Grammar Induction in an Incremental Type-Theoretic Framework

Matthew Purver with Arash Eshghi, Julian Hough, Ruth Kempson et al

Cognitive Science Group School of Electronic Engineering and Computer Science Queen Mary, University of London

RISER project - EPSRC EP/J010383/1
Robust Incremental SEmantic Resources for Dialogue

1/65

Dialogue is Incremental

We don't always speak in "complete" sentences

```
A: So what is that? Is that er ... booklet or something?
B: It's a [[book]]
C: [[Book]]
B: Just ... [[talking about al— you know alternative]]
D: [[On erm ... renewable yeah]]
B: energy really I think
A: Yeah [BNC D97 2038-2044]
```

Dialogue is Incremental

We don't always speak in "complete" sentences

```
A: So what is that? Is that er ... booklet or something?
B: It's a [[book]]
C: [[Book]]
B: Just ... [[talking about al— you know alternative]]
D: [[On erm ... renewable yeah]]
B: energy really I think
A: Yeah [BNC D97 2038-2044]
```

- We're not dealing with individual grammatical sentences
- What does this tell us for grammar, parser, generator?
- Can we build (or learn) a suitable grammar?

Outline

- Dialogue & Incrementality
 - Compound Contributions
 - Requirements for Grammar
- Tools for Incrementality: DS and TTR
 - Dynamic Syntax (Kempson et al, 2001)
 - Type Theory with Records
 - DS/TTR: The DYLAN Framework
 - Filling the Gaps
- Learning Incremental Grammar
 - Problem and Background
 - Hypothesising Lexical Entries
 - Learning Lexical Entries

Dialogue is Incremental

We don't always speak in "complete" sentences

```
A: So what is that? Is that er ... booklet or something?

B: It's a [[book]]

C: [[Book]]

B: Just ... [[talking about al— you know alternative]]

D: [[On erm ... renewable yeah]]

B: energy really I think
```

[BNC D97 2038-2044]

A:

Yeah

Dialogue is Incremental

We don't always speak in "complete" sentences

```
A: So what is that? Is that er ... booklet or something?

B: It's a [[book]]

C: [[Book]]

B: Just ... [[talking about al— you know alternative]]

D: [[On erm ... renewable yeah]]
```

B: energy really I think

A: Yeah [BNC D97 2038-2044]

- Nearly 20% of BNC contributions continue another
- Over 70% continue something already apparently complete
- Pauses, role changes, continuations, self/other repair . . .
- Incremental parsing & generation, highly coordinated

Incremental Processing

BNC KND 160-164

- A: So if you start at the centre [pause] and draw a line and mark off seventy two degrees,
- B: Mm.
- and then mark off another seventy two degrees and another seventy two degrees and another seventy two degrees and join the ends,
- B: Yeah.
- A: you'll end up with a regular pentagon.

Incremental Processing

BNC KND 160-164

- A: So if you start at the centre [pause] and draw a line and mark off seventy two degrees,
- B: Mm.
- and then mark off another seventy two degrees and another seventy two degrees and another seventy two degrees and join the ends,
- B: Yeah.
- A: you'll end up with a regular pentagon.
- NLG must be suspended and restarted in context
- NLU must be suspended and restarted in context

BNC KPY 1005-1008

- A: And er they X-rayed me, and took a urine sample, took a blood sample. Er, the doctor
- B: Chorlton?
- A: Chorlton, mhm, he examined me, erm, he, he said now they were on about a slide [unclear] on my heart.

6/65

BNC KPY 1005-1008

- A: And er they X-rayed me, and took a urine sample, took a blood sample. Er, the doctor
- B: Chorlton?
- A: Chorlton, mhm, he examined me, erm, he, he said now they were on about a slide [unclear] on my heart.
 - NLG \rightarrow NLU \rightarrow NLG, in context

BNC KPY 1005-1008

- A: And er they X-rayed me, and took a urine sample, took a blood sample. Er, the doctor
- B: Chorlton?
- A: Chorlton, mhm, he examined me, erm, he, he said now they were on about a slide [unclear] on my heart.
 - NLG \rightarrow NLU \rightarrow NLG, in context
 - Partial interpretations must be available

BNC KPY 1005-1008

- A: And er they X-rayed me, and took a urine sample, took a blood sample. Er, the doctor
- B: Chorlton?
- A: Chorlton, mhm, he examined me, erm, he, he said now they were on about a slide [unclear] on my heart.
- NLG \rightarrow NLU \rightarrow NLG, in context
- Partial interpretations must be available
- Linguistic context must be available

Antecedent Completeness

BNC H5H 110-111

A: Before that then if they were ill

B: They get nothing.

Antecedents often syntactically/semantically incomplete

Antecedent Completeness

BNC H5H 110-111

- A: Before that then if they were ill
- B: They get nothing.
 - Antecedents often syntactically/semantically incomplete
 - But sometimes already complete:

BNC FUK 2460-2461

- A: The profit for the group is a hundred and ninety thousand pounds.
- B: Which is superb.

Antecedent Completeness

BNC H5H 110-111

- A: Before that then if they were ill
- B: They get nothing.
 - Antecedents often syntactically/semantically incomplete
 - But sometimes already complete:

BNC FUK 2460-2461

- A: The profit for the group is a hundred and ninety thousand pounds.
- B: Which is superb.
 - Need representations which can be extended incrementally

7/65

Syntactic Dependencies

A: I'm afraid I burnt the kitchen ceiling

B: But have you

A: burned myself? Fortunately not.

Syntactic Dependencies

A: I'm afraid I burnt the kitchen ceiling

B: But have you

A: burned myself? Fortunately not.

Syntactic dependencies apply (context-dependent)

Syntactic Dependencies

A: I'm afraid I burnt the kitchen ceiling

B: But have you

A: burned myself? Fortunately not.

