
Incremental Generation by Incremental Parsing

Masayuki Otsuka
Department of Philosophy

King’s College London
Strand, London WC2R 2LS, UK

masayuki.otsuka@kcl.ac.uk

Matthew Purver
Department of Computer Science

King’s College London
Strand, London WC2R 2LS, UK

matthew.purver@kcl.ac.uk

Abstract
The paper shows how an incremental genera-
tor can be constructed based on the incremen-
tal parsing framework described in Dynamic Syn-
tax (DS)(Kempson et al., 2001), without adding a
generator-specific vocabulary or intermediate levels
of representation. The resulting generator is defined
purely in terms of the parsing process, together with
a notion of tree subsumption. This is shown to have
various advantages including easy self-monitoring
and psycholinguistic plausibility. A simple Prolog
implementation is described, together with various
possible improvements in efficiency.

1 Introduction
In this paper we give a description of a prototype
generator based on the DS approach. DS defines
a formalism that allows the articulation of natural-
language grammars that reflect left-to-right process-
ing: natural-language strings are paired with dec-
orated semantic trees by a process of monotonic
growth over sequences of partial trees associated
with the processing of each word. As such it in-
corporates a prototype parser as its central sub-
part. The generation process described here per-
forms the reverse operation, producing possible out-
put strings from a defined semantic tree. The gen-
eration method is defined entirely in terms of pars-
ing, providing a tight parsing-generation correspon-
dence, and a simple reflection of natural language
use in dialogue.

We also describe a Prolog implementation of a
DS system which incorporates both parser and gen-
erator, and discuss various possible improvements
in efficiency.

Firstly we give some background on the DS for-
malism in section 2. We then describe our approach
to generation in section 3 and the implementation
in section 4. We then explain the psycholinguistic

implications in section 5, and draw conclusions and
outline further work in section 6.

2 Dynamic Syntax
DS is a parsing-directed grammar formalism which
claims that parsing is the central mechanism of lan-
guage processing. DS defines parsing as a pro-
cess of establishing mappings from an initial tree
to complete trees using general computational rules
(roughly corresponding to syntactic rules) and spe-
cific lexical actions projected by lexical items in the
input string.

The tree structures used in DS represent semantic
interpretations for a given string, and are described
by a modal tree logic LOFT (Blackburn and Meyer-
Viol, 1994). Trees can be partial in two senses: (a)
node relations can be partially specified by under-
specified modalities; and (b) node decorations can
be underspecified by using meta-variables. Such
partial specifications are introduced as imposed re-
quirements, which jointly constitute a set of con-
straints on possible outcomes. Trees are complete
iff they have no outstanding requirements, a con-
straint which is essential to wellformedness (see be-
low), which means that all partiality and underspec-
ification must be resolved.

Requirements, then, are central to the goal-
directedness of processing since they are the driv-
ing force for updating information. For example,
when a node relation is only partially specified, it
bears the requirement that it has to be updated to
a fully specified relation (as in “left-dislocated” ex-
pressions, for which an initial constituent node is in-
troduced into the tree related to the root node using
an underspecified modality), and this requirement is
met by merging of the initially “unfixed” node with
some local node which is in a fully specified rela-
tion to the root node. Similarly, if underspecified
decorations are projected, they must be updated to
“proper” values in the subsequent states (e.g. a pro-

noun projects a meta-variable which has to be sub-
stituted with a proper term).

Generally, the initial tree has only one node bear-
ing the requirement to establish a formula of type

�
,

represented as ������� �	� . The input string is scanned
from left to right, with each lexical item project-
ing a lexical action to update the trees. Computa-
tional rules are transition functions on trees, which
are conditional in the sense that if the input tree sat-
isfies the condition of some computational rule, it
yields the output tree updating the input tree. The
parse is successful when the parser produces at least
one complete tree having the root node decorated
with a formula of type

�
, after using computational

rules and all the lexical actions from the input string.
In this case, the input string is called grammatical
and the complete trees represent interpretations for
the string. In other words, in DS, grammaticality of
string is defined in terms of parseability.

