
Automatic Annotation of Dialogue Structure
from Simple User Interaction

Matthew Purver, John Niekrasz, and Patrick Ehlen

CSLI, Stanford University, Stanford CA 94305, USA
{mpurver,niekrasz,ehlen}@stanford.edu

http://godel.stanford.edu/

Abstract. In [1,2], we presented a method for automatic detection of
action items from natural conversation. This method relies on supervised
classification techniques that are trained on data annotated according to
a hierarchical notion of dialogue structure; data which are expensive and
time-consuming to produce. In [3], we presented a meeting browser which
allows users to view a set of automatically-produced action item sum-
maries and give feedback on their accuracy. In this paper, we investigate
methods of using this kind of feedback as implicit supervision, in or-
der to bypass the costly annotation process and enable machine learning
through use. We investigate, through the transformation of human anno-
tations into hypothetical idealized user interactions, the relative utility
of various modes of user interaction and techniques for their interpreta-
tion. We show that performance improvements are possible, even with
interfaces that demand very little of their users’ attention.

1 Introduction

Few communicative events in a working day are more important than group de-
cisions committing to future action. These events mark concrete progress toward
shared goals, and are the bread and butter of face-to-face meetings. However,
information produced in conversation is frequently forgotten or mis-remembered
due to the limited means of memory, attention, and supporting technologies.
Organizations are unable to review their own internal decisions, and individuals
forget their own commitments. This information loss seriously impacts produc-
tivity and causes enormous financial hardship to many organizations [4].

The primary objective of our research is to assist meeting participants by au-
tomatically identifying action items in meetings: public commitments to perform
some concrete future action. Some related work has sought to classify individual
utterances or sentences as action-item-related [5,6,7,8,9]. These approaches have
limited success when applied to multi-party conversational speech: individual
utterances often do not contain sufficient information, as commitment arises not
through utterances in isolation but through the dialogue interaction as a whole.

In contrast, our approach [1,2] employs shallow local dialogue structure, iden-
tifying short subdialogues and classifying the utterances within them as to their
role in defining the action item. This approach improves accuracy and allows

A. Popescu-Belis, S. Renals, and H. Bourlard (Eds.): MLMI 2007, LNCS 4892, pp. 48–59, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Automatic Annotation of Dialogue Structure from Simple User Interaction 49

extraction of specific information about individual semantic properties of the
action item (such as what is to be done and who has agreed to take responsi-
bility for it). However, one negative consequence of this approach is that data
needs to be annotated with this structure – a complex and costly process.

In this paper we investigate the use of user interaction (in combination with
classifier outputs) to automatically annotate previously unseen data, thus pro-
ducing new training data and enabling a system to learn through use alone.

1.1 Action Item Detection

Our methods for annotating action items and automatically detecting them rely
on a two-level notion of dialogue structure. First, short sequences of utterances
are identified as action item discussions, in which an action item is discussed and
committed to. Second, the utterances within these subdialogues are identified as
belonging to zero or more of a set of four specific dialogue act types that can be
thought of as properties of the action item discussion: task description (proposal
or discussion of the task to be performed), timeframe (proposal or discussion
of when the task should be performed), ownership (assignment or acceptance of
responsibility by one or more people), and agreement (commitment to the action
item as a whole or to one of its properties). A description of the annotation
schema and classification method may be found in [1].

1.2 Data Needs and Implicit User Supervision

Because dialogue annotation is resource-intensive, we are interested in methods
for producing annotated data with minimal human effort. Additionally, the char-
acteristics of action item discussion vary substantially across users and meeting
types. We therefore would like the system to learn “in the wild” and adapt to
new observations without the need for any human annotation.

Rather, we would prefer to use implicit user supervision by harnessing subtle
user interactions with the system as feedback that helps to improve performance
over time. Implicit supervision of this kind has proved effective for topic seg-
mentation and identification in meetings [10].

Figure 1 shows a broad view of our architecture for using implicit supervision.
First, a set of utterance classifiers detects the action-item-related dialogue acts in
a meeting and tags them. Then a subdialogue classifier identifies patterns of these
tagged utterances to hypothesize action items. The relevant utterances are then
fed into a summarization algorithm suitable for presentation in a user interface.
From the interface, a user’s interactions with the summarized action items can
be interpreted, providing feedback to a feedback interpreter that updates the
hypothesized action items and utterance tags, which are ultimately treated as
annotations that provide new training data for the classifiers.