- Syntactic dependencies apply (context-dependent)
- But they can't be defined over strings

Syntactic Dependencies

- A: I'm afraid I burnt the kitchen ceiling
- B: But have you
- A: burned myself? Fortunately not.
 - Syntactic dependencies apply (context-dependent)
 - But they can't be defined over strings

Syntactic Constituents

- A: whereas qualitative is [pause] you know what the actual variations
- B: entails

Syntactic Dependencies

- A: I'm afraid I burnt the kitchen ceiling
- B: But have you
- A: burned myself? Fortunately not.
 - Syntactic dependencies apply (context-dependent)
 - But they can't be defined over strings

Syntactic Constituents

- A: whereas qualitative is [pause] you know what the actual variations
- B: entails
 - Syntactic constituency not respected

Not Always Collaborative

Lerner (1991)

Daughter: Oh here dad, a good way to get those corners out

Dad: is to stick yer finger inside.

Daughter: well, that's one way.

Not Always Collaborative

Lerner (1991)

Daughter: Oh here dad, a good way to get those corners out

Dad: is to stick yer finger inside.

Daughter: well, that's one way.

Not just plan recognition and extension

Outline

- Dialogue & Incrementality
 - Compound Contributions
 - Requirements for Grammar
- Tools for Incrementality: DS and TTR
 - Dynamic Syntax (Kempson et al, 2001)
 - Type Theory with Records
 - DS/TTR: The DYLAN Framework
 - Filling the Gaps
- Learning Incremental Grammar
 - Problem and Background
 - Hypothesising Lexical Entries
 - Learning Lexical Entries

- Incrementality
 - Processing language word by word

- Incrementality
 - Processing language word by word
- Incremental interpretation
 - Maximal semantic content calculated at each step

- Incrementality
 - Processing language word by word
- Incremental interpretation
 - Maximal semantic content calculated at each step
- Incremental representation
 - Contribution of each word/unit to representations built

- Incrementality
 - Processing language word by word
- Incremental interpretation
 - Maximal semantic content calculated at each step
- Incremental representation
 - Contribution of each word/unit to representations built
- Incremental context
 - Context added to and read from incrementally

- Incrementality
 - Processing language word by word
- Incremental interpretation
 - Maximal semantic content calculated at each step
- Incremental representation
 - Contribution of each word/unit to representations built
- Incremental context
 - Context added to and read from incrementally
- Reversibility
 - Representations common between parsing and generation

- Incrementality
 - Processing language word by word
- Incremental interpretation
 - Maximal semantic content calculated at each step
- Incremental representation
 - Contribution of each word/unit to representations built
- Incremental context
 - Context added to and read from incrementally
- Reversibility
 - Representations common between parsing and generation
- Extensibility
 - Representations extendable even for complete antecedents

Previous Approaches - Parsing

- Psycholinguistic Models (Sturt, Crocker)
- Computational Models (Roark, Hale)
 - Efficient, predictive parsing models
 - Based on string-licensing syntactic grammars

Previous Approaches - Parsing

- Psycholinguistic Models (Sturt, Crocker)
- Computational Models (Roark, Hale)
 - Efficient, predictive parsing models
 - Based on string-licensing syntactic grammars
- Categorial Grammar (Steedman, Clark, Milward)
 - Well-defined syntax/semantics interface
 - Incremental parsing by type-raising requires look-ahead
 - (although see Hefny et al, 2001)

Previous Approaches - Generation

- Psycholinguistic models (De Smedt, Kempen, Guhe)
 - Modular / parallel generator components
 - Strategic → tactical generator components
 - Not left-to-right linguistic processing

Previous Approaches - Generation

- Psycholinguistic models (De Smedt, Kempen, Guhe)
 - Modular / parallel generator components
 - Strategic → tactical generator components
 - Not left-to-right linguistic processing
- Self-Monitoring Models (Neumann, van Noord)
 - Interleaved parsing ↔ generation
 - Not left-to-right linguistic processing

Previous Approaches - Collaborative Completions

- Formal model (Poesio & Rieser)
 - Lexicalised TAG
 - PTT for dialogue/utterance context
 - Detailed plan recognition

Previous Approaches - Collaborative Completions

- Formal model (Poesio & Rieser)
 - Lexicalised TAG
 - PTT for dialogue/utterance context
 - Detailed plan recognition
- String-licensing grammar
- NLU/NLG interface unclear
- Relies on collaborative plan recognition

Previous Approaches - Dialogue

- General abstract model (Schlangen & Skantze)
- Incremental NLU (Schlangen, Buss, Peldszus, Aist et al)
 - Faster NLU and reference resolution
- Incremental NLG (Skantze, Hjalmarsson)
 - Faster, more natural generation with repair

Previous Approaches - Dialogue

- General abstract model (Schlangen & Skantze)
- Incremental NLU (Schlangen, Buss, Peldszus, Aist et al)
 - Faster NLU and reference resolution
- Incremental NLG (Skantze, Hjalmarsson)
 - Faster, more natural generation with repair
- NLU/NLG reversibility?
- Linguistic structure, constraints?
- Linguistic context?

An incremental grammar formalism for parsing and generation

- An incremental grammar formalism for parsing and generation
 - Dynamic Syntax (Kempson et. al., 2001)

- An incremental grammar formalism for parsing and generation
 - Dynamic Syntax (Kempson et. al., 2001)
- Ideally, a domain general formalism for (sub-propositional) semantic representation (which could interface easily with domain (frame) semantics)

- An incremental grammar formalism for parsing and generation
 - Dynamic Syntax (Kempson et. al., 2001)
- Ideally, a domain general formalism for (sub-propositional) semantic representation (which could interface easily with domain (frame) semantics)
 - Type Theory with Records (TTR) (Cooper, 2005)

- An incremental grammar formalism for parsing and generation
 - Dynamic Syntax (Kempson et. al., 2001)
- Ideally, a domain general formalism for (sub-propositional) semantic representation (which could interface easily with domain (frame) semantics)
 - Type Theory with Records (TTR) (Cooper, 2005)
- An incremental dialogue framework

- An incremental grammar formalism for parsing and generation
 - Dynamic Syntax (Kempson et. al., 2001)
- Ideally, a domain general formalism for (sub-propositional) semantic representation (which could interface easily with domain (frame) semantics)
 - Type Theory with Records (TTR) (Cooper, 2005)
- An incremental dialogue framework
 - Jindigo (Schlangen & Skantze, 2009)