Technically, a set of parse paths is a partially or-
dered set of possible trees where the initial tree is
the lowest bound, actions are projected by the lexi-
cal items in the input string and computational rules,
and the goal trees are the highest bounds. The par-
tial ordering
���
�� indicates a monotonic extension
relation on trees bearing a label of the name of the
computational/lexical action performed in the tran-
sition.

The search for a parse path can be viewed as
the search for a successful composition of actions
which yields complete trees. The set of sequences
of permissible actions is obtained by interweaving
the linearly ordered set of lexical actions projectable
by the input string into a finite number of par-
tially ordered Kleene*-iterated computational ac-
tions, e.g. �����������������	��� � ! �#" �%$'& �)(+*-,/.10�23*
�4(�*657298787:/8#;<*=�?>A@ .

DS specifies the theoretical parser, but, being a
grammar formalism, it has no specification as to
how a parser performs, i.e. no algorithm is defined
giving the concrete parser. A parse state can be
thought of as a pair of a string and a set of possible
trees (semantic interpretations for the string). With-
out any parsing strategy, we may define the parser
to generate all the possible trees using the compu-
tational rules (C-possible trees) for the input parser
state, then scan the input string to apply the lexi-
cal action to all of the trees to update the parser
state. This routine is repeated until the parser fin-
ishes scanning the input string.

3 Generation
As DS identifies grammaticality with parseability,
rather than using concepts such as syntactic con-
stituents or heads, standard approaches to genera-
tion such as head-driven methods (Shieber et al.,
1990) cannot be applied. Instead, generation must
be defined in terms of parsing.

3.1 Connecting Parsing and Generation
Despite informal observations made in psycholin-
guistics that production and comprehension sys-
tems have much in common (Garrett, 1982; Frazier,
1982), parsing and generation have generally been
treated as quite separate research enterprises, both
in the psycholinguistic and computational linguistic
communities.

Nevertheless, following Shieber (1988), attempts
have increasingly been made to define the two in
terms of a broadly common architecture and using
shared reversible grammars (see e.g. (Erbach, 1991;
Neumann, 1994; Gardent and Thater, 2001)).

Although the contribution made by the present
system is modest in only addressing the level of tac-
tical generation, it nevertheless contributes to this
co-articulation of parsing and generation by defin-
ing a generation system which purports to reflect
the process of left-to-right incremental production,
by using incremental parsing as the basic building
block.

3.2 Generation as Parsing
Generation can be achieved using very little beyond
the standard DS notion of parsability. We assume
a fully specified goal tree as input1: given this,
the generator incrementally produces a set of corre-
sponding strings by following standard parsing rou-
tines and using the goal tree as a check. In other
words, for a naive generator, all that is required is
a notion of tree subsumption: this allows any can-
didate partial tree produced in the generation pro-
cess to be checked against the goal tree to determine
whether it is a sensible candidate (by checking for
tree mergeability without inconsistency in node re-
lations and decorations).

1In assuming a source tree, we are currently ignoring some
issues that might be required in a dialogue system, such as con-
cept generation, and translation from some flat meaning rep-
resentation (e.g. a FOL formula) into a decorated source tree.
We are therefore treating a generator as a module which sup-
ports that part of the generation process called sugaring (Ranta,
1994) or linguistic realisation (Reiter and Dale, 1997) – trans-
lation from an unambiguously structured object in a meaning
representation language to a natural-language string.

