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 Observe human-human meetings
– Audio recording & speech recognition
– Video recording & gesture/face recognition
– Written and typed notes
– Paper & whiteboard sketches

 Produce a useful record of the interaction …

The CALO Meeting Assistant
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The CALO Meeting Assistant
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A Hard Problem

 Human-human speech is hard
– Informal, ungrammatical conversation
– Overlapping, fragmented speech
– High speech recognition error rates (20-30% WER)

 Open domains are hard
– Don’t necessarily know the vocabulary, concepts, context

 Overhearing is hard
– Can't ask for clarification

 No point trying to understand everything
– Target some useful things that we can understand
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Speech Recognition Errors

 Remember: the real input is from ASR:

– do you have the comments cetera and uh the 
the other is

– you don't have
– i do you want
– oh we of the time align said is that
– i you
– well fifty comfortable with the computer
– mmm
– oh yeah that's the yeah that
– sorry like we're set
– make sure we captive that so this deviates

 Usually better than this, but 20-30% WER
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What would be useful?

 Banerjee et al. (2005) survey of 12 academics:
– Missed meeting - what do you want to know?
– Topics: which were discussed, what was said?
– Decisions: what decisions were made?
– Action items/tasks: was I assigned something?

 Lisowska et al. (2004) survey of 28 people:
– What would you ask a meeting reporter system?
– Similar questions about topics, decisions
– People: who attended, who asked/decided what?
– Did they talk about me?
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Meeting Browser
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Meeting Browser
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Overview

 Topic Identification
– Shallow understanding
– Interactional features can help

 Action Item & Decision Identification
– Targeted understanding
– Exploiting interaction structure is crucial

 “You” resolution
– Specific reference understanding
– Context of interaction (including vision) is crucial
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Topic Identification
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Topic Modelling
• Model topics as probabilistic word 

vectors
– Can find most relevant topic for a 

given time/segment
– … or  likely times/segments for a given 

topic
• Learn the vectors unsupervised

– Latent Dirichlet Allocation
• Assume words generated by  

mixtures of fixed “micro-topics”
• Basic assumptions about model 

distributions
• Random initialization, statistical 

sampling
– Joint inference for topics/segments
– Segmentation accuracy P

k
 ~ 0.33

– Joint work w/ MIT/Berkeley
– (Purver et al., 2006)

T1 = office, website, intelligent, role, logistics …

T4 = demo, text, extract, compose …

T3 = assist, document, command, review  …
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ICSI Topic Identification

 Meetings of ICSI research groups
– Speech recognition, dialogue act tagging, hardware setup, 

meeting recording

– General “syntactic” topic
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Discourse Features

 Topic shifts aren't just indicated by vocabulary 
change
– Changes in speaker activity

– Presence of silence

– Presence of discourse markers “So”, “Anyway”, …

– (see TDT, AMI etc.)

 Including these helps segmentation accuracy

P
k
 = 0.33 → 0.26

WD = 0.36 → 0.33

 (Dowman et al., 2008)
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Meeting Browser
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Meeting Browser
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Conversational Event 
Detection
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Action Items & Decisions
 Problem 1: detect the event regions

– Action item assignment (public commitment to a given task)

– Decision-making (public agreement to a course of action)

 Problem 2: extract useful description (properties)
– Task, responsible party, deadline
– Issue, agreed resolution

 (1) is difficult enough!
 Our approach: use (2) to help (1)

– Discussion regions have characteristic patterns
 Partly due to (semi-independent) discussion of each salient property
 Partly due to nature of decisions as group actions

– Improve accuracy while getting useful information
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Action Item Detection in Email

 (No precedent in dialogue)
 Corston-Oliver et al., 2004

– Marked a corpus of email with “dialogue acts”
– Task act: “items appropriate to add to an ongoing to-do list”

 Bennett & Carbonell, 2005
– Explicitly detecting “action items”

 Good inter-annotator agreement (�  > 0.8)
 Per-sentence/message classification using SVMs

– lexical features e.g. n-grams; punctuation; syntactic parse 
features; named entities; email-specific features (e.g. headers)

– f-scores around 0.6 for sentences
– f-scores around 0.8 for messages
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Can we apply this to dialogue?

