., [9]). The key difference between the two models is shown in
Figure 1. In the HMM, all variation in the content of utterances is modeled at a single
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Figure 2: Simulated data. A) Inferred topics. B) Posterior probabilities of segment bound-
aries under the topic segmentation model and HMM, averaged over the last 100 samples.

level, with each segment having a distribution over words corresponding to a single state.
The hierarchical structure of the topic segmentation modelallows variation in content to be
expressed at two levels, with each segment being produced from a linear combination of
the distributions associated with each topic. Consequently, the topic segmentation model
can often capture the content of a sequence of words by postulating a single segment with
a novel distribution over topics, while the HMM has to frequently switch between states.

3.2 Segmenting meetings

We applied the algorithm to the ICSI meeting corpus [10], which consists of text transcripts
of spoken multi-party meetings. We compared the results to two different human-annotated
segmentations produced independently for certain portions of the corpus [11, 12]. These
data were not supplied to the model: topic inference and segmentation was completely
unsupervised, and the human judgments were only used to evaluate performance.

Data from all meetings were merged into a single dataset thatcontained 746,605 word to-
kens. We sampled for 200,000 iterations of MCMC, taking samples every 1,000 iterations.
Figure 3A shows the most indicative words for the topics inferred at the last iteration.1

Figure 3B shows an example of how the inferred topic segmentation probabilities at each
utterance compare with the segment boundaries as judged by human raters. This rela-
tionship is further quantified in Figure 3C where ROC curves show that the segmentation
probabilities can indeed be used to predict segmentation boundaries placed by humans. The
boundaries that are placed by the topic segmentation model are often close to the bound-
aries placed by humans. Because the HMM cannot combine different topics it places a
lot of segmentation boundaries, resulting in inferior performance. Using stemming and a
bigram representation, however, might improve its performance [9].

To quantitatively compare models and address the question of how many topics we should
be using we varied the number of topics. We assessed performance using thePk error
measure proposed by [13], which intuitively provides a measure of the probability that two
points drawn from the meeting will beincorrectly separated by a hypothesized segment
boundary – thus, lowerPk figures indicate better agreement with the human-annotated
results. For the numbers of segments we are dealing with, a baseline of segmenting the
discourse into equal-length segments gives aPk of about 50%. We optimized a threshold
on the posterior probability of a segment boundary for each model, findingPk of 28.4%,
29.7%, 32.9% and 29.0% when using 2, 5, 10 or 20 topics respectively. Segmentation qual-
ity is thus hardly affected by the overall number of topics used. Using a similar procedure
with a 10 state HMM we find aPk value of 37.5%, although this performance is actually

1The ICSI corpus is drawn mainly from meetings of the ICSI speech group – thus topics discussed
include speech recognition techniques, meeting recording, hardware setup etc.
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Figure 3: Results from segmenting the meetings database. A)The words most indicative
for each topic. B) Probability of a segment boundary, compared with human segmentation,
for an arbitrary subset of the data. C) ROC curves for predicting segmentation boundaries
defined by humans and the conditional probability of the model placing a boundary at an
offset. D) Subjective topic coherence ratings.

achieved by exploiting ananti-correlation between the HMM segment boundaries and hu-
man judgments. Performance of our model exceeds that of another unsupervised system,
based upon lexical coherence, which gives aPk of 31.9% [11]. Combining the bound-
aries obtained by the topic segmentation algorithm with other features in a supervised way
should allow reaching even better segmentation.

To evaluate the quality of the inferred topics we did a psychophysical experiment in which
seven human observers rated (on a scale of 1 to 9) the semanticcoherence of 50 lists of
10 words (Figure 3D). Of these lists, 40 contained the most indicative words for each of
the 10 topics from different models: the topic segmentationmodel, a topic model that
had the same number of segments but with fixed evenly spread segmentation boundaries,
a topic model with random segmentation boundaries, and the HMM. The other 10 lists
contained random samples of 10 words from the words of the other 40 lists. Figure 3 shows
that the topic segmentation model produced the most coherent topics, but using an even
distribution of boundaries performs similarly. Topic quality is thus not very susceptible
to the precise segmentation of the text. However, the topic segmentation model is able to
identify meaningful segment boundaries at the same time as inferring topics.

3.3 Movement data

Prominent theories of motor control propose that the human movement system uses a num-
ber of controllers, and at given points in time switches between them or adaptively com-
bines different controllers [6]. Such controllers could either be high-level state-dependent
controllers or simple combinations between different muscles, where several muscles are
controlled in conjunction [14]. Observing the movements ofpeople should make it possible
to infer the underlying controllers or “motor topics” from the movements they make.

Traditionally algorithms have been used that do not allow the segmentation of natural
movements. For this reason inferring the properties of the controllers from natural move-
ments has not been possible. Instead, laboratory experiments are used, where the onset and
the target is clearly defined [15]. In some cases more naturalmovements have been used,
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but without the segmentation only simple instantaneous statistics like principal components
[16] or nonnegative coding dimensions [17] could be analyzed.

We examined whether nonlinear controllers characterized by posture-posture transitions
can be revealed by a topic segmentation approach. One healthy male subject aged 31
participated in this study. For 200 minutes his right hand movements were measured using
a CyberGlove (Virtual Technologies, Palo Alto, CA). The sensors were associated with 19
degrees of freedom of the hand and their readings was recorded by a lightweight backpack.
Sensors were sampled at 42.5 Hz. Vector quantization was used to describe this dataset
by a codebook of 200 vectors (83% of variance explained). Thetransitions between such
states (4,260 bigrams) are used as input to the topic segmentation algorithm. With that
much data (510,000 samples) we can characterize movements this subject makes during a
typical few hours of his life (including a brief visit to a British pub).

The model assumes that 10 stochastic controllers (equivalent to topics), characterized by
their posture-posture transition probabilities (bigram frequencies), are used, and that during
each segment of movement a mixture of controllers may be active. Figure 4 shows the
average behavior of the controllers. Most of the controllers (2-8 and 10) can be understood
as moving the hand towards a given posture, which includes movements such as grasping.
Some neural recordings [18] indicate that the nervous system uses such a coding scheme.

Controller 1 deserves special attention as the transitionsencoded by it are almost exclu-
sively transitions from each state to itself. It thus encodes keeping the hand stationary.
Mixing controller 1 with any other controller allows slowermovements. This controller is
responsible for 39% of the transitions in the data. Controller 9 encodes two different ending
positions. This might indicate that the number of controllers used was too small. Most of
the controller transitions (83%) happen within segments giving evidence for the idea that
indeed controllers are combined in an adaptive way as predicted by recent theories [6].

4 Conclusion

Probabilistic topic models can identify the topics expressed in a set of documents. Using
these models requires that words be divided into documents.This is not the case in many
natural settings where language models are relevant, such as modeling the content of con-
versations or meetings. Neuroscience is moving from describing neural data for simple
stimuli and simple, well defined movements to analyzing progressively more natural data.
In their everyday life animals progress from one movement target to the next and their



mind wanders from one thought to the next. Algorithms that solve the problem of simul-
taneously identifying segments and their structure are necessary in order to make sense of
data produced from natural behavior, whether those data concern speech or action. We have
presented a hierarchical Bayesian model that can be used to solve this problem. This is a
fully generative model for sequence data, and extends previous work on topic models to
allow them to be applied in a range of novel settings. In addition to providing an effective
method for identifying segments in meetings, this model canbe used to identify some of
the basic controllers of human motion.
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