BDCFE9G/HJI�KMLONQP

Parse RTSVUDW : SUCCESS

BXCYE9G�HJIZKZP
BDCFE9G/H\[XKML�N]P BXCFE^G�H\[^_`I�KZP

Subsumption : SUCCESS
Generate : RTW

SVU

Parse RbadcdeAfgW : SUCCESS

BXCFE^G�HJI�KZP
BYE^G�H\[XKMLZh c H adcdeif KZP BXCYE9G�H\[^_`IZKMLZN]P

Subsumption : SUCCESS
Generate : RbadcDeAfgW

adcDeAf
Parse RTjYf�cDk [jXW : ABORT
Subsumption : N/A
Generate : l

jYf/cXk [j

Parse Rnm�o#k G W : SUCCESS

BXCFE^G�HJI�KZP
BYE9G/H\[XKMLph c H m�o7k GiKZP BXCYE9G�H\[^_`IZKMLZN]P

Subsumption : FAIL
Generate : l

m�o#k G

qYqYqqFqYq

Parse RTjrf�cXk [j	W : SUCCESS

BXCFE^G�HJI�KMLZNQP
BYE9G/H\[XKMLsh c H adcDeAf KZP BYE^G�H\[9_`I�KMLZh c H jrf�cXk [XKZP

Subsumption : SUCCESS
Generate : Rbadcdeif L jYf�cDk [j	W

jYf�cDk [j

Parse RTSVUDW : SUCCESS

BYE9G/HJI�KML�h c H jYf/cXk [#H adcDeAf K�KMLMNQP
BYE9G/H\[XKMLsh c H adcDeAf KZP BYE^G�H\[9_`I�KMLZh c H jrf�cXk [XKZP

Subsumption : SUCCESS
Generate : RbadcDeAf L jrf�cXk [j	W

SVU GOAL TREE

BrE9G�HJIZKMLph c H jYf�cXk [H adcDeAf K�KMLMN]P
BYE^G�H\[XKML�h c H adcDeAf KZP BrE9G�H\[9_`IZKML�h c H jYf�cDk [XKZP

Figure 1: Generating “john snores”

At any point in the parsing process, a DS parser
state can be seen as a pair of a partial string (the in-
put so far) and a set of associated partial trees. With
generation, we view the generator state as a set of
these parser states (a set of pairs of ’possibly ac-
ceptable’ partial strings and their associated sets of
partial trees).

At each stage of generation, each pair is extended
by tentatively extending the partial string by adding
any word from the lexicon. The associated set of
possible (partial) trees is produced using the stan-
dard parser – it may of course be empty if the word
under consideration cannot be grammatically added
to the partial string – and only those which are sub-
sumed by the goal tree are kept. Any strings associ-
ated with empty tree sets are then rejected.

Generation is complete when the process can be
continued no further (any string extension results in
an empty parser state), and the set of output strings
is taken as those for which the associated tree set
contains a member identical to the goal tree – see
figure 1.

Lexical selection is implicit: any word in the lex-
icon which is not associated with a node (or for-
mula decorating a node) in the goal tree will pro-
duce empty tree sets (as the trees produced will not
be subsumed by the goal tree), and therefore cannot
produce acceptable extended partial strings.2

3.3 Self-Monitoring
Self-monitoring (the step-by-step monitoring of the
generation process by an associated parse routine)
has long been taken to be essential by psycholin-
guists (de Smedt and Kempen, 1990, for example).
As discussed by Neumann and van Noord (1994), it
is also useful in a computational dialogue system, as
it allows generation to be controlled from the point
of view of the expected hearer. As well as checking
parsability, it can be used e.g. to prevent ambigu-
ous utterances (if a self-monitoring process can spot
that a string under consideration during generation
is ambiguous, that string can be excluded on the ba-
sis that it will be less clear for the hearer than other
unambiguous alternatives).

With standard generation approaches, self-
monitoring must be carried out in parallel by a pars-
ing module which communicates with the gener-
ation module in some suitable manner. With our
approach, however, self-monitoring comes built-in,

2This may not be the most efficient way of rejecting unsuit-
able words – see section 4.2.3 below.

as parsing is the building block for generation: all
information that would be produced by a separate
parsing process is already available and there is no
need for a separate module.

The basic requirement for parsability by a hearer
is of course guaranteed, as strings are produced
by incremental parsing. Further control can be
added easily by including the desired check at the
subsumption-checking stage: rejection of ambigu-
ous strings can be added by checking for partial
trees that are not subsumed by the goal tree, and
rejecting any parser paths which produce such trees
(rather than just removing such trees from the path).