Outline

- Dialogue & Incrementality
 - Compound Contributions
 - Requirements for Grammar
- Tools for Incrementality: DS and TTR
 - Dynamic Syntax (Kempson et al, 2001)
 - Type Theory with Records
 - DS/TTR: The DYLAN Framework
 - Filling the Gaps
- Learning Incremental Grammar
 - Problem and Background
 - Hypothesising Lexical Entries
 - Learning Lexical Entries

Dynamic Syntax

- An inherently incremental grammatical framework
- Word-by-word construction of semantic interpretation:
 - "trees" = semantic representations defined using LoFT (Blackburn & Meyer-Viol, 1994)
 - nodes interpretable as terms in the λ -calculus
 - "syntax" = constraints on semantic structure-building
 - "grammar" = set of procedures for incremental parsing
 - computational and lexical actions
- Trees decorated with Ty() type and Fo() formula labels
 - Monotonic growth driven by requirements ? Ty(e)
 - NPs map onto terms of type e using the ϵ -calculus.
 - Daughter order does not reflect sentence order!

Unfolding then building up the tree

Parsing John fainted

$$?Ty(t), \diamondsuit$$

Unfolding then building up the tree

Parsing John fainted

INTRODUCTION

Unfolding then building up the tree

Parsing John fainted

PREDICTION

Parsing John fainted


```
IF ?Ty(e)
```

THEN put(Fo(john));

put(Ty(e))

ELSE ABORT

Parsing John fainted

Unfolding then building up the tree

Parsing John fainted

THINNING

Unfolding then building up the tree

Parsing John fainted

COMPLETION

Parsing John fainted

PREDICTION

Parsing John fainted

Parsing John fainted

THINNING, COMPLETION

Parsing John fainted

ELIMINATION

Parsing John fainted ightharpoonup faint(john) ightharpoonup faint(john) $ightharpoonup Ty(t), \diamondsuit$ ightharpoonup Ty(e o t) ightharpoonup john $ightharpoonup \lambda y. faint(y)$

?
$$Ty(t)$$
, \diamondsuit

$$? Ty(t), \diamondsuit$$

$$? Ty(e) ? Ty(e \rightarrow t)$$

$$?\mathit{Ty}(t)$$

$$\diamondsuit, ?\mathit{Ty}(e) ?\mathit{Ty}(e \to t)$$

$$? Ty(t)$$

$$\diamondsuit, ? Ty(e) ? Ty(e \rightarrow t)$$

?
$$Ty(t)$$
 \diamondsuit , $Ty(e)$? $Ty(e \rightarrow t)$ $john$

There's more ...

- "Unfixed" nodes building underspecified tree relations
 - e.g. for left-dislocation "Mary, John likes"
- LINKed trees evaluated as conjunction
 - e.g. for relative clauses "John, who snores, arrived"
- Metavariables for anaphoric elements
 - to be resolved from items/actions in context
 - intrasentential too: relative clauses as above

How are we doing?

- Incrementality
 - Processing language word by word
- Incremental interpretation
 - Maximal semantic content calculated at each step
- Incremental representation
 - Contribution of each word/unit to representations built
- Incremental context
 - Context added to and read from incrementally
- Reversibility
 - Representations common between parsing and generation
- Extensibility
 - Representations extendable even for complete antecedents

How are we doing?

- Incrementality ✓
 - Processing language word by word
- Incremental interpretation
 - Maximal semantic content calculated at each step
- Incremental representation
 - Contribution of each word/unit to representations built
- Incremental context
 - Context added to and read from incrementally
- Reversibility
 - Representations common between parsing and generation
- Extensibility

RISER

Representations extendable even for complete antecedents

22/65

How are we doing?

- Incrementality ✓
 - Processing language word by word
- Incremental interpretation?
 - Maximal semantic content calculated at each step
- Incremental representation
 - Contribution of each word/unit to representations built
- Incremental context
 - Context added to and read from incrementally
- Reversibility
 - Representations common between parsing and generation
- Extensibility

RISER

Representations extendable even for complete antecedents

22/65

- Incrementality ✓
 - Processing language word by word
- Incremental interpretation?
 - Maximal semantic content calculated at each step
- Incremental representation X
 - Contribution of each word/unit to representations built
- Incremental context
 - Context added to and read from incrementally
- Reversibility
 - Representations common between parsing and generation
- Extensibility
 - Representations extendable even for complete antecedents

22/65

- Incrementality√
 - Processing language word by word
- Incremental interpretation?
 - Maximal semantic content calculated at each step
- Incremental representation X
 - Contribution of each word/unit to representations built
- Incremental context
 - Context added to and read from incrementally
- Reversibility
 - Representations common between parsing and generation
- Extensibility
 - Representations extendable even for complete antecedents

- Incrementality√
 - Processing language word by word
- Incremental interpretation?
 - Maximal semantic content calculated at each step
- Incremental representation X
 - Contribution of each word/unit to representations built
- Incremental context
 - Context added to and read from incrementally
- Reversibility √
 - Representations common between parsing and generation
- Extensibility
 - Representations extendable even for complete antecedents

- Incrementality ✓
 - Processing language word by word
- Incremental interpretation?
 - Maximal semantic content calculated at each step
- Incremental representation X
 - Contribution of each word/unit to representations built
- Incremental context
 - Context added to and read from incrementally
- Reversibility √
 - Representations common between parsing and generation
- Extensibility?
 - Representations extendable even for complete antecedents

Some specific shortcomings

- FOL/ε-calculus formulae
 - how do we extend complete formulae?
 - dialogue systems tend to prefer DRT/frames
- Generation requires a goal tree
 - i.e. knowledge of how the LF is to be compiled
- No principled way to incorporate context information
 - e.g. constraints over speaker/hearer identity

Outline

- Dialogue & Incrementality
 - Compound Contributions
 - Requirements for Grammar
- Tools for Incrementality: DS and TTR
 - Dynamic Syntax (Kempson et al, 2001)
 - Type Theory with Records
 - DS/TTR: The DYLAN Framework
 - Filling the Gaps
- Learning Incremental Grammar
 - Problem and Background
 - Hypothesising Lexical Entries
 - Learning Lexical Entries

Type Theory With Records

- (Cooper, 2005; Betarte & Tasistro, 1998), following Martin-Löf
- Records are sequences of label/value pairs:

$$\left[\begin{array}{cc} I_1 = V_1 \\ I_2 = V_2 \\ I_3 = V_3 \end{array}\right]$$

• Record types are sequences of label/type pairs:

$$\begin{bmatrix}
l_1 : T_1 \\
l_2 : T_2 \\
l_3 : T_3
\end{bmatrix}$$

- Record types are true iff they are inhabited/witnessed
- But you guys know this stuff.