1.3 User Interfaces for Meeting Assistance

The following question now arises: What kinds of interfaces could harness user
feedback most effectively?

50 M. Purver, J. Niekrasz, and P. Ehlen

User
Interface

Presentation

Observable
Features

Utterance
Tags

Subdialogue
Tags

Action Item
Summarizer

Feedback
Interpreter

Subdialogue Classifier

Utterance Classifier

Fig. 1. An outline of the action item detection and feedback system

In [3], we described a meeting browser that allows participants to view a set of
automatically hypothesized action item summaries after a meeting. Participants
can confirm a hypothesized action item by adding it to a to-do list, or reject
it by deleting it. They can also change the hypothesized properties (the who,
what, and when for the action item) by selecting from alternate hypotheses or
changing text directly. While a number of meeting browser tools allow users to
inspect different facets of information that might be gleaned from a meeting (see
[11] for an overview), our browser tool was specifically designed to harvest these
ordinary user interactions for implicit user feedback.

Specifically, our browser is designed to verify two types of information: the
time when an action item discussion occurred, and its description in text—
gleaned from the language used in conversation—that contributes to our un-
derstanding of the action item’s properties. Different feedback actions may give
different information about each of these types. For example, overall confirma-
tion tells us that the extracted text descriptions were adequate, and therefore
implicitly confirms that the time period used to extract that text must also have
been correct. Similarly, editing just one property of a hypothesized action item
might tell us that the overall time period was correct, but that one aspect of the
extracted text could have been better.

The distinction between temporal and textual information is important, since
it is not clear which of these provides the most benefit for creating new accurate
training data. And interfaces that emphasize one or the other may vary in their
usefulness and cognitive demands. Certain common types of “meeting interfaces”
(like handwritten notes or to-do lists) may provide information about the text
of an action item, but not about the time it was discussed. Other in-meeting
interfaces could provide temporal information instead of or in addition to text,
such as flags or notes made during the meeting using a PDA, a digital pen, or
electronic note-taking software like SmartNotes [12].

The distinction between user- and system-initiative is also important. A
system-initiative approach might be to identify action items to the user while the
meeting is ongoing, perhaps by popping up a button on a PDA which the user
can confirm or reject. However, a user-initiative approach – allowing the user to

Automatic Annotation of Dialogue Structure from Simple User Interaction 51

either take notes or flag parts of the meeting where action item discussions occur
– might provide more independent information, though perhaps at the cost of
higher cognitive demands on the user. So this third characteristic of initiative,
in addition to the temporal and textual characteristics, could have a profound
effect on the quality of supervision a user can provide as it relates to producing
valuable annotations.

Thus, we wish to address two basic questions in this paper. First, to what
extent do the two informational types of time and text contribute to producing
valuable data for implicit supervision of action item detection? Second, does
user- or computer- initiative produce more valuable information?

2 Method

2.1 Outline

Our goal is to investigate the efficacy of various methods of learning from im-
plicit human supervision by comparing various possible user interfaces that offer
users different capabilities for providing feedback. But rather than implement
all of these possible interfaces to record real feedback data, we compare the best
possible results that each notional interface could achieve, given an “ideal” user.
We simulate this ideal user by using our existing gold-standard annotations and
positing them as user feedback. That is, we use varying amounts of the infor-
mation provided by our gold-standard annotations in an attempt to reproduce
those annotations in their entirety.

The procedure involves the following steps. First, a baseline classifier is trained
on an initial set of human annotations of action items. That classifier then pro-
duces action item hypotheses for a second set of meetings, the learning set. Next,
for each notional user interface, we translate our gold-standard human annota-
tions of the learning set into idealized user feedback interactions – rejecting,
adding, or otherwise editing the action items – while constraining the types of
feedback information (time, text, and initiative) to comply with the constraints
afforded by each interface.

These idealized interactions are then used to modify (“correct”) our
automatically-generated action item hypotheses from the learning set, producing
a new updated set of hypotheses that are used as new training data. The accu-
racy of this updated set can be evaluated by comparing its corrected hypotheses
to the existing human annotations. We can also evaluate the effect of our feed-
back on the classifiers by retraining them on the union of the initial dataset and
the updated dataset, and then testing then again on a third, held-out test set.