3.4 Incrementality
The sense in which our generation process (and the
DS parsing process) is incremental differs from that
standardly used in both generation and psycholin-
guistic literature. In the generation literature (see
e.g. (Erbach, 1991; Stone and Doran, 1997)), incre-
mentality is taken to refer to the ability to produce
substrings corresponding to (incomplete) sub-parts
of the semantic representation, but without any re-
quirement that this reflect left-to-right processing.
In the psycholinguistic literature, “strong” incre-
mentality (Sturt and Crocker, 1996; de Smedt and
Kempen, 1990) is taken to require the projection of
fixed tree relations as early and as close to word-by-
word processing as possible3 – and this progressive
update enforces revision and backtracking.

Our use of the term is closer to the psycholinguis-
tic concept in reflecting left-to-right parsing, with
all relevant processing being complete after the ad-
dition of each word. However, it differs from the
concept of strong incrementality, by allowing the ar-
ticulation of partial trees, in particular trees in which
not all relations are uniquely determined. This no-
tion of incrementality is central to the DS approach:
trees are extended monotonically as the string is
consumed in parsing.

It is this monotonicity that allows us to select
lexical items based just on a subsumption check,
and allows selection to be economical compared to
lexicalist approaches such as (Gardent and Thater,
2001).4 In their framework, syntactic variation is

3Sturt and Crocker reflect on how different aspects of lan-
guage processing are more or less incremental, with syntac-
tic processing involving word-by-word update of the syntac-
tic tree, semantic processing, eg pronoun resolution, allowing
some delay.

4We are not claiming the overall approach is more econom-
ical.

encoded in the lexicon, and lexical selection only
checks if a subformula of a candidate subsumes the
input semantics, allowing selection of lexical items
of different syntactic structures for the same input
semantics: for example, verbs might be given one
lexical entry for canonical SVO order, and one for
left-dislocation. This means that the number of gen-
eration search paths is multiplied by the number of
distinct structures licensed by the lexical item. In
contrast, in conforming to word-by-word incremen-
tality, DS is able to project a single set of actions,
relying on the update intrinsic to the tree growth
process to determine the diversity of generation pos-
sibilities.

However, it is worth noting that our approach re-
flects the computational concept of incrementality
as well. This concept is useful for dialogue system
architecture, in that processing bottlenecks in the se-
mantic production module can be worked around by
passing any complete sub-parts to an incremental
generation module as they become available. Our
approach can also be considered incremental in this
sense: sub-strings can be generated from suitable
goal sub-trees with no change to the algorithm (the
root node of the generation tree is merely given a
node name which is not fully specified, and require-
ments which correspond to the root node of the goal
sub-tree).5

4 Implementation
The formal definition of DS species constraints of
possible forms and extensions of tree structure and
node decorations in terms of axioms (in LOFT) and
algebraic definitions, and update actions (input/out-
put relations of grammar rules) are defined in a way
that they respect the constraints. This leaves room
for implementation as to how the parser performs.
This section describes the parser algorithm and pos-
sible strategies to improve efficiency.

4.1 Overview
A prototype DS system has been implemented in
Prolog6 The number of lexical entry types is cur-
rently small (i.e. the “grammar” is only small),
and limited to English, but some relatively com-
plex constructions such as left-dislocation and rel-
ative clauses can be processed.

5Though this approach remains to be fully worked out,
some first steps in this direction have been taken in consider-
ing head-final languages such as Japanese.

6The system can be accessed at
http://st228.dcs.kcl.ac.uk:8080/ds.

The implementation remains close to the logical
DS formalism. A tree node is represented as a pair
of a node name and a set7 of labels; a tree is rep-
resented as a pair of a set of nodes and a pointer
(a node name). Labels can be requirements ?REQ,
directed requirements ?([DIR],REQ) or features
+FEAT. An example of a simple DS tree and its
equivalent Prolog representation are shown in fig-
ure 2 and listing 1.

