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Abstract
We present a method for unsupervised
topic modelling which adapts methods
used in document classification (Blei et
al., 2003; Griffiths and Steyvers, 2004) to
unsegmented multi-party discourse tran-
scripts. We show how Bayesian infer-
ence in this generative model can be used
to simultaneously address the problems
of topic segmentation and topic identifi-
cation; automatically segmenting multi-
party meetings into topically coherent
segments with performance which com-
pares well with previous unsupervised
segmentation-only methods (Galley et al.,
2003); while simultaneously extracting
topics which rate highly when assessed for
coherence by human judges. We also show
that this method appears robust in the face
of off-topic dialogue and speech recogni-
tion errors.

1 Introduction

Topic segmentation – division of a text or dis-
course into topically coherent segments – and
topic identification – classification of those seg-
ments by subject matter – are joint problems. Both
are necessary steps in automatic indexing, retrieval
and summarization from large datasets, whether
spoken or written. Both have received significant
attention in the past (see section 2), but most ap-
proaches have been targeted at either text or mono-
logue, and most address only one of the two issues
(usually for the very good reason that the dataset
itself provides the other, for example by the ex-
plicit separation of individual documents or news
stories in a collection). Spoken multi-party meet-
ings pose a difficult problem: firstly, neither the

segmentation nor the discussed topics can be taken
as given; secondly, the discourse is by nature less
tidily structured and less restricted in domain; and
thirdly, speech recognition results have unavoid-
ably high levels of error due to the noisy multi-
speaker environment.

In this paper we present a method for unsuper-
vised topic modelling which allows us to approach
both problems simultaneously, inferring a set of
topics while providing a segmentation into topi-
cally coherent segments. We show that this model
can address these problems over multi-party dis-
course transcripts, providing good segmentation
performance on a corpus of meetings (compara-
ble to the best previous unsupervised method that
we are aware of (Galley et al., 2003)), while also
inferring a set of topics rated as semantically co-
herent by human judges. We then show that its
segmentation performance appears relatively ro-
bust to speech recognition errors, giving us con-
fidence that it can be successfully applied in a real
speech-processing system.

The plan of the paper is as follows. Section 2
below briefly discusses previous approaches to the
identification and segmentation problems. Sec-
tion 3 then describes the model we use here. Sec-
tion 4 then details our experiments and results, and
conclusions are drawn in section 5.

2 Background and Related Work

In this paper we are interested in spoken discourse,
and in particular multi-party human-human meet-
ings. Our overall aim is to produce information
which can be used to summarize, browse and/or
retrieve the information contained in meetings.
User studies (Lisowska et al., 2004; Banerjee et
al., 2005) have shown that topic information is im-
portant here: subjects are likely to want to know



which topics were discussed in a particular meet-
ing, as well as have access to the discussion on
particular topics in which they are interested. Of
course, this requires both identification of the top-
ics discussed, and segmentation into the periods of
topically related discussion.

Work on automatic topic segmentation of text
and monologue has been prolific, with a variety of
approaches used. (Hearst, 1994) uses a measure of
lexical cohesion between adjoining paragraphs in
text; (Reynar, 1999) and (Beeferman et al., 1999)
combine a variety of features such as statistical
language modelling, cue phrases, discourse infor-
mation and the presence of pronouns or named
entities to segment broadcast news; (Maskey and
Hirschberg, 2003) use entirely non-lexical fea-
tures. Recent advances have used generative mod-
els, allowing lexical models of the topics them-
selves to be built while segmenting (Imai et al.,
1997; Barzilay and Lee, 2004), and we take a sim-
ilar approach here, although with some important
differences detailed below.