 Annotated 65 meetings for action item utterances

– (Gruenstein et al, 2005)
– ICSI Meeting Corpus (Janin et al., 2003)
– ISL Meeting Corpus (Burger et al., 2002)

 Annotator agreement poor (κ = 0.36)
 Try binary classification (Morgan et al., 2006):

– Different classifier types (SVMs, MaxEnt)
– Different features available (no email features; prosody, 

time, dialogue acts)
 Classification accuracy poor

– F-score = 0.32 even on subset of data with best agreement
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Decision Detection in Dialogue

 AMI Project tried similar approach for decisions
– (Hsueh & Moore, 2007)

 Mark utterances as “decision-related”
– Based on whether they belong in an extractive summary

 Binary classification using MaxEnt
– Lexical, prosodic, dialogue act, topic features

 Classification accuracy poor
– F-score = 0.35
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What’s going on?

 Sparse phenomena (1 – 5% of utterances)
 Discussion tends to be split across utterances & people

– Contrast to email, where sentences are complete, tasks described 
in single sentences

 Utterances form a very heterogeneous set

– Perform different dialogue functions

– Address different event attributes
 Difficult for humans to decide which utterances are “relevant”

– cf. Core & Allen (1997) DAMSL 'commit' tag κ = 0.15
– Doesn’t make for very consistent training/test data

 Automatic classification performance is correspondingly poor
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SAQ not really. the there was the uh notion of the preliminary patent, that uh
FDH yeah, it is a cheap patent.
SAQ yeah.
CYA okay.
SAQ which is
FDH so, it is only seventy five dollars.
SAQ and it is it is e an e
CYA hm, that is good.
HHI talk to
SAQ yeah and and it is really broad, you don’t really have to define it as w as much as 

in in a you know, a uh
FDH yeah.
HHI I actually think we should apply for that right away.
CYA yeah, I think that is a good idea.
HHI I think you should, I mean, like, this week, s start moving in that direction. 

just ’cause that is actually good to say, when you present your product to the it 
gives you some instant credibility.

SAQ [Noise]
SAQ mhm.
CYA right.

Discussing an Action Item
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Rethinking Action Items

 Maybe action items are not aptly described as  
singular “dialogue acts”

 Rather: multiple people making multiple 
contributions of several types

 Action item-related utterances represent a form of 
group action, or social action

 That social action has several components, 
giving rise to a heterogeneous set of utterances

 What are those components?
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Action Item
Dialogue Acts

 Four types of dialogue act:
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Action Item
Dialogue Acts

 Four types of dialogue act:
– Description of task

Somebody needs 
to fill out this 

report!
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Action Item
Dialogue Acts

 Four types of dialogue act:
– Description of task
– Owner

Somebody needs 
to fill out this 

report!

I guess I could 
do that.
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Action Item
Dialogue Acts

 Four types of dialogue act:
– Description of task
– Owner
– Timeframe

Can you do it
by tomorrow?
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Action Item
Dialogue Acts

 Four types of dialogue act:
– Description of task
– Owner
– Timeframe
– Agreement

Sure.
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Action Item
Dialogue Acts

 Four types of dialogue act:
– Description of task
– Owner
– Timeframe
– Agreement

Excellent!

Sounds 
good to 

me!

Sweet!

Sure.
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SAQ not really. the there was the uh notion of the preliminary patent, that uh
FDH yeah, it is a cheap patent.
SAQ yeah.
CYA okay.
SAQ which is
FDH so, it is only seventy five dollars.
SAQ and it is it is e an e
CYA hm, that is good.
HHI talk to
SAQ yeah and and it is really broad, you don’t really have to define it as w as much as in in a you 

know, a uh
FDH yeah.
HHI I actually think we should apply for that right away.
CYA yeah, I think that is a good idea.
HHI I think you should, I mean, like, this week, s start moving in that direction. just ’cause 

that is actually good to say, when you present your product to the it gives you some instant 
credibility.