Type Theory With Records

Well-defined subtype-supertype relations:

$$\begin{bmatrix} I_1 : T_1 \end{bmatrix} \sqsubseteq \begin{bmatrix} I_1 : T_2 \end{bmatrix} \quad \text{if} \quad T_1 \sqsubseteq T_2$$
$$\begin{bmatrix} I_1 : T_1 \\ I_2 : T_2 \end{bmatrix} \sqsubseteq \begin{bmatrix} I_1 : T_1 \end{bmatrix}$$

Manifest (singleton) types:

```
[x: john] \sqsubset [x:e] if john \sqsubset e [x_{=john}:e]
```

- Dialogue modelling in the information state tradition
 - (Cooper & Ginzburg, 2002; Ranta & Cooper, 2004; Fernandez, 2006; Ginzburg, 2012)

The best of both worlds?

- TTR gives us a type-theoretic framework, applicable to dialogue phenomena
- DS gives us an incremental framework using type theory as an underlying mechanism
- Can we combine the two?

The best of both worlds?

- TTR gives us a type-theoretic framework, applicable to dialogue phenomena
- DS gives us an incremental framework using type theory as an underlying mechanism
- Can we combine the two?

$$\Diamond$$
, leave(john), $\mathit{Ty}(t)$ john, $\lambda x.\mathit{leave}(x)$, $\mathit{Ty}(e)$ $\mathit{Ty}(e \to t)$

The best of both worlds?

- TTR gives us a type-theoretic framework, applicable to dialogue phenomena
- DS gives us an incremental framework using type theory as an underlying mechanism
- Can we combine the two?

Outline

- Dialogue & Incrementality
 - Compound Contributions
 - Requirements for Grammar
- Tools for Incrementality: DS and TTR
 - Dynamic Syntax (Kempson et al, 2001)
 - Type Theory with Records
 - DS/TTR: The DYLAN Framework
 - Filling the Gaps
- Learning Incremental Grammar
 - Problem and Background
 - Hypothesising Lexical Entries
 - Learning Lexical Entries

Combining DS with TTR

Replace Fo() ε-calculus labels with TTR record types

IF
$$?Ty(e)$$

THEN $put(Ty(e))$
 $put(Fo(john))$
ELSE abort

Combining DS with TTR

• Replace Fo() ϵ -calculus labels with TTR record types

Combining DS with TTR

- Replace Fo() ε-calculus labels with TTR record types
- Interpret Ty() labels as referring to final TTR field type

Combining DS with TTR

- Replace Fo() ϵ -calculus labels with TTR record types
- Interpret Ty() labels as referring to final TTR field type

Combining DS with TTR

- Replace Fo() ε-calculus labels with TTR record types
- Interpret Ty() labels as referring to final TTR field type
- Function application as before for DS elimination

Combining DS with TTR

- Replace Fo() ε-calculus labels with TTR record types
- Interpret Ty() labels as referring to final TTR field type
- Function application as before for DS elimination

Adding in LINK relations

For LINKed trees, we need conjunction

"Bill, who fainted, smokes."

$$smoke(bill) \land faint(bill)$$

$$bill \quad \lambda x.smoke(x)$$

$$\mathbf{L}$$

$$faint(bill)$$

$$bill \quad \lambda x.faint(x)$$

Adding in LINK relations

- For LINKed trees, we need conjunction
- Use extension: \oplus where $r_1 \oplus r_2$ adds r_2 to the end of r_1
 - (for distinct labels; identical fields collapse (Cooper, 1998))

"Bill, who fainted, smokes."

Adding in LINK relations

- For LINKed trees, we need conjunction
- Use extension: \oplus where $r_1 \oplus r_2$ adds r_2 to the end of r_1
 - (for distinct labels; identical fields collapse (Cooper, 1998))

"Bill, who fainted, smokes."

$$smoke(bill) \land faint(bill)$$

$$bill \quad \lambda x.smoke(x)$$

$$L$$

$$faint(bill)$$

$$bill \quad \lambda x.faint(x)$$

$$\begin{bmatrix} x_{=bill} & : & e \\ p_{=smoke(bill)} & : & t \\ q_{=faint(bill)} & : & t \end{bmatrix}$$

$$\begin{bmatrix} x_{=bill} & : & e \\ \end{bmatrix} \lambda \begin{bmatrix} x \end{bmatrix} \cdot \begin{bmatrix} p_{=smoke(x)} & : & t \\ p_{=faint(x)} & : & t \end{bmatrix}$$

$$\begin{bmatrix} x_{=bill} & : & e \\ q_{=faint(x)} & : & t \end{bmatrix}$$

Outline

- Dialogue & Incrementality
 - Compound Contributions
 - Requirements for Grammar
- Tools for Incrementality: DS and TTR
 - Dynamic Syntax (Kempson et al, 2001)
 - Type Theory with Records
 - DS/TTR: The DYLAN Framework
 - Filling the Gaps
- Learning Incremental Grammar
 - Problem and Background
 - Hypothesising Lexical Entries
 - Learning Lexical Entries

Root Node Type Deduction

$$7y(e \rightarrow e \rightarrow t),$$

$$\lambda [y:e] .\lambda [x:e] \begin{bmatrix} x & : e \\ y & : e \\ p_{=like(x,y)} & : t \end{bmatrix}$$