2.2 Datasets

For our experiments we use 18 meetings selected from the ICSI Meeting Cor-
pus [13]. The ICSI corpus contains unscripted natural meetings, most of which
are recordings of regularly occurring project group meetings. We have anno-
tated a series of 12 meetings held by the Berkeley “Even Deeper Understanding”

52 M. Purver, J. Niekrasz, and P. Ehlen

project group (code Bed) and an additional 6 meetings selected randomly from
the rest of the corpus. There are a total of 177 action items in the 18 meetings,
with 944 total utterances tagged. This makes an average of 9.8 action items per
meeting and 5.3 utterances per action item.

We distribute the meetings randomly into the three sets described above:
an initial set of meetings for training the baseline classifier, a learning set of
meetings which the system will encounter “in the wild” and learn from through
user feedback, and a test set used for an overall performance evaluation. Each
of these sets has an equal proportion of meetings from the Bed series. These sets
and their human annotations can be summarized as:

– An initial set of meetings I, and the set of human annotations DIH

– A learning set of meetings L, and the set of human annotations DLH

– A test set of meetings T , and the set of human annotations DTH

2.3 Baseline Experiments with No User Input

Using the test set for evaluation, we compare the performance of the re-trained
classifiers to three baseline measures, in which the user is not a factor. The
first baseline, Initial-only, assumes no means of obtaining user input on the L
meetings at all, and thus provides an expected lower bound to the performance:
we simply ignore L and train classifiers only on I. The second, Optimal, is a
ceiling which provides an upper bound by assuming perfect annotation of the
L meetings: we train the classifiers on human annotations of both I and L.
Finally, the third baseline, Naively-retrained, examines the effect of retraining the
classifier on its own output for L (the automatically-produced hypotheses DLA)
without modification by user feedback. The baseline experiments are therefore:

– Initial-only: Train on DIH ; test against DTH

– Optimal : Train on DIH ∪ DLH ; test against DTH

– Naively-retrained : Train on DIH ∪ DLA; test against DTH

2.4 Experiments Involving User Input

For each type of user interface, we perform the following experimental steps:

– Step 1 : Train on DIH

– Step 2 : Produce automatic hypotheses DLA

– Step 3 : Update DLA based on user feedback, producing a dataset DLU

– Step 4 : Test the updated DLU against the gold-standard DLH

– Step 5 : Retrain on DIH ∪ DLU

– Step 6 : Test against DTH and the baselines

We can test the effectiveness of user feedback in two ways. Results can be
presented in terms of the accuracy of the updated hypotheses for L (i.e. directly
measuring agreement between DLH and DLU). Results can also be presented in
terms of the overall effect on classifier performance as tested on T (i.e. measuring
agreement between DTH and DTA, and comparing with the above baselines).

Automatic Annotation of Dialogue Structure from Simple User Interaction 53

3 User Interfaces and Artificial Feedback

We characterize potential interfaces along three dimensions: temporal (whether
an interface provides information about when action items were discussed), tex-
tual (whether it provides information about the properties of the action items),
and initiative (whether interaction is initiated by computer, user, or both).

Accordingly, we can define a set of hypothetical user interfaces, summarized in
Table 1. The Proactive Button provides only user-initiated temporal information,
simply allowing the user to signal that an action item has just occurred at
any time during the meeting – this could be realized as a virtual button on
a tablet PC or PDA, or perhaps digital paper. The Reactive Button provides
computer-initiated temporal information: it tells the user during a meeting when
an action item is detected, requiring the user to confirm or reject (or ignore) the
hypothesis. Again, this could be realized on a PC, PDA, or phone. Our third
interface, Post-meeting Notes, assumes only textual information supplied by the
user after the meeting is finished, either via note-taking software or by scanning
hand-written notes. Our In-meeting Notes interface provides both textual and
temporal information, assuming that the user is willing to take descriptive notes
when action items are discussed (perhaps via collaborative note-taking software).

Table 1. The set of user interfaces investigated

Temporal Textual
Interface Information Information Initiative

Proactive Button Yes No User
Reactive Button Yes No Computer

Post-Meeting Notes No Yes User
In-Meeting Notes Yes Yes User

3.1 Simulating Feedback from “idealized” Users

To simulate feedback as it would be produced by an “ideal” (perfectly informa-
tive and correct) user, we use information from our existing human annotations.