Turning to multi-party discourse and meetings,
however, most previous work on automatic seg-
mentation (Reiter and Rigoll, 2004; Dielmann
and Renals, 2004; Banerjee and Rudnicky, 2004),
treats segments as representing meeting phases or
events which characterize the type or style of dis-
course taking place (presentation, briefing, discus-
sion etc.), rather than the topic or subject matter.
While we expect some correlation between these
two types of segmentation, they are clearly differ-
ent problems. However, one comparable study is
described in (Galley et al., 2003). Here, a lex-
ical cohesion approach was used to develop an
essentially unsupervised segmentation tool (LC-
Seg) which was applied to both text and meet-
ing transcripts, giving performance better than that
achieved by applying text/monologue-based tech-
niques (see section 4 below), and we take this
as our benchmark for the segmentation problem.
Note that they improved their accuracy by com-
bining the unsupervised output with discourse fea-
tures in a supervised classifier – while we do not
attempt a similar comparison here, we expect a
similar technique would yield similar segmenta-
tion improvements.

We take an unsupervised generative approach,
modelling the text as being generated by a se-
quence of mixtures of underlying topics. The ap-
proach is unsupervised, allowing both segmenta-

tion and topic extraction from unlabelled data.

3 Learning topics and segments

We specify our model to address the problem of
topic segmentation: attempting to break the dis-
course into discrete segments in which a particu-
lar set of topics are discussed. Assume we have a
corpus of U utterances, ordered in sequence. The
uth utterance consists of Nu words, chosen from
a vocabulary of size W . The set of words asso-
ciated with the uth utterance are denoted wu, and
indexed as wu,i. The entire corpus is represented
by w.

Following previous work on probabilistic topic
models (Hofmann, 1999; Blei et al., 2003; Grif-
fiths and Steyvers, 2004), we model each utterance
as being generated from a particular distribution
over topics, where each topic is a probability dis-
tribution over words. The utterances are ordered
sequentially, and we assume a Markov structure on
the distribution over topics: with high probability,
the distribution for utterance u is the same as for
utterance u−1; otherwise, we sample a new distri-
bution over topics. This pattern of dependency is
produced by associating a binary switching vari-
able with each utterance, indicating whether its
topic is the same as that of the previous utterance.
The joint states of all the switching variables de-
fine segments that should be semantically coher-
ent, because their words are generated by the same
topic vector. We will first describe this generative
model in more detail, and then discuss inference
in this model.

3.1 A hierarchical Bayesian model
We are interested in where changes occur in the
set of topics discussed in these utterances. To this
end, let cu indicate whether a change in the distri-
bution over topics occurs at the uth utterance and
let P (cu = 1) = π (where π thus defines the ex-
pected number of segments). The distribution over
topics associated with the uth utterance will be de-
noted θ(u), and is a multinomial distribution over
T topics, with the probability of topic t being θ

(u)
t .

If cu = 0, then θ(u) = θ(u−1). Otherwise, θ(u)

is drawn from a symmetric Dirichlet distribution
with parameter α. The distribution is thus:

P (θ(u)|cu, θ(u−1)) =

(
δ(θ(u), θ(u−1)) cu = 0

Γ(Tα)

Γ(α)T

QT
t=1(θ

(u)
t )α−1 cu = 1



Figure 1: Graphical models indicating the dependencies among variables in (a) the topic segmentation
model and (b) the hidden Markov model used as a comparison.

where δ(·, ·) is the Dirac delta function, and Γ(·)
is the generalized factorial function. This dis-
tribution is not well-defined when u = 1, so
we set c1 = 1 and draw θ(1) from a symmetric
Dirichlet(α) distribution accordingly.

As in (Hofmann, 1999; Blei et al., 2003; Grif-
fiths and Steyvers, 2004), each topic Tj is a multi-
nomial distribution φ(j) over words, and the prob-
ability of the word w under that topic is φ

(j)
w . The

uth utterance is generated by sampling a topic as-
signment zu,i for each word i in that utterance with
P (zu,i = t|θ(u)) = θ

(u)
t , and then sampling a

word wu,i from φ(j), with P (wu,i = w|zu,i =
j, φ(j)) = φ

(j)
w . If we assume that π is generated

from a symmetric Beta(γ) distribution, and each
φ(j) is generated from a symmetric Dirichlet(β)
distribution, we obtain a joint distribution over all
of these variables with the dependency structure
shown in Figure 1A.