There are some representational differences:
mother-daughter relations are not expressed directly
as labels but are implicit in the node naming scheme
(e.g. node 0 has daughters 00, 01); LINKs are rep-
resented as 2-daughters; and unfixed nodes are *-
daughters.

Computational actions can now be defined in
terms of list manipulation. Prolog backtracking is
used to allow any number of actions to be applied to
any parser state (where possible).

Lexical actions are defined similarly and given
as templates for individual parts-of-speech and verb
subcategorisation frames. The templates can then
be interfaced to a standard computational lexicon
(we are currently using one derived from the OALD
(Hornby, 1974)).

Parsing is now easily defined declaratively: the
initial parser state is one in which the only possible
tree is a single root node with a � ���t� �	� requirement,
and none of the input string has been consumed; a
final parser state is one in which a complete (all re-
quirements discharged) tree is available and the en-
tire input string has been consumed; and possible
intermediate states are produced from other states
by any number of computational actions, plus lexi-
cal actions defined by the consumption of the next
word from the input string.

4.2 Efficiency
4.2.1 Parsing
As described above, the current parser is highly un-
constrained (it is defined declaratively and liberal
use is made of Prolog backtracking). As generation
is performed by parsing, any efficiency in parsing
will be reflected in generation. Parsing efficiency
can be improved by considering certain computa-
tional actions8 as required whenever they can be ap-
plied (thus reducing the number of possible partial
trees and the need for backtracking).

7We represent sets as Prolog lists: no use is made of list
order.

8Currently thinning, elimination, and star-adjunction.

BrE f H\u�KMLMCFE9G/HJI�KMLZC Rnv�w	W E9G�H\[XKML�C Rnv7xMW E^G�H\[9_`I�KZP

BYE f H\uDu�KML�E9G�H\[XKMLph c H adcdeif KMLFy{z}|�~��]P BYE f H\u#�	KML�E9G�H\[^_�IZKMLZh c HT�A� jYf�cDk [Hn��K�KMLpy��{���Q��P

Figure 2: Example DS Tree

� �
tree([node(’0’, [?ty(t), ?([\/0],ty(e)), ?([\/1],ty(e>t))]),

node(’00’, [ty(e), fo(john), +male]),
node(’01’, [ty(e>t), fo(Xˆsnore(X)), +pres])]).� �

Listing 1: Example DS Tree (Prolog)

Further improvements in parsing may be possi-
ble by using e.g. probabilistic methods to constrain
search, but this is outside the scope of the current
work.

4.2.2 Generation
The naive generation process described in section 3
is not as inefficient as it might initially appear. Stat-
ically speaking, the basic concept is to generate all
possible strings and check whether parsing them
gives a sensible tree – therefore one might expect���

possible paths given a lexicon of N words and
typical string length W. However, the incremental
nature means that this is not the case: unsuitable
search paths are eliminated on a stage-by-stage ba-
sis (by the parser for ungrammatical paths, and by
the subsumption check for paths incompatible with
the goal tree).9 The implementation of this naive
version generates simple sentences in a few seconds
with a small test lexicon.

However, we briefly explore efficiency improve-
ments by lexical selection and search method.
4.2.3 Lexical Selection
Lexical selection uses the decorations of the input
goal tree to produce a limited set of lexical items
which can be used by the generator, consisting of
a set L of words which correspond to logical for-
mula decorations (e.g. N, V, Adj, Det) and a set F of
functional words (e.g. relativiser, complementiser).
This reduces the search space considerably, with the
number of paths at most �p���-� � �

and in fact sig-
nificantly less.

Members of L are chosen on the basis of goal
tree node search followed by lexical lookup: only

9In fact, in the best case there will be �<��� paths, although
this only applies for an unambiguous lexicon and grammar that
gives a strict one-to-one correspondence between strings and
trees.

those words corresponding to �+.��s� �
semantic for-

mula decorations are admitted. For pronouns, node
features can also be used (to admit only relevant
gender & number), and similarly for verbs to con-
trol tense. This modification has been implemented
and results in significant speed increase (although
no formal evaluation has yet been performed, even
more complex sentences including relative clauses
can now be generated in a few seconds with a large
40,000 word lexicon to search through).