Root Node Type Deduction

?
$$Ty(e)$$
,
$$? Ty(e) \rightarrow t),$$

$$[x_{=john} : e]$$

$$\begin{array}{c|cccc} \hline \textit{Ty}(\textbf{e} \rightarrow \textbf{e} \rightarrow t), \\ ?\textit{Ty}(\textbf{e}), & & & & & & \\ [y : \textbf{e}] & & \lambda [y : \textbf{e}] . \lambda [x : \textbf{e}] \begin{bmatrix} x & & & & \\ y & & & & \\ p_{=\textit{like}(x,y)} & & & t \end{bmatrix} \\ \end{array}$$

Root Node Type Deduction

Root Node Type Deduction

$$? \textit{Ty}(t), \begin{bmatrix} x_{=john} & : & e \\ y & : & e \\ p_{=like(x,y)} & : & t \end{bmatrix}$$

$$? \textit{Ty}(e), \\ [x_{=john} : e] \qquad \lambda [x : e]. \begin{bmatrix} x & : & e \\ y & : & e \\ p_{=like(x,y)} & : & t \end{bmatrix}$$

$$? \textit{Ty}(e), \\ [y : e] \qquad \lambda [y : e]. \lambda [x : e] \begin{bmatrix} x & : & e \\ y & : & e \\ p_{=like(x,y)} & : & t \end{bmatrix}$$

Root Node Type Deduction

$$Ty(t), \begin{bmatrix} x_{=john} & : & e \\ y_{=mary} & : & e \\ p_{=like(x,y)} & : & t \end{bmatrix}$$

$$Ty(e), \begin{bmatrix} x & : & e \\ y_{=mary} & : & e \\ p_{=like(x,y)} & : & t \end{bmatrix}$$

$$\lambda \begin{bmatrix} x & : & e \\ y_{=mary} & : & e \\ p_{=like(x,y)} & : & t \end{bmatrix}$$

$$Ty(e), \begin{bmatrix} x & : & e \\ y_{=mary} & : & e \\ p_{=like(x,y)} & : & t \end{bmatrix}$$

$$\lambda \begin{bmatrix} y : e \end{bmatrix} . \lambda \begin{bmatrix} x & : & e \\ y & : & e \\ p_{=like(x,y)} & : & t \end{bmatrix}$$

Generation from Goal Concepts

We can now generate from a goal concept (not tree)

We can now generate from a goal concept (not tree)

We can now generate from a goal concept (not tree)

Gen: "John

We can now generate from a goal concept (not tree)

Gen: "John

Generation from Goal Concepts

We can now generate from a goal concept (not tree)

Gen: "John fainted"

We can now generate from a goal concept (not tree)

Gen: "John fainted"

Generation from Goal Concepts

We can now generate from a goal concept (not tree)
 GOAL CONCEPT
 TEST TREE
 ?Ty(t), ◊

$$\left[\begin{array}{cc} x_{=john} & : & e \\ p_{=faint(x)} & : & t \end{array}\right]$$

Generation from Goal Concepts

We can now generate from a goal concept (not tree)
 GOAL CONCEPT
 TEST TREE
 ?Ty(t).

$$\left[\begin{array}{cc} X_{=john} & : & \mathsf{e} \\ p_{=faint(x)} & : & t \end{array}\right]$$

$$\Diamond$$
, ? $\overrightarrow{\mathit{Ty}(e)}$? $\overrightarrow{\mathit{Ty}(e \to t)}$

Generation from Goal Concepts

We can now generate from a goal concept (not tree)
 GOAL CONCEPT
 TEST TREE
 ?Ty(t).

Gen: "John

Generation from Goal Concepts

We can now generate from a goal concept (not tree)

$$\left[\begin{array}{ccc} x_{=john} & : & e \\ p_{=faint(x)} & : & t \end{array}\right]$$

GOAL CONCEPT

Gen: "John

Generation from Goal Concepts

We can now generate from a goal concept (not tree)
 GOAL CONCEPT
 TEST TREE

$$\left[\begin{array}{ccc} x_{=john} & : & e \\ p_{=faint(x)} & : & t \end{array}\right]$$

TEST TREE
$$?Ty(t),$$

$$\begin{bmatrix} x_{=john} & : & e \end{bmatrix}$$

$$7y(e) \qquad ?Ty(e \rightarrow t), \diamondsuit$$

$$\begin{bmatrix} x_{=john} : & e \end{bmatrix} \quad \lambda x. \begin{bmatrix} x & : & e \\ p_{=faint(x)} & : & t \end{bmatrix}$$

Gen: "John fainted"

Generation from Goal Concepts

We can now generate from a goal concept (not tree)

$$\left[\begin{array}{ccc} x_{=john} & : & e \\ p_{=faint(x)} & : & t \end{array}\right]$$

GOAL CONCEPT

$$\begin{array}{c|c} Ty(t), \diamondsuit \\ \begin{bmatrix} x_{=john} & : & e \\ p_{=faint(x)} & : & t \end{bmatrix} \\ \hline Ty(e) & Ty(e \rightarrow t) \\ \begin{bmatrix} x_{=john} & : & e \\ p_{=faint(x)} & : & t \end{bmatrix} \\ \end{array}$$

TEST TREE

Gen: "John fainted"

Incremental Semantic Construction with DS-TTR

Davidsonian semantics, LINKed trees:

Incremental Semantic Construction with DS-TTR

Davidsonian semantics, LINKed trees:

A: Today

Incremental Semantic Construction with DS-TTR

Davidsonian semantics, LINKed trees:

A: Today.. Robin arrives

Incremental Semantic Construction with DS-TTR

Davidsonian semantics, LINKed trees:

A: Today.. Robin arrives B: From?

Incremental Semantic Construction with DS-TTR

Davidsonian semantics, LINKed trees:

A: Today.. Robin arrives

B: From?

A: Sweden

Incremental Semantic Construction with DS-TTR

Davidsonian semantics, LINKed trees:

 A: Today.. Robin arrives

B: From?

A: Sweden

B: With Elisabeth?