3.2 Inference

Assessing the posterior probability distribution
over topic changes c given a corpus w can be sim-
plified by integrating out the parameters θ, φ, and
π. According to Bayes rule we have:

P (z, c|w) =
P (w|z)P (z|c)P (c)P
z,c P (w|z)P (z|c)P (c)

(1)

Evaluating P (c) requires integrating over π.
Specifically, we have:

P (c) =
R 1

0
P (c|π)P (π) dπ

= Γ(2γ)

Γ(γ)2
Γ(n1+γ)Γ(n0+γ)

Γ(N+2γ)

(2)

where n1 is the number of utterances for which
cu = 1, and n0 is the number of utterances for
which cu = 0. Computing P (w|z) proceeds along
similar lines:

P (w|z) =
R
∆T

W
P (w|z, φ)P (φ) dφ

=
“

Γ(Wβ)

Γ(β)W

”T QT
t=1

QW
w=1 Γ(n

(t)
w +β)

Γ(n
(t)
· +Wβ)

(3)

where ∆T
W is the T -dimensional cross-product of

the multinomial simplex on W points, n
(t)
w is the

number of times word w is assigned to topic t in
z, and n

(t)
· is the total number of words assigned

to topic t in z. To evaluate P (z|c) we have:

P (z|c) =

Z
∆U

T

P (z|θ)P (θ|c) dθ (4)

The fact that the cu variables effectively divide
the sequence of utterances into segments that use
the same distribution over topics simplifies solving
the integral and we obtain:

P (z|c) =

„
Γ(Tα)

Γ(α)T

«n1 Y
u∈U1

QT
t=1 Γ(n

(Su)
t + α)

Γ(n
(Su)
· + Tα)

. (5)
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(7)

where U1 = {u|cu = 1}, U0 = {u|cu = 0},
and Su denotes the set of utterances that share the
same topic distribution (i.e. belong to the same
segment) as u.

Equations 2, 3, and 5 allow us to evaluate the
numerator of the expression in Equation 1. How-
ever, computing the denominator is intractable.
Consequently, we sample from the posterior dis-
tribution P (z, c|w) using Markov chain Monte
Carlo (MCMC) (Gilks et al., 1996). We use Gibbs
sampling, drawing the topic assignment for each
word, zu,i, conditioned on all other topic assign-
ments, z−(u,i), all topic change indicators, c, and
all words, w; and then drawing the topic change
indicator for each utterance, cu, conditioned on all
other topic change indicators, c−u, all topic as-
signments z, and all words w.

The conditional probabilities we need can be
derived directly from Equations 2, 3, and 5. The
conditional probability of zu,i indicates the prob-
ability that wu,i should be assigned to a particu-
lar topic, given other assignments, the current seg-
mentation, and the words in the utterances. Can-
celling constant terms, we obtain:

P (zu,i|z−(u,i), c,w) =
n

(t)
wu,i + β

n
(t)
· + Wβ

n
(Su)
zu,i + α

n
(Su)
· + Tα

. (6)

where all counts (i.e. the n terms) exclude zu,i.
The conditional probability of cu indicates the
probability that a new segment should start at u.
In sampling cu from this distribution, we are split-
ting or merging segments. Similarly we obtain the
expression in (7), where S1

u′ is Su′ for the segmen-
tation when cu = 1, S1

u′ is Su′ for the segmenta-
tion when cu = 0, and all counts (e.g. n1) exclude
cu. For this paper, we fixed α, β and γ at 0.01.