To simulate user-initiated feedback, we need to provide the textual descrip-
tions and/or discussion times of each action item. Times are taken as the end
time of the final utterance in an annotated action item subdialogue. Text infor-
mation is taken from the properties annotated for each individual action item
(the task description, the timeframe description, and the identity of the respon-
sible party). Note that annotators were allowed to specify these properties as
free text, paraphrasing or rewording the actual discussion as needed: there was
no requirement to copy the words or phrases actually used in the transcripts.
While they showed a tendency to re-use important words from the utterances
themselves, this seems entirely natural and we expect that users would behave

54 M. Purver, J. Niekrasz, and P. Ehlen

similarly. Importantly, annotated information about which utterances belong to
a subdialogue, or which utterances play which dialogue act roles, is not used.

To simulate computer-initiated feedback, we must compare the automatic
hypotheses with the gold-standard annotations, and provide negative or posi-
tive feedback accordingly. This requires a criterion for acceptability, which must
vary depending on the interface’s information content. Where temporal infor-
mation only is concerned, we class a hypothesis as correct if its corresponding
subdialogue period overlaps by more than 50% with that of a gold-standard
subdialogue. Where textual information is concerned, we compare each property
description using a string similarity metric, and class a hypothesis as correct if
the similarity is above a given threshold (see below for more details).

3.2 Interpreting Feedback as Annotation

Given these varying degrees of feedback information, our task is now to infer a
complete set of structured action item annotations (both the action item subdia-
logue periods, and the individual utterances which perform the various dialogue
acts within those periods). The inference method depends, of course, on the
amount and type of information provided – a summary is shown in Table 2.

The simplest case is that of overall confirmation or rejection of a computer-
generated hypothesis (as provided by computer-initiated feedback, whether de-
termined on a temporal or textual basis). In this case, we already have a record
of which utterances were involved in generating the hypothesis, and their hy-
pothesized dialogue act types; if confirmed, we can use these types directly as
(positive) annotation labels; if rejected, we can mark all these utterances as
negative instances for all dialogue act types.

The most complex case is that of independent creation of a new action item
(as provided by user-initiated feedback). In this case, we have no information
as to which utterances are involved, but must find the most likely candidates
for each relevant dialogue act type; of course, we may have an indicative time,
or textual descriptions, or both, to help constrain this process. Given only the
time, we must use what prior information we have about the characteristics of
the various dialogue act types: given our approach, this means using the existing
subclassifiers – using each one to assign a confidence to each utterance within
a realistic time window, and labeling those above a given confidence threshold.
However, textual information (if available) can provide more independent evi-
dence, at least for semantically informative dialogue act types. For the purely
textual task description and timeframe acts, we can use an independent similar-
ity measure to score each utterance, and label accordingly;1 for owner acts, where
the owner’s identity usually arises through discourse reference (e.g. personal pro-
nouns) rather than lexical information, we can filter potential utterances based
on their referential compatibility. However, as the agreement act type does not
correspond to any textual information that a user might realistically provide, it
must always be assigned using the existing subclassifier.
1 Our current similarity measure uses a heuristic combination of lexical overlap and

semantic distance (using WordNet [14]); we plan to investigate alternatives in future.

Automatic Annotation of Dialogue Structure from Simple User Interaction 55

Table 2. Inference procedures for each feedback type. Here, “likely” refers to the use
of subclassifier confidences, “relevant” to the use of similarity measures.

Text Time
Feedback Info. Info. Procedure

confirm (Given) (Given) Label all utterances as hypothesized.
reject (Given) (Given) Label all utterances as negative.
edit Yes (Given) Label most relevant utterance(s) in time window.

create No Yes Label most likely utterances in time window.
create Yes Yes Label most relevant utterances in time window.

Other cases such as editing of an individual property of an action item fall in
between these two cases: we use a relevant similarity measure (if text is available)
or the relevant subclassifier (if not) to label the most likely corresponding utter-
ance(s) – but in these cases we have more constraining information (knowledge
of the part of the subdialogue/hypothesis not being edited).

Note that an alternative to purely computer- or user-initiated feedback exists:
we can attempt to interpret user-initiated feedback as implicitly giving feedback
on the computer’s hypotheses. This way, a user specification of an action item
could be interpreted as an implicit confirmation of a suitable overlapping hy-
pothesis (and a rejection of an unsuitable or non-overlapping one) if one exists,
and only as an independent creation otherwise. We investigate both approaches.