SAQ [Noise]
SAQ mhm.
CYA right.

Discussing an Action Item

Assign owner
Agree

Define task

Define timeframe
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Exploiting discourse structure

 Utterances can play different roles
– Proposing, discussing action item properties

 (semantically distinct properties: task, timeframe)
– Assigning ownership, agreeing/committing

 These subclasses may be more homogeneous & 
distinct than looking for just “action item” utterances
– Could improve classification performance

 The subclasses may be more-or-less independent
– Combining information could improve overall accuracy

 Different roles associated with different properties
– Could help us extract summaries of action items
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A: Are we going to have a backup? 
A: Or we do just–
B: But would a backup really be necessary?
A: I think maybe we could just go for the kinetic energy and be bold 

and innovative. 
C: Yeah.
B: I think– yeah. 
A: It could even be one of our selling points. 
C: Yeah –laugh–. 
D: Environmentally conscious or something. 
A: Yeah. 
B: Okay, fully kinetic energy. 
D: Good.

Discussing a Decision
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A: Are we going to have a backup? 
A: Or we do just–
B: But would a backup really be necessary?
A: I think maybe we could just go for the kinetic energy and be bold 

and innovative. 
C: Yeah.
B: I think– yeah. 
A: It could even be one of our selling points. 
C: Yeah –laugh–. 
D: Environmentally conscious or something. 
A: Yeah. 
B: Okay, fully kinetic energy. 
D: Good.

Discussing a Decision

Restate resolution

Agree

Define issue

Propose resolution



LORIA 11/05/2010

Structured Annotation

 Annotate utterances according to their role in the action 
item/decision discourse
– Assign AIDA/DDA “dialogue act” tags

– Allow multiple tags

– Not all tags required (although always present for decisions)

 Improved inter-annotator agreement
– AIDA �  = 0.86 (timeframe) → 0.73 (agreement/description)

– DDA �  = 0.73 (resolution prop) → 0.63 (agreement)

 Between-class distinction (cosine distances)
– Agreement vs. any other is good: 0.05 to 0.12

– Owner/timeframe/description: 0.36 to 0.47
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Hierarchical Classifier
 Individual “dialogue act” classifiers

– Support vector machines

– Lexical (n-gram) features

– Utterance, speaker features

– Prosody, dialogue act tags, syntactic & 
semantic parse features not so much help

 Event region “super-classifier”

– Features are the sub-classifier outputs over a 
window of N utterances

 Performance for each “act” type compares to 
previous overall performance

– ICSI AIDAs: f-scores 0.1-0.3

– CALO AIDAs: f-scores 0.3-0.5

– AMI DDAs: f-scores 0.2-0.4

– (with a basic set of features)

uNu1 u2 • • •• • •

Linearized utterances

task

ΑΙ

agreement

owner timeframe

• • •
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Event Detection Results
 Evaluation at the utterance level not quite what we want

– Are agreement utterances important? Ownership? Near misses?
– Look at overall discussion f-scores, requiring overlap by 50%

 Action items: 20 ICSI meetings, cross-validated (Purver et al 2007)
– Recall 0.64, precision 0.44, f-score 0.52 (flat baseline 0.35)

– (better on CALO test meetings → 0.67)
 Decisions: 17 AMI meetings, cross-validated (Fernandez et al 2008)

– Recall 0.88, precision 0.43, f-score 0.63 (flat baseline 0.45)
 Slight sub-classifier improvements (but small)
 Robustness to ASR output reasonable

– Use word confusion networks from SRI's Decipher
– Absolute f-score drop AIs 7%, decisions 7%
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The Wrong Classifier!