Heuristics could be used to govern lexical lookup,
based on e.g. recency of words in the current dia-
logue context (ensuring more recently used words
are used in preference), and prior probabilities (en-
suring more common words are used in preference
to rarer ones).

4.2.4 Search Method
The incremental nature of the generation process al-
lows us to apply various search methods, and stop
the process once any suitable string has been found
(rather than continuing until all search paths are ter-
minated). Using a depth-first approach with this
method will therefore cause only one string to be
produced; whereas using a breadth-first approach
will cause only the set of all strings of the shortest
possible length to be produced. Both approaches
have been successfully implemented.

This provides scope for probabilistic (or other
heuristic) methods to increase efficiency in the fu-
ture by constraining the search using techniques
well known in areas such as speech recognition (e.g.
beam search). However, a prerequisite for this will
be a theory of heuristically constrained DS parsing.

5 Psycholinguistic Observations
A further advantage of the DS system is that it
promises to meet the challenge set out by Garrod

and Pickering (2001) that linguistic systems be eval-
uated by their success in reflecting phenomena char-
acteristic of dialogue. This includes alignment be-
tween dialogue participants at many levels (lexical,
syntactic and semantic), and the ability of partici-
pants to collaborate on and complete each other’s
sentences.

We believe that the view of generation as incre-
mental parsing, as well as conforming to the gen-
eral principle that production and comprehension
are tightly coupled, allows us to explain these phe-
nomena (where standard models of generation can-
not).

5.1 Alignment
Standard generation models have little trouble ex-
plaining how lexical choice can be co-ordinated
(word preference can be adjusted based on recency)
– but syntactic mirroring as observed by e.g. Brani-
gan et al. (2000) is more problematic (grammar rule
preferences must be adjusted, which is non-trivial).

In DS, alignment of syntactic and semantic struc-
ture comes by definition, given the reduction of
syntax to the progressive projection of semantically
transparent structure. Lexical alignment can be ex-
plained as a preference for repeated recent lexical
items, bypassing the general lexicon search. Appar-
ent alignment of syntactic structure over and above
semantic alignment, as in repetition of double object
constructions as opposed to a switch to the prepo-
sitional phrase equivalent, can be explained by ex-
actly the same mechanism: since syntactic and se-
mantic preferences are encoded in the lexical ac-
tions associated directly with words (rather than in
any general grammar rules), so adjustment of syn-
tactic and semantic constructions reduces directly to
lexical choice.

5.2 Collaboration / Completion
The phenomenon of shared utterances, in which par-
ticipants are able to switch roles and complete one
another’s utterances at any point in a sentence, is
problematic for standard models of generation, as
Garrod and Pickering (2001) observe.10

The treatment of generation as incremental pars-
ing allows a simple explanation. Speaker and hearer
are building the same partial trees in parallel, using
the same parsing process and directly correspond-
ing (if not perhaps identical) lexical entries: the only

10In particular, any shift prior to the sentence head is prob-
lematic for head-driven and LTAG approaches.

significant difference is that the speaker has knowl-
edge of the goal tree that is being generated. If the
hearer can guess or deduce the goal tree,11 (s)he is
in just as good a position to complete the utterance
as the original speaker.

6 Conclusions and Further Work
6.1 Conclusions
The paper sets out a formal definition of a genera-
tion process for DS, in terms of the parsing process,
and describes a naive computational implementa-
tion together with some possible improvements.
In closing, we note that this (a) parsing-oriented,
and (b) incremental view of generation promises to
provide a basis for an explanation of certain psy-
cholinguistic observations about dialogue such as
co-ordination and collaboration between speakers.

6.2 Further Work
The current system is a prototype which we intend
to extend in two main directions. Firstly, efficiency
can be improved by employing computational tac-
tics such as probabilistic/heuristic parsing and gen-
eration, and possibly more goal-directed methods.
Secondly, we intend to incorporate the parsing/gen-
eration model into a full dialogue system, to test out
in detail the extent to which the apparent potential
for modelling dialogue phenomena such as align-
ment, collaboration etc. can actually be fulfilled.
This will require a detailed model of semantic tree
creation and manipulation.