3.3 Research Questions

By analyzing these re-interpreted annotations as idealized feedback coming from
different types of interfaces, we hope to answer a few questions.

First, in comparing the two types of time data and text data, will either of
these types prove to be more informative than the other? Will either type prove
itself not valuable at all? A “yes” to either of these questions could save us time
that we might otherwise spend testing interfaces with no inherent promise.

Similarly, since relying on user initiative can burden the user in a way that a
system-initiative interface doesn’t (by requiring the user to keep another task “in
mind” while doing other things), is there any value to a user-initiative system
over and above a system-initiative one? And is there a notable benefit to com-
bining both initiatives, by treating user-initiated actions as implicit confirmation
for system-initiated ones?

Our final question is how the overall performances compare to the base-
line cases. How close is the overall performance enabled by feedback to the
ideal performance achieved when large amounts of gold-standard annotated data
are available (our Optimal ceiling)? Does the use of feedback really provide
better performance than naively using the classifier to re-annotate (the Naively-
retrained baseline)? If not, we must consider the possibility that such
semi-supervised feedback-based training offers little benefit over a totally un-
supervised approach, and save users (and ourselves) some wasted effort.

56 M. Purver, J. Niekrasz, and P. Ehlen

4 Results

We evaluate the experimental results in two separate ways. The first evaluation
directly evaluates the quality of the new training data inferred from feedback on
the L dataset. Tables 3 & 4 report the accuracy of the updated annotations DLU

compared with the gold-standard human annotations DLH , both in terms of the
kappa metric (as widely used to assess inter-annotator agreement [15]) and as F-
scores for the task of retrieving the utterances which should be annotated. Kappa
figures are given for each of the four utterance classes, showing the accuracy in
identifying whether utterances belong to the four separate classes of description,
timeframe, owner, and agreement, together with the figure for all four classes
taken together (i.e. agreement on whether an utterance should be annotated as
action-item-related or not). Table 3 shows these results calculated over individual
utterances; Table 4 shows the same, but calculated over 30-second intervals –
note that training data which assigns, say, the agreement class to an incorrect
utterance, but one which is within a correct subdialogue, may still be useful for
training the overall classifier.

The second evaluation shows the effect on overall performance of re-training on
this new inferred data. Table 5 reports the classifier performance on the test set
T , i.e. the accuracy of the hypothesized DTA compared with the gold-standard
DTH . We show results as F-scores for two retrieval tasks: firstly, identifying the
individual component utterances of action items; and secondly, identifying the
presence of action items within 30-second intervals (an approximation of the task
of identifying action item subdialogues).

The training data quality results (Tables 3 & 4) suggest several possible con-
clusions. Firstly, we see that using either temporal or text information alone
allows improvement over raw classifier accuracy, suggesting that either can be
useful in training. Secondly, combining both types of information (in-meeting
notes) does best. Thirdly, textual information seems to be more useful than
temporal (post-meeting notes do better than either button). This is useful to

Table 3. Utterance-level accuracy for the training annotations inferred from user feed-
back (DLU) in comparison to the gold-standard human annotations (DLH)

Interface Utterance Classes Average
(& implicit hyp use) agreement description timeframe owner Kappa F1

(Raw hypotheses) 0.06 0.13 0.03 0.12 0.13 0.15
Proactive Button 0.22 0.30 0.17 0.37 0.35 0.36

–”– (implicit) 0.21 0.35 0.16 0.35 0.39 0.41
Reactive Button 0.15 0.31 0.09 0.28 0.32 0.33

Post-meeting Notes 0.26 0.65 0.75 0.29 0.56 0.56
–”– (implicit) 0.10 0.32 0.13 0.15 0.25 0.27

In-meeting Notes 0.26 0.72 0.75 0.40 0.61 0.62
–”– (implicit) 0.21 0.61 0.32 0.26 0.52 0.53

Automatic Annotation of Dialogue Structure from Simple User Interaction 57

Table 4. 30-second interval accuracy for the training annotations inferred from user
feedback (DLU) in comparison to the gold-standard human annotations (DLH)

Interface Utterance Classes Average
(& implicit hyp use) agreement description timeframe owner Kappa F1

(Raw hypotheses) 0.13 0.23 0.11 0.22 0.19 0.27
Proactive Button 0.46 0.71 0.30 0.67 0.65 0.68