 Super-classifier is naïve
– SVM: feature array = N x D sub-classifier outputs 

– DA “sequence” expressed as SVM feature index

 Sequence models (HMM, CRF) don't help
– DA sequence is flexible

– Utterances can perform multiple functions

– DDA RR follows RP, but optional and can repeat

– AIDA owner/timeframe unordered

– Agreement can be distributed

 We need something more flexible …
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The Right Classifier?

 Hierarchical directed graphical model (DBN)

 DDA f-scores 0.7 – 0.8 (Bui & Peters, to appear)
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Meeting Browser
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Extracting Summaries
 Structured classifier gives us the relevant utterances

– Hypothesizes which utterances contain which information
– Action item: task, timeframe, owner
– Decision: issue, agreed resolution

 Extract the useful entities/phrases for descriptive text?
– Semantic parsing over WCNs can help in some cases

 e.g. action item timeframe (Purver et al., 2007)
– Time expressions, names, event structures
– But hard to beat presenting 1-best ASR hypothesis

 Can learn to improve given user feedback

– Infer training data, re-learn 

– (Purver et al., 2008; Ehlen et al., 2008)
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Some Good Examples
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Some Bad Examples



LORIA 11/05/2010

Extracting Ownership
 What do we do with personal reference?

– Action item ownership in particular

– Sometimes people use names, but only < 5% of cases
 Much more common to volunteer yourself (“I’ll do X …”) or 

suggest someone else (“Maybe you could …”)
 Self-assignments via “I”: speaker

– Individual microphones, login names
– (otherwise, it’s a speaker ID problem)

 Other-assignments “you”: addressee
– Addressee ID is hard, but approachable
– (Katzenmaier et al., 2004; Jovanovic et al., 2006, 70-80% accuracy)
– Need to know when “you” refers to the addressee …
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“You”-resolution
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Second-Person Pronouns

 What does “you” refer to?
– (the addressee, right?)
– In two-party dialogue, this seems trivial … 

 In multi-party dialogue, it's not
– Who is the addressee?
– Who are the addressees?

 Actually, in two-party dialogue, it's not either
– “You” is often not addressee-referring at all
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Does “you” refer?

 Deictic “you” refers to the addressee:
– “I'm not going to do it. You do it.”

– “Could you send me an email?”

 Generic “you” refers to no-one in particular:
– “On entering the church you are struck by the stained glass 

windows”

– “If you send an email they just ignore it”

– cf. French “on”?

 Discourse markers aren't referential at all:
– “It's just, you know, noises or something.”
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How many addressees?

 Sometimes just one:
– “Tim, I think you should do it.”

 Sometimes more than one:
– “Do you guys have any questions?”
– “Tim and Tina, you should do this.”
– “How are y'all doing?”
– cf. French “vous”?

 A subset of those present? Everyone?



LORIA 11/05/2010



LORIA 11/05/2010

“You” categories

 10 meetings from AMI corpus (4 participants)

– 948 “you”-containing utterances

– Good inter-annotator agreement (κ = 0.84)

Discourse marker 72  8%

Generic 431 45%

Deictic 445 47%

Singular 290 68%

Plural 137 32%

Everyone 130

Subgroup 7 (< 2%)
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“You” addressees

 Can treat people as individuals (4 classes)
– Designer, marketer, manager, UI person

 Or by position relative to speaker (3 class)
– L1 = opposite, L2 = diagonal, L3 = next to

ID ME PM UI Total

80 70 51 89 290

28% 24% 18% 31%

L1 L2 L3 Total

102 88 100 290

35% 30% 35%
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“You” categories

 No examples with multiple classes/addressees
– although it certainly seems possible:
– “Do you think that if you do something generic …”
– “Tom, you do this, and Tina, you do that”

 Except: discourse marker + something else
– “You know, I think you should do that, Tom.”