Incremental Semantic Construction with DS-TTR

Davidsonian semantics, LINKed trees:

 $\begin{array}{llll} \textit{event}_{=\text{e1}} & : & \textit{e}_{\text{s}} \\ \textit{RefTime} & : & \textit{e}_{\text{s}} \\ \textit{p1}_{=\textit{today}(\textit{RefTime})} & : & \textit{t} \\ \textit{p2}_{=\textit{RefTime}\bigcirc\textit{event}} & : & \textit{t} \\ \textit{x}_{=\textit{robin}} & : & \textit{e} \\ \textit{p}_{=\textit{arrive}(\textit{event},x)} & : & \textit{t} \\ \textit{x1}_{=\textit{Sweden}} & : & \textit{e} \\ \textit{p3}_{=\textit{from}(\textit{event},x1)} & : & \textit{t} \\ \textit{x2}_{=} & : & \textit{e} \\ \textit{p4}_{=\textit{with}(\textit{event},x2)} & : & \textit{t} \\ \end{array}$

A: Today.. Robin arrives

B: From? A: Sweden

B: With Elisabeth?

ullet \rightarrow incremental interpretation

Adding utterance context

- Add minimal utterance context information
 - Utterance event (for each word; see Poesio & Traum/Rieser)
 - Speaker and addressee for that event

$$\diamondsuit$$
, $Ty(e)$, $\begin{bmatrix} ctxt : [u_0 : utt(s_0, a_0)] \\ cont : [x : john] \end{bmatrix}$

Adding utterance context

- Add minimal utterance context information
 - Utterance event (for each word; see Poesio & Traum/Rieser)
 - Speaker and addressee for that event

$$\diamondsuit$$
, $Ty(e)$, $\begin{bmatrix} ctxt : [u_0 : utt(s_0, a_0)] \\ cont : [x : john] \end{bmatrix}$

"myself":

IF ?
$$Ty(e)$$
, $\begin{bmatrix} ctxt : [u : utt(s_u, a_u)] \end{bmatrix}$,
 $\uparrow_0 \uparrow_{1*} \downarrow_0 [cont : [x(= s_u) : e]]$
THEN $put(Ty(e))$,
 $put([cont : [x(= s_u) : e]])$

Split utterances with indexicals

Split utterances with indexicals

```
cx:[u_0:utt(A,B)]
```

Split utterances with indexicals

```
cx : [u_0 : utt(A, B)]

ct : [x : A]
```

Split utterances with indexicals

```
cx: \left[\begin{array}{c} u_0 : \textit{utt}(A, B) \end{array}\right]
ct: \left[\begin{array}{c} x : \left[\begin{array}{c} u_1 : \textit{utt}(A, B) \end{array}\right] \end{array}\right]
```

Split utterances with indexicals

```
cx : \left[ \begin{array}{c} u_0 : \textit{utt}(A, B) \end{array} \right]
ct : \left[ \begin{array}{c} cx : \left[ \begin{array}{c} u_1 : \textit{utt}(A, B) \end{array} \right] \\ ct : \lambda \left[ \begin{array}{c} x : e \\ y : e \end{array} \right] . \left[ \begin{array}{c} x : e \\ y : e \\ p : \textit{like}(y, x) \end{array} \right] \right]
```

Split utterances with indexicals

Split utterances with indexicals

```
 cx : \begin{bmatrix} u_0 : utt(A, B) \end{bmatrix} 
 ct : \begin{bmatrix} x : A \end{bmatrix} 
 \begin{bmatrix} cx : \begin{bmatrix} u_2 : utt(B, A) \end{bmatrix} \end{bmatrix} \begin{bmatrix} cx : \begin{bmatrix} u_1 : utt(A, B) \end{bmatrix} \\ ct : \lambda \begin{bmatrix} x : e \\ y : e \end{bmatrix} \end{bmatrix} \begin{bmatrix} x : e \\ y : e \\ p : like(y, x) \end{bmatrix}
```

Split utterances with indexicals

Split utterances with indexicals

$$Ty(t), \left[\begin{array}{c} ctxt : \left[\begin{array}{c} u_0 : utt(A,B), u_1, u_2 \end{array} \right] \\ cont : \left[\begin{array}{c} x : A \\ y : A \\ p : like(x,y) \end{array} \right] \end{array} \right]$$

$$\begin{array}{c} cx: \left[\begin{array}{c} u_0: \ \textit{utt}(A,B) \end{array} \right] \\ ct: \left[\begin{array}{c} cx: \left[\begin{array}{c} u_1: \ \textit{utt}(A,B), u_2 \end{array} \right] \\ ct: \lambda \left[\begin{array}{c} x: e \end{array} \right]. \left[\begin{array}{c} x: e \\ y: A \\ p: \ \textit{like}(y,x) \end{array} \right] \end{array} \right]$$

$$\begin{bmatrix} cx : [u_2 : utt(B, A)] \\ ct : [y : A] \end{bmatrix} \begin{bmatrix} cx : [u_1 : utt(A, B)] \\ ct : \lambda \begin{bmatrix} x : e \\ y : e \end{bmatrix} . \begin{bmatrix} x : e \\ y : e \\ p : like(y, x) \end{bmatrix} \end{bmatrix}$$

Parsing in DS/TTR (Sato 2010; Purver et al 2011)

Parsing in DS/TTR (Sato 2010; Purver et al 2011)

- Integrate with word graph (and ASR "lattice")
 - Nodes = tree sets (and TTR record types)
 - Edges = word transitions (lexical/computational actions)

Parsing in DS/TTR (Sato 2010; Purver et al 2011)

- Integrate with word graph (and ASR "lattice")
 - Nodes = tree sets (and TTR record types)
 - Edges = word transitions (lexical/computational actions)
- Graph is context model: words, trees, action sequences
 - Incremental representation

How are we doing now?

- Incrementality√
 - Processing language word by word
- Incremental interpretation
 - Maximal semantic content calculated at each step
- Incremental representation
 - Contribution of each word/unit to representations built
- Incremental context
 - Context added to and read from incrementally
- Reversibility √
 - Representations common between parsing and generation
- Extensibility
 - Representations extendable even for complete antecedents

How are we doing now?