Our algorithm is related to (Barzilay and Lee,
2004)’s approach to text segmentation, which uses
a hidden Markov model (HMM) to model segmen-
tation and topic inference for text using a bigram
representation in restricted domains. Due to the
adaptive combination of different topics our algo-
rithm can be expected to generalize well to larger
domains. It also relates to earlier work by (Blei

and Moreno, 2001) that uses a topic representation
but also does not allow adaptively combining dif-
ferent topics. However, while HMM approaches
allow a segmentation of the data by topic, they
do not allow adaptively combining different topics
into segments: while a new segment can be mod-
elled as being identical to a topic that has already
been observed, it can not be modelled as a com-
bination of the previously observed topics. Note
that while (Imai et al., 1997)’s HMM approach al-
lows topic mixtures, it requires supervision with
hand-labelled topics.

In our experiments we therefore compared our
results with those obtained by a similar but sim-
pler 10 state HMM, using a similar Gibbs sam-
pling algorithm. The key difference between the
two models is shown in Figure 1. In the HMM,
all variation in the content of utterances is mod-
elled at a single level, with each segment having a
distribution over words corresponding to a single
state. The hierarchical structure of our topic seg-
mentation model allows variation in content to be
expressed at two levels, with each segment being
produced from a linear combination of the distri-
butions associated with each topic. Consequently,
the topic segmentation model can often capture the
content of a sequence of words by postulating a
single segment with a novel distribution over top-
ics, while the HMM has to frequently switch be-
tween states.

4 Experiments

4.1 Experiment 0: Simulated data

To analyze the properties of this algorithm we first
applied it to a simulated dataset: a sequence of
10,000 words chosen from a vocabulary of 25.
Each segment of 100 successive words had a con-
stant topic distribution (with distributions for dif-
ferent segments drawn from a Dirichlet distribu-
tion with β = 0.1), and each subsequence of 10
words was taken to be one utterance. The topic-
word assignments were chosen such that when the
words are aligned in a 5 × 5 grid the topics were
binary bars. The inference algorithm was then run
for 200,000 iterations, with samples collected after



Figure 2: Simulated data: A) inferred topics; B)
segmentation probabilities; C) HMM version.

every 1,000 iterations to minimize autocorrelation.
Figure 2 shows the inferred topic-word distribu-
tions and segment boundaries, which correspond
well with those used to generate the data.

4.2 Experiment 1: The ICSI corpus

We applied the algorithm to the ICSI meeting
corpus transcripts (Janin et al., 2003), consist-
ing of manual transcriptions of 75 meetings. For
evaluation, we use (Galley et al., 2003)’s set of
human-annotated segmentations, which covers a
sub-portion of 25 meetings and takes a relatively
coarse-grained approach to topic with an average
of 5-6 topic segments per meeting. Note that
these segmentations were not used in training the
model: topic inference and segmentation was un-
supervised, with the human annotations used only
to provide some knowledge of the overall segmen-
tation density and to evaluate performance.

The transcripts from all 75 meetings were lin-
earized by utterance start time and merged into a
single dataset that contained 806,026 word tokens.
We sampled for 200,000 iterations of MCMC, tak-
ing samples every 1,000 iterations, and then aver-
aged the sampled cu variables over the last 100
samples to derive an estimate for the posterior
probability of a segmentation boundary at each ut-
terance start. This probability was then thresh-
olded to derive a final segmentation which was
compared to the manual annotations. More pre-
cisely, we apply a small amount of smoothing
(Gaussian kernel convolution) and take the mid-
points of any areas above a set threshold to be the
segment boundaries. Varying this threshold allows
us to segment the discourse in a more or less fine-
grained way (and we anticipate that this could be
user-settable in a meeting browsing application).
If the correct number of segments is known for
a meeting, this can be used directly to determine
the optimum threshold, increasing performance; if

Number of topics T
Model 2 5 10 20 HMM LCSeg

Pk .284 .297 .329 .290 .375 .319

known unknown
Model Pk WD Pk WD

T = 10 .289 .329 .329 .353
LCSeg .264 .294 .319 .359

Table 1: Results on the ICSI meeting corpus.

not, we must set it at a level which corresponds to
the desired general level of granularity. For each
set of annotations, we therefore performed two
sets of segmentations: one in which the threshold
was set for each meeting to give the known gold-
standard number of segments, and one in which
the threshold was set on a separate development
set to give the overall corpus-wide average number
of segments, and held constant for all test meet-
ings.1 This also allows us to compare our results
with those of (Galley et al., 2003), who apply a
similar threshold to their lexical cohesion func-
tion and give corresponding results produced with
known/unknown numbers of segments.