References
Patrick Blackburn and Wilfried Meyer-Viol. 1994.

Linguistics, logic and finite trees. Bulletin of the
IGPL, 2:3–31.

Holly Branigan, Martin Pickering, and Alexandra
Cleland. 2000. Syntactic co-ordination in dia-
logue. Cognition, 75:13–25.

Koenrad de Smedt and Gerard Kempen. 1990.
Incremental sentence production, self-correction
and coordination. In G. Kempen, editor, Natural
Language Generation, pages 365–376. Martinus
Nijhoff, Dordrecht.

Gregor Erbach. 1991. A bottom-up algorithm for
parsing and generation. CLAUS report, Univer-
sität des Saarlandes, Saarbrücken, February.
11We have nothing to say here about how this deduction

is performed: of course it will depend on world and domain
knowledge, the participants’ shared situation and experience,
and so on.

Lyn Frazier. 1982. Shared components of produc-
tion and perception. In M. Arbib et al., edi-
tor, Neural Models of Language Processes, chap-
ter 11, pages 225–236. Academic Press, New
York.

Claire Gardent and Stefan Thater. 2001. Generat-
ing with a grammar based on tree descriptions: a
constraint-based approach. In Proceedings of the
39th Annual Meeting of the ACL. Association for
Computational Linguistics.

Merrill Garrett. 1982. Remarks on the relation be-
tween language production and language com-
prehension systems. In M. Arbib et al., edi-
tor, Neural Models of Language Processes, chap-
ter 10, pages 209–224. Academic Press, New
York.

Simon Garrod and Martin Pickering. 2001. To-
ward a mechanistic psychology of dialogue: The
interactive alignment model. In P. Kühnlein,
H. Rieser, and H. Zeevat, editors, Proceedings
of the Fifth Workshop on Formal Semantics and
Pragmatics of Dialogue. BI-DIALOG.

Albert S. Hornby. 1974. Oxford Advanced
Learner’s Dictionary of Current English. Oxford
University Press, third edition. With the assis-
tance of Anthony P. Cowie and J. Windsor Lewis.

Ruth Kempson, Wilfried Meyer-Viol, and Dov Gab-
bay. 2001. Dynamic Syntax: The Flow of Lan-
guage Understanding. Blackwell.

Günter Neumann and Gertjan van Noord. 1994.
Reversibility and self-monitoring in natural lan-
guage generation. In T. Strzalkowski, editor, Re-
versible Grammars in Natural Language Pro-
cessing. Kluwer Academic Publishers.

Günter Neumann. 1994. A Uniform Computational
Model for Natural Language Parsing and Gen-
eration. Ph.D. thesis, Universität des Saarlandes,
Saarbrücken.

Aarne Ranta. 1994. Type-Theoretical Grammar.
Oxford University Press.

Ehud Reiter and Robert Dale. 1997. Building ap-
plied natural language generation systems. In
K. van Deemter and M. Stone, editors, Formal
Issues in Natural Language Generation. CORSO
C05.

Stuart Shieber, Gertjan van Noord, Robert Moore,
and Fernando Pereira. 1990. A semantic head-
driven generation algorithm for unification-based
formalisms. Computational Linguistics, 16(1).

Stuart Shieber. 1988. A uniform architecture for
parsing and generation. In Proceedings of the

12th International Conference on Computational
Linguistics, pages 614–619. COLING.

Matthew Stone and Christine Doran. 1997. Sen-
tence planning as description using tree-adjoining
grammar. In P. Cohen and W. Wahlster, editors,
Proceedings of the 35th Annual Meeting of the
ACL, pages 198–205. Association for Computa-
tional Linguistics.

Patrick Sturt and Matthew Crocker. 1996. Mono-
tonic syntactic processing: a cross-linguistic
study of attachment and reanalysis. Language
and Cognitive Processes, 11:448–494.