- Incrementality ✓
 - Processing language word by word
- Incremental interpretation √
 - Maximal semantic content calculated at each step
- Incremental representation
 - Contribution of each word/unit to representations built
- Incremental context
 - Context added to and read from incrementally
- Reversibility √
 - Representations common between parsing and generation
- Extensibility√
 - Representations extendable even for complete antecedents

How are we doing now?

- Incrementality√
 - Processing language word by word
- Incremental interpretation √
 - Maximal semantic content calculated at each step
- Incremental representation√
 - Contribution of each word/unit to representations built
- Incremental context
 - Context added to and read from incrementally
- Reversibility √
 - Representations common between parsing and generation
- Extensibility ✓
 - Representations extendable even for complete antecedents

So ...

- This seems like a suitable framework
- Can we actually do anything with it . . . ?

DYLAN Dialogue System – via Jindigo

- Incremental dialogue, compound contributions, self-repair . . .
- (see Hough, 20 mins time)

But . . .

• What about the coverage?

Outline

- Dialogue & Incrementality
 - Compound Contributions
 - Requirements for Grammar
- Tools for Incrementality: DS and TTR
 - Dynamic Syntax (Kempson et al, 2001)
 - Type Theory with Records
 - DS/TTR: The DYLAN Framework
 - Filling the Gaps
- Learning Incremental Grammar
 - Problem and Background
 - Hypothesising Lexical Entries
 - Learning Lexical Entries

Problem: learning incremental semantic grammars

- DS is idiosyncratic: no independent level of syntactic processing, and word-by-word incremental
- Increasing coverage manually is unrealistic . . .
- We need to learn from data!

Problem: learning incremental semantic grammars

- DS is idiosyncratic: no independent level of syntactic processing, and word-by-word incremental
- Increasing coverage manually is unrealistic . . .
- We need to learn from data!
- Current induction methods developed for grammars that:
 - define syntactic structures over words
 - are not incremental, i.e. cannot deal with partial utterances/sentences
- Therefore hard or impossible to adapt directly

Previous work on induction

- Supervised: e.g. learning PCFGs from parsed corpora (e.g. Charniak, 1996)
 - successful for PSGs, but cognitively implausible
 - no data available for us
- Unsupervised: learning from raw, unannotated corpora
 - less successful: computationally intractable in the worst case (Gold, 1967)
 - not clear how to apply to semantic problem

Previous work on induction

- Supervised: e.g. learning PCFGs from parsed corpora (e.g. Charniak, 1996)
 - successful for PSGs, but cognitively implausible
 - no data available for us
- Unsupervised: learning from raw, unannotated corpora
 - less successful: computationally intractable in the worst case (Gold, 1967)
 - not clear how to apply to semantic problem
- Lightly supervised (latent variable supervised)
 - e.g. learn from sentences paired with Logical Form (LF)
- Plausible?
 - Shared focus of attention with others
 - 'Helpful' interaction e.g. corrective feedback (Saxton, 2010)

Semantically supervised learning

- Successfully applied to Combinatorial Categorial Grammar (Steedman, 2000), as it tightly couples compositional semantics with syntax (Zettlemoyer& Collins, 2007; Kwiatkowski et al. 2010; Kwiatkowski et al. 2011).
- Our problem of inducing DS lexical actions is in the same spirit . . .
- ... except that CCG is not word-by-word incremental.
- Existing corpora annotated e.g. GeoQuery, PropBank, CHILDES
- Approach: hypothesize lexical entries which can be extended to yield the known LF

The problem

Input:

- the set of computational actions in Dynamic Syntax, G.
- a set of training examples of the form $\langle S_i, T_i \rangle$, where S_i is a sentence of the language and T_i is the complete semantic tree representing the compositional structure of the meaning of S_i
- (we will call T_i the target tree)

Output:

- a grammar consisting of the possible lexical actions for each word w
- probability distributions θ_w over possible lexical actions specifying p(a|w,T) in the context of a partial tree T

Simplifying Assumptions

• Assume tree operations (i.e. lambda calculus) known

Simplifying Assumptions

- Assume tree operations (i.e. lambda calculus) known
- Assume T_i is a *tree*, not a flat logical form
 - not a syntactic phrase-structure tree
 - correspondence of words arrive to LF elements
 λx.arrive'(x) unknown

Simplifying Assumptions

- Assume tree operations (i.e. lambda calculus) known
- Assume T_i is a *tree*, not a flat logical form
 - not a syntactic phrase-structure tree
 - correspondence of words arrive to LF elements
 λx.arrive'(x) unknown
- Assume lexical action probabilities conditioned only on pointed node type, and apply to only one type
 - θ_w specifies $p(a|w,T) \rightarrow p(a|w)$
 - (i.e. assume IF ? Ty(X); learn THEN clause as sequence of atomic actions go, make, put)

Outline

- Dialogue & Incrementality
 - Compound Contributions
 - Requirements for Grammar
- Tools for Incrementality: DS and TTR
 - Dynamic Syntax (Kempson et al, 2001)
 - Type Theory with Records
 - DS/TTR: The DYLAN Framework
 - Filling the Gaps
- 3 Learning Incremental Grammar
 - Problem and Background
 - Hypothesising Lexical Entries
 - Learning Lexical Entries

Lexical Actions

Our task is to learn lexical actions:

Method: incremental hypothesis construction

- DS is strictly monotonic:
 - Hypothesising lexical actions = an incremental search through the space of all monotonic extensions of the current tree T_{cur} that subsume the target tree T_t.
- Basic constraints on the structure of DS lexical actions makes the search space tractable.
- Hypothesis construction is integrated with parsing over a parse state DAG as above.
- Splitting and generalisation into possible lexical action subsequences.
- Probability estimation to keep most probable hypotheses.

Hypothesis construction

Hypothesise extensions which subsume the target tree:

This is just one of many possible hypotheses . . .