Segmentation We assessed segmentation per-
formance using the Pk and WindowDiff (WD) er-
ror measures proposed by (Beeferman et al., 1999)
and (Pevzner and Hearst, 2002) respectively; both
intuitively provide a measure of the probability
that two points drawn from the meeting will be
incorrectly separated by a hypothesized segment
boundary – thus, lower Pk and WD figures indi-
cate better agreement with the human-annotated
results.2 For the numbers of segments we are deal-
ing with, a baseline of segmenting the discourse
into equal-length segments gives both Pk and WD

about 50%. In order to investigate the effect of the
number of underlying topics T , we tested mod-
els using 2, 5, 10 and 20 topics. We then com-
pared performance with (Galley et al., 2003)’s LC-
Seg tool, and with a 10-state HMM model as de-
scribed above. Results are shown in Table 1, aver-
aged over the 25 test meetings.

Results show that our model significantly out-
performs the HMM equivalent – because the
HMM cannot combine different topics, it places

1The development set was formed from the other meet-
ings in the same ICSI subject areas as the annotated test meet-
ings.

2WD takes into account the likely number of incorrectly
separating hypothesized boundaries; Pk only a binary cor-
rect/incorrect classification.



Figure 3: Results from the ICSI corpus: A) the words most indicative for each topic; B) Probability of
a segment boundary, compared with human segmentation, for an arbitrary subset of the data; C) ROC
curves for predicting human segmentation, and conditional probabilities of placing a boundary at an
offset from a human boundary; D) subjective topic coherence ratings.

a lot of segmentation boundaries, resulting in in-
ferior performance. Using stemming and a bigram
representation, however, might improve its perfor-
mance (Barzilay and Lee, 2004), although simi-
lar benefits might equally apply to our model. It
also performs comparably to (Galley et al., 2003)’s
unsupervised performance (exceeding it for some
settings of T ). It does not perform as well as their
hybrid supervised system, which combined LC-
Seg with supervised learning over discourse fea-
tures (Pk = .23); but we expect that a similar ap-
proach would be possible here, combining our seg-
mentation probabilities with other discourse-based
features in a supervised way for improved per-
formance. Interestingly, segmentation quality, at
least at this relatively coarse-grained level, seems
hardly affected by the overall number of topics T
chosen.

Figure 3B shows an example for one meeting of
how the inferred topic segmentation probabilities
at each utterance compare with the gold-standard
segment boundaries. The receiver-operator char-
acteristic (ROC) curves of Figure 3C illustrate the
performance difference between the performance
of our model and the HMM equivalent.

Identification Figure 3A shows the most indica-
tive words for a subset of the topics inferred at the

last iteration. Encouragingly, most topics seem
intuitively to reflect the subjects we know were
discussed in the ICSI meetings – the majority of
them (67 meetings) are taken from the weekly
meetings of 3 distinct research groups, where dis-
cussions centered around speech recognition tech-
niques (topics 2, 5), meeting recording, annotation
and hardware setup (topics 6, 3, 1, 8), robust lan-
guage processing (topic 7). Others reflect general
classes of words which are independent of subject
matter (topic 4).