 But: discourse markers are easy
– “¬(do|as) you know ¬(how|that)” → 99% accuracy

 So remove them, and work per utterance
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“You” resolution

 5-way or 6-way problem
– generic, L1, L2, L3, plural

– generic, ID, ME, PM, UI, plural

 Not quite the same as general addressee ID
– See (Katzenmaier et al., 2004; Jovanovic et al., 2007)

 Multiple sources of information:
– Transcripts (manual/ASR)

– Dialogue act tags (manual/automatic)

– Speaker diary (close-talking mics)

– Video? (webcams with relative positioning)
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Intra-utterance Features
 Sentential patterns

– “if you”, “whenever”, etc. → generic? 

– “do you”, “have you”, “you said” → deictic?

– “Tom”, “Tina” etc. → addressee? “you guys” → plural?

 Prosody
– Pitch, intensity of “you” (more stressed → deictic?)

– Duration, speech rate (generic → faster?)

 Dialogue acts
– Commands, questions → deictic?

 Lexical
– All words, ngrams
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Context Features

 Speaker activity
– Who speaks next? 

 (and after that …)

– Who spoke last?
 (and before that ...)

 Utterance context
– Overlaps, long pauses → not addressee?
– Common material → addressee?
– Dialogue act combinations → addressee?
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Visual Features

 Who's the speaker looking at?
– During the “you”
– During the start/end of the utterance

 Who's looking at the speaker?
– At various points

 Is there mutual gaze?
 Is there an (un)equal distribution?
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Chuck it all in?

 Bayesian Network classifier
– 10-fold cross-validation

 Fairly poor performance
– Baseline 51% accuracy (always generic)
– Best 62% accuracy (→ 56% with ASR/auto features)
– F-scores:

 75% for generic
 41% for plural
 38-60% for individual addressees
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Different problems ...

 Some aspects seem sentential
– generic vs deictic distinction

 Some aspects seem interactional
– individual addressee reference

 Some might be in between
– singular vs plural distinction

 Should we treat them differently?
– reduced feature space, optimal classifiers ...
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Generic vs Deictic

 Sentential features do well (79%)
– Generic words “always” etc.; multiple “you”s

– Names, first-person pronouns

 Fully lexicalizing does best (88% → 85% with ASR)
– Dialogue act-relevant n-grams

– Vocabulary: meeting topic → generic; management → deictic

 Context features don't help at all

 Visual features beat the baseline (60%)
– But don't help above anything else

 Perhaps this problem is really sentential?
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Singular vs Plural

 Baseline 69% accuracy (singular) 

 Sentential features (lexicalizing) best (83% → 77% ASR)
– Plural reference (“we”)

– Questioning (singular) vs statement (plural)

 Context features beat the baseline
– Speaker activity (one speaker → plural)

– Utterance similarity (higher → singular)

– But don't help above lexicalizing

 Visual features don't help at all (66%)
– (although gaze at whiteboard → plural)
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Singular Reference

 Context features excellent
– Baseline = “next speaker”: 71% (MC baseline 35%)

 Sentential features alone poor (49%)

 Context features good (72%)
– Next speaker(s), previous speaker(s)

– Intervening time/utterances, utterance similarities

– Backward-looking only (online) 59%

 Visual features good (74%)

 Combining them even better (84% → 74% ASR/auto)

 Perhaps this problem isn't really sentential?
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Cascaded Classification

 Treat the problems separately (pipeline)
 Generic vs. deictic

→ plural vs singular

→ individual reference

 Use context where it's helpful
 Use vision where it's helpful
 Optimise techniques/features for each

– 78% accuracy (→ 72% ASR/auto)
– Individual speaker f-scores 0.64 → 0.83
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Conclusions?

 Some problems are really about language
 Some problems really aren't …

– take context (interactional, visual) into account!

 Multi-party dialogue is complicated
– even “simple” problems get hard
– take context (interactional, visual) into account!
– (even if you can't model it fully.)
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