–”– (implicit) 0.41 0.75 0.44 0.63 0.64 0.67
Reactive Button 0.34 0.51 0.35 0.46 0.42 0.45

Post-meeting Notes 0.39 0.80 0.89 0.43 0.75 0.77
–”– (implicit) 0.19 0.41 0.24 0.29 0.36 0.43

In-meeting Notes 0.43 0.91 0.89 0.53 0.82 0.84
–”– (implicit) 0.43 0.89 0.68 0.62 0.79 0.81

Table 5. The classification accuracy of the retrained classifiers’ hypotheses on the test
set (DTU), and those of the baseline classifiers

Utterances 30-sec Windows
Interface Prec. Recall F1 Prec. Recall F1

Initial-only 0.08 0.13 0.09 0.21 0.27 0.22
Naively-retrained 0.09 0.20 0.12 0.23 0.45 0.30

Optimal 0.19 0.26 0.22 0.47 0.44 0.45

Proactive Button 0.18 0.25 0.21 0.47 0.48 0.46
Reactive Button 0.20 0.26 0.22 0.49 0.55 0.50

Post-meeting Notes 0.14 0.20 0.17 0.41 0.41 0.40
In-meeting Notes 0.16 0.27 0.20 0.42 0.52 0.46

know for interface design; it seems likely that temporal synchrony of interface
actions and actual discussion of action item may be less exact with real users,
so a design which does not have to rely on this synchrony may be advantageous
(see below for a discussion of future experiments to investigate this.)

We also note that user initiative does seem to provide extra information above
that provided by a purely system-initiative approach (proactive beats reactive).
Of course, this may be influenced by the current low overall performance of the
classifiers themselves, and may change as performance improves; however, it does
suggest that a new technology such as action item detection, with inherently high
error rates, is best applied without system initiative until accuracy improves.
Similarly, implicit use of computer hypotheses harms the performance of the
text-based notes; although it seems to marginally help the proactive button.

We note that the absolute level of agreement for utterance-level annotations
is poor, and well below that which might be expected from human annotators.
However, some utterance classes do well in some cases, with task description
and timeframe utterances giving good agreement with the notes-based interfaces

58 M. Purver, J. Niekrasz, and P. Ehlen

(unsurprisingly, these are the utterance classes which convey most of the infor-
mation which a text note might contain). And all interfaces achieve respectable
levels when considered over 30-second intervals, allowing us to expect that these
inferred data could to some extent replace purely human annotation.

The overall performance results (Table 5) show that all kinds of feedback im-
prove the system. All interfaces outperformed the Naively-retrained and Initial-
only baselines; in fact, at the 30-second interval level, all perform approximately
as well as our Optimal ceiling. However, we hesitate to draw strong conclu-
sions from this, as the test set is currently small – we also note that differences
in training data accuracy do not seem to translate directly into the perfor-
mance differences one might expect, and this may also be due to small test set
size.

5 Conclusions and Further Work

These results now lead us directly to the important problem of balancing cog-
nitive load with usefulness of feedback. As intuition predicts, interfaces which
supply more information perform better, with synchronous note-taking the most
useful. But there is a cognitive price to pay with such interfaces. For now, our
results suggest that interfaces like the proactive or reactive buttons, which likely
demand less of users’ attention, can still significantly improve results, as can
post-meeting note-taking, which avoids distractions during the meeting.

Of course, these idealized interactions only give us a Platonic glimpse of what
can be expected from the behavior of actual people working in the shadows of
the real world. So our next step is to run an experiment with human subjects
using these types of interfaces during actual meetings, and compare actual use
data with the results herein in order to understand how well our observations of
these simulated interfaces will extend to actual interfaces, and to ascertain the
level of cognitive effort each interface demands. Then we can hope to determine
an optimal balance between the demands of a “meeting assistant” system and
the demands of the meeting participants who use it.

Future research will also involve efforts to improve overall classifier perfor-
mance, which is currently low. Although action item detection is a genuinely
hard problem, we believe that improvement can be gained both for utterance
and subdialogue classifiers by investigating new classification techniques
and feature sets (for example, the current classifiers use only basic lexical
features).