To compare the quality of these inferred top-
ics we performed a psychophysical experiment in
which 7 human observers rated (on a scale of 1 to
9) the semantic coherence of 50 list of 10 words
each. Of these lists, 40 contained the most indica-
tive words for each of the 10 topics from differ-
ent models: the topic segmentation model; a topic
model that had the same number of segments but
with fixed evenly spread segmentation boundaries;
an equivalent with randomly placed segmentation
boundaries; and the HMM. The other 10 lists con-
tained random samples of 10 words from the other
40 lists. Results are shown in Figure 3D, with the
topic segmentation model producing the most co-
herent topics and the HMM model and random
words scoring less well. Interestingly, using an
even distribution of boundaries but allowing the



topic model to infer topics performs similarly well
with even segmentation, but badly with random
segmentation – topic quality is thus not very sus-
ceptible to the precise segmentation of the text,
but does require some reasonable approximation
(on ICSI data, an even segmentation gives a Pk of
about 50%, while random segmentations can do
much worse). However, note that the full topic
segmentation model is able to identify meaningful
segmentation boundaries at the same time as infer-
ring topics.

4.3 Experiment 2: Dialogue robustness
Meetings often include off-topic dialogue, in par-
ticular at the beginning and end, where infor-
mal chat and meta-dialogue are common. Gal-
ley et al. (2003) annotated these sections explic-
itly, together with the ICSI “digit-task” sections
(participants read sequences of digits to provide
data for speech recognition experiments), and re-
moved them from their data, as did we in Ex-
periment 1 above. While this seems reasonable
for the purposes of investigating ideal algorithm
performance, in real situations we will be faced
with such off-topic dialogue, and would obviously
prefer segmentation performance not to be badly
affected (and ideally, enabling segmentation of
the off-topic sections from the meeting proper).
One might suspect that an unsupervised genera-
tive model such as ours might not be robust in the
presence of numerous off-topic words, as spuri-
ous topics might be inferred and used in the mix-
ture model throughout. In order to investigate this,
we therefore also tested on the full dataset with-
out removing these sections, and added the sec-
tion boundaries as further desired gold-standard
segmentation boundaries. Table 2 shows the re-
sults: performance is not significantly affected,
and again is very similar for both our model and
LCSeg.

4.4 Experiment 3: Speech recognition
The experiments so far have all used manual word
transcriptions. Of course, in real meeting pro-
cessing systems, we will have to deal with speech
recognition (ASR) errors. We therefore also tested
on 1-best ASR output provided by ICSI, and re-
sults are shown in Table 2. The “off-topic” and
“digits” sections were removed in this test, so re-
sults are comparable with Experiment 1. Segmen-
tation accuracy seems extremely robust; interest-
ingly, LCSeg’s results are less robust (the drop in

known unknown
Experiment Model Pk WD Pk WD

2 T = 10 .296 .342 .325 .366
(off-topic data) LCSeg .307 .338 .322 .386

3 T = 10 .266 .306 .291 .331
(ASR data) LCSeg .289 .339 .378 .472

Table 2: Results for Experiments 2 & 3: robust-
ness to off-topic and ASR data.

performance is higher), especially when the num-
ber of segments in a meeting is unknown.

5 Summary and Future Work

We have presented an unsupervised generative
model which allows topic segmentation and iden-
tification from unlabelled data. Performance on
the ICSI corpus of multi-party meetings is compa-
rable with the previous unsupervised segmentation
results, and the extracted topics are rated well by
human judges. Segmentation accuracy is robust
in the face of noise, both in the form of off-topic
discussion and automatic speech recognition hy-
potheses.

Future Work Spoken discourse exhibits several
features not derived from the words themselves
but which seem intuitively useful for segmenta-
tion, e.g. speaker changes, speaker identities and
roles, silences, overlaps, prosody and so on. As
shown by (Galley et al., 2003), some of these fea-
tures can be combined with lexical information to
improve segmentation performance (although in a
supervised manner), and (Maskey and Hirschberg,
2003) show some success in broadcast news seg-
mentation using only these kinds of non-lexical
features. We are currently investigating the addi-
tion of non-lexical features as observed outputs in
our unsupervised generative model.

We are also investigating improvements into
the lexical model as presented here, in the first
instance via simple techniques such as word
stemming and replacement of named entities by
generic class tokens (Barzilay and Lee, 2004); and
also via the use of multiple ASR hypotheses by
incorporating word confusion networks into our
model; we expect that this will allow improved
segmentation and identification performance with
recognized data.
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