- Constraints imposed by tree logic, lambda calculus, type constraints
- Mother nodes compatible with daughter types, formulae
- No formula decoration without type decoration
- Finite type set
- Words add semantic formulae at one node only

- Constraints imposed by tree logic, lambda calculus, type constraints
- Mother nodes compatible with daughter types, formulae
- No formula decoration without type decoration
- Finite type set
- Words add semantic formulae at one node only
- Package these as possible hypothesis macros:


```
IF ?Ty(X)

X \neq e

THEN make(\langle \downarrow_0 \rangle); go(\langle \downarrow_0 \rangle)

put(?Ty(e)); go(\langle \uparrow_1 \rangle)

make(\langle \downarrow_1 \rangle); go(\langle \downarrow_1 \rangle)

put(?Ty(e \rightarrow X)); go(\uparrow)

ELSE ABORT
```

Constrain hypotheses within DAG paths:

Hypotheses themselves form a (finite, bounded) DAG

Constrain hypotheses within DAG paths:

Outline

- Dialogue & Incrementality
 - Compound Contributions
 - Requirements for Grammar
- Tools for Incrementality: DS and TTR
 - Dynamic Syntax (Kempson et al, 2001)
 - Type Theory with Records
 - DS/TTR: The DYLAN Framework
 - Filling the Gaps
- 3 Learning Incremental Grammar
 - Problem and Background
 - Hypothesising Lexical Entries
 - Learning Lexical Entries

Splitting lexical hypotheses

- Split DAG edges into possible word sequences
 - hypothesise possible set of split points
 - constraints: one semantic decoration subsequence per word, kept to the right
- DAG edges combine lexical and computational actions
- Lexical entries should be general
 - apply in all desired (tree) contexts
 - consign variation in start/end point to computational actions
- Lexical entries should be efficient
 - constrain possible context to those observed
 - i.e. lexicalising computational actions where possible

Problem and Background Hypothesising Lexical Entries Learning Lexical Entries

Generalisation through sequence intersection

- The output from each training example is a mapping from words to hypothesis Candidate Sequences extracted from the DAG.
- We refine and generalise over Candidate Sequences by Sequence Intersection modulo computational actions

Generalisation through sequence intersection

- The output from each training example is a mapping from words to hypothesis Candidate Sequences extracted from the DAG.
- We refine and generalise over Candidate Sequences by Sequence Intersection modulo computational actions

Generalisation through sequence intersection

- The output from each training example is a mapping from words to hypothesis Candidate Sequences extracted from the DAG.
- We refine and generalise over Candidate Sequences by Sequence Intersection modulo computational actions

Generalisation through sequence intersection

- The output from each training example is a mapping from words to hypothesis Candidate Sequences extracted from the DAG.
- We refine and generalise over Candidate Sequences by Sequence Intersection modulo computational actions

 Lexical Ambiguity is postulated when the candidate sequences cannot be intersected in this manner.

Parameter Estimation

- Assume we have a prior estimate of θ'_w giving p(h|w)
- Probability of DAG path sequence $p(HT_j|S)$:

$$p(HT_j|S) = \prod_{i=1}^n p(h_j^i|w_i) = \prod_{i=1}^n \theta'_{w_i}(h_j^i)$$

 Posterior estimate of p(h|w): (summing over sequences HT_j containing h)

$$\theta''_w(h) = p(h|w) = \frac{1}{Z} \sum_{HT_j \in HT^h} p(HT_j|S) = \frac{1}{Z} \sum_{HT_j \in HT^h} \prod_{i=1}^n \theta'_{w_i}(h_i^j)$$

• $\theta_w' \neq \theta_w''$ – new information from hypothesis DAG

Parameter Estimation

- Incremental version of Expectation-Maximisation
 - Expectation step: DAG paths from prior estimate
 - Maximisation step: re-estimate from path distribution
- Apply this incrementally
 - Update distributions at each training example
- Update probability distributions at each step:

$$\theta_w^N(h) = \frac{N-1}{N} \theta_w^{N-1}(h) + \frac{1}{N} \theta_w''(h)$$

Reserve probability mass for unseen h in same way

Probabilistic Parsing

• This model will provide a probabilistic parser:

Evaluation: Artificial corpus

- Need a corpus annotated with target trees
- Easiest way: generate one using a known grammar, and try to learn it back (see e.g. Pulman & Cussens, 2001)
- Use PoS type and token distributions from CHILDES

Evaluation: Artificial corpus

- Need a corpus annotated with target trees
- Easiest way: generate one using a known grammar, and try to learn it back (see e.g. Pulman & Cussens, 2001)
- Use PoS type and token distributions from CHILDES
- 200 sentence set: 90% as training, 10% for test:

	Parsing Coverage	Same Formula
Top one	26%	77%
Top two	77%	79%
Top three	100%	80%

Evaluation: lexical ambiguity

- 10% of word types ambiguous between 2 or 3 senses
 - 57% learned both senses in top 3 hypotheses
 - but only one with both in top 2
- Data sparsity

Evaluation: anaphoricity

- Allow free "copy-from-context" computational action
 - can be hypothesised at any time
- Relative pronouns: conjoined (linked) trees

63/65

Evaluation: anaphoricity

- Allow free "copy-from-context" computational action
 - can be hypothesised at any time
- Relative pronouns: conjoined (linked) trees

Learned constraints identical to manual grammars:

```
who  \begin{array}{c|c} \textbf{IF} & ?Ty(e) \\ & \langle \uparrow_* \uparrow_L \rangle Fo(X) \\ \textbf{THEN} & put(Ty(e)) \\ & put(Fo(X)) \\ & put(\langle \downarrow \rangle \bot) \\ \textbf{ELSE} & \texttt{ABORT} \\ \end{array}
```

Scaling Up

- We need to apply this to real data . . .
- Can we do it without target trees?
 - incremental TTR compilation allows same method

Scaling Up

- We need to apply this to real data . . .
- Can we do it without target trees?
 - incremental TTR compilation allows same method

Scaling Up

- We need to apply this to real data . . .
- Can we do it without target trees?
 - incremental TTR compilation allows same method

- Can convert existing corpora (e.g. CHILDES) to TTR
- But search space increases . . .

Thank you

Many people to thank: Arash Eshghi, Julian Hough, Ruth Kempson, Eleni Gregoromichelaki, Yo Sato, Wilfried Meyer-Viol, Graham White, Chris Howes, Pat Healey among others. Including, of course, Robin Cooper.