Our final set of future plans involve exploring new and better ways for inter-
preting user feedback, updating automatically-produced hypotheses, and mak-
ing decisions about retraining. Individual meetings display a high degree of
variability, and we believe that feedback on certain types of meetings (e.g.
planning meetings) will benefit the system greatly, while other types (e.g. pre-
sentations) may not. We will therefore investigate using global qualities of the
updated hypotheses to determine whether or not to retrain on certain meetings
at all.

Automatic Annotation of Dialogue Structure from Simple User Interaction 59

References

1. Purver, M., Ehlen, P., Niekrasz, J.: Detecting action items in multi-party meetings:
Annotation and initial experiments. In: Renals, S., Bengio, S., Fiscus, J.G. (eds.)
MLMI 2006. LNCS, vol. 4299, pp. 200–211. Springer, Heidelberg (2006)

2. Purver, M., Dowding, J., Niekrasz, J., Ehlen, P., Noorbaloochi, S., Peters, S.: De-
tecting and summarizing action items in multi-party dialogue. In: Proceedings of
the 8th SIGdial Workshop on Discourse and Dialogue, Antwerp, Belgium (2007)

3. Ehlen, P., Purver, M., Niekrasz, J.: A meeting browser that learns. In: Proceedings
of the AAAI Spring Symposium on Interaction Challenges for Intelligent Assistants
(2007)

4. Romano, Jr. N.C., Nunamaker, Jr. J.F.: Meeting analysis: Findings from research
and practice. In: Proceedings of the 34th Hawaii International Conference on Sys-
tem Sciences (2001)

5. Cohen, W., Carvalho, V., Mitchell, T.: Learning to classify email into “speech
acts”. In: Proceedings of Empirical Methods in Natural Language Processing, pp.
309–316 (2004)

6. Corston-Oliver, S., Ringger, E., Gamon, M., Campbell, R.: Task-focused summa-
rization of email. In: Proceedings of the 2004 ACL Workshop Text Summarization
Branches Out (2004)

7. Bennett, P.N., Carbonell, J.: Detecting action-items in e-mail. In: Proceedings of
the 28th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, Salvador, Brazil, ACM Press, New York (2005)

8. Gruenstein, A., Niekrasz, J., Purver, M.: Meeting structure annotation: data and
tools. In: Proceedings of the 6th SIGdial Workshop on Discourse and Dialogue,
Lisbon, Portugal (2005)

9. Morgan, W., Chang, P.C., Gupta, S., Brenier, J.M.: Automatically detecting action
items in audio meeting recordings. In: Proceedings of the 7th SIGdial Workshop
on Discourse and Dialogue, Sydney, Australia. Association for Computational Lin-
guistics, pp. 96–103 (2006)

10. Banerjee, S., Rudnicky, A.: Segmenting meetings into agenda items by extracting
implicit supervision from human note-taking. In: IUI 2007. Prooceedings of the
International Conference on Intelligent User Interfaces, Honolulu, Hawaii, ACM
Press, New York (2007)

11. Tucker, S., Whittaker, S.: Accessing multimodal meeting data: Systems, problems
and possibilities. In: Bengio, S., Bourlard, H. (eds.) MLMI 2004. LNCS, vol. 3361,
pp. 1–11. Springer, Heidelberg (2005)

12. Banerjee, S., Rudnicky, A.: Smartnotes: Implicit labeling of meeting data through
user note-taking and browsing. In: Proceedings of the Human Language Techonolgy
Conference of the NAACL (2006) (companion volume)

13. Janin, A., Baron, D., Edwards, J., Ellis, D., Gelbart, D., Morgan, N., Peskin, B.,
Pfau, T., Shriberg, E., Stolcke, A., Wooters, C.: The ICSI meeting corpus. In:
ICASSP. Proceedings of the 2003 International Conference on Acoustics, Speech,
and Signal Processing (2003)

14. Miller, G.A.: WordNet: A lexical database for English. Communications of the
ACM 38(11), 39–41 (1995)

15. Carletta, J.: Assessing agreement on classification tasks: The kappa statistic. Com-
putational Linguistics 22(2), 249–255 (1996)

	Introduction
	Action Item Detection
	Data Needs and Implicit User Supervision
	User Interfaces for Meeting Assistance

	Method
	Outline
	Datasets
	Baseline Experiments with No User Input
	Experiments Involving User Input

	User Interfaces and Artificial Feedback
	Simulating Feedback from ``idealized'' Users
	Interpreting Feedback as Annotation
	Research Questions

	Results
	Conclusions and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

