Miscommunicating with Computers

Matthew Purver
with many others
but mostly Julian Hough and Christine Howes

Repair Phenomena

A: It's in the yell-, sorry, purple square

B: The what square?

A: Purple.

B: You mean yellow.

A: Oh yeah. Yellow.

- Self- and other-repair
- Clarification (repair initiation)
- Positions 1, 2, 3, ...

Dialogue Systems

Clarification & confirmation by systems:

U: When's the next bus to Wood Street?

S: Sorry, I didn't understand that. Please repeat.

U: When's the next bus to Wood Street?

S: Going to WOOD STREET. Did I get that right?

U: Yes.

- ASR inaccuracy
- Domain mismatch
- Generally confidence-based (ASR/domain)

Clarification by Systems

 Designing optimal questions (e.g. Stoyanchev et al 2014):

U: Do you have anything other than the [???] plans

S: Which plans? / Anything other than what?

- Learning to adjust strategy/confidence (e.g. Bohus & Rudnicky 2005)
- Integration with general decision process and domain learning (e.g. PARLANCE project)
- But these don't give us methods for detecting repair

Clarification by Users

TTS: I calculated a route to Brian's house. It is 4.13 miles long and should take around 9.0 minutes.

SR: what is my next turn

TTS: Go East on Miranda Ave

SR: what is the next turn

TTS: Make sharp right on Arastradero Rd

SR: what road

TTS: I'm sorry, I do not understand what you mean by: what road

TTS: Please try rephrasing that.

SR: what road do i turn on

TTS: I'm sorry, I do not understand what you mean by: what road do i turn on

TTS: Please try rephrasing that.

SR: what road do i turn on and where is alma street from there

TTS: Did you want to plan a route from there?

SR: what was the last instruction you gave me

TTS: Sorry, there is no instruction to repeat

SR: what was the last route instruction you gave me

TTS: Sorry, there is no instruction to repeat

SR: i want to go to brian's

TTS: Ok , I will plan a route to Brian . Would you like anything else?

Self-Repair

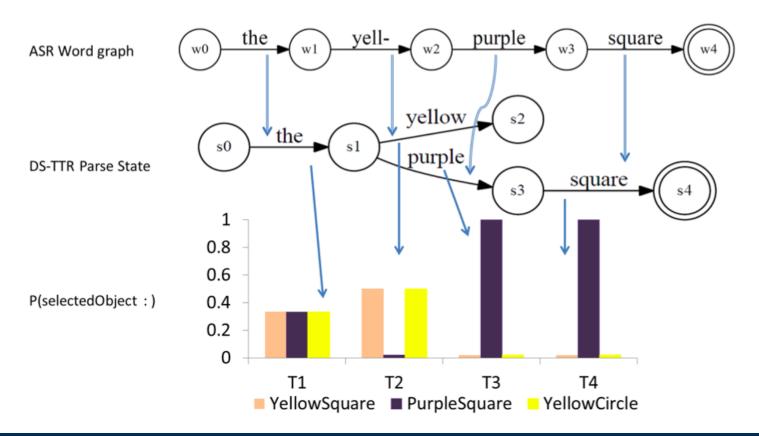
- Disfluency detection for ASR
 - Identify reparandum extent and remove
 - e.g. transduction: Johnson & Charniak, 2004

to — Denver — on — Friday —

- But this is stuff we need! E.g. for anaphoric reference:
 - "The interview was it was alright" (Clark, 1996)

Self-Repair is incremental

- Effect on incremental processing (Brennan & Schober, 2001)
 - See DYLAN system (Hough & Purver, 2014)



Self-Repair models

- We'd like a model which is:
 - Incremental
 - Able to track context contributions
- Existing models either:
 - Lose the reparandum and/or repair
 - (e.g. Johnson & Charniak, 2004)
 - Need the whole sequence
 - (e.g. Georgila, 2009)
 - Work incrementally but maintain all hypotheses
 - (e.g. Heeman & Allen, 1999; Zwarts et al, 2010)

Human-Human Repair

- Language processing for psychiatric therapy:
 - Diagnosing symptoms
 - Predicting outcomes

Doctor-patient communication

- Schizophrenia therapy (face-to-face)
 - Symptoms and severity:
 - Positive symptoms: delusions, hallucinations, beliefs
 - Negative symptoms: withdrawal, blunted affect, alogia
 - Non-adherence to treatment:
 - About half of patients non-adherent in the year after discharge from hospital (Weiden & Olfson, 1995)
 - Risk of relapse 3.7 times higher (Fenton et al, 1997)
- Depression & anxiety therapy (online)
 - Symptoms and severity
 - Progress and dropout rates
- Can features of dialogue help understand/predict?
 - Topic structure: focus on symptoms, treatment
 - Repair structure: coordination, shared understanding

Prediction Results

- Predicting symptom severity reasonable:
 - Depression (PHQ) 70%
 - Schizophrenia (PANSS) 62%
 - (with topic/sentiment features)
- Predicting non-adherence (patient turns only):

Features	Weighted F (%)	
Baseline: class of interest	44.8	
Human: text only	68.6	
Human: text + video	78.0	
Lexical features	70.3	
Topic features	66.2	
Automatic topics	54.1	

• So how can we improve this? Repair ...

Repair in Therapy Dialogue

- Self-repair (e.g. P1SISR, P3SISR)
- Articulation, formulation

Dr: You probably have seen so many psychiatrists o o over the years

Dr: Did you feel that did you despair so much that you wondered if you could carry on

P: Where I go to do some printing lino printing

Dr: Clorazil or

P: Yeah

Dr: Clozapine yes

Repair in Therapy Dialogue

Other-repair (e.g. P2OIOR)

Dr: Rather than **the diazepam** which I don't think is going to do you any good

P: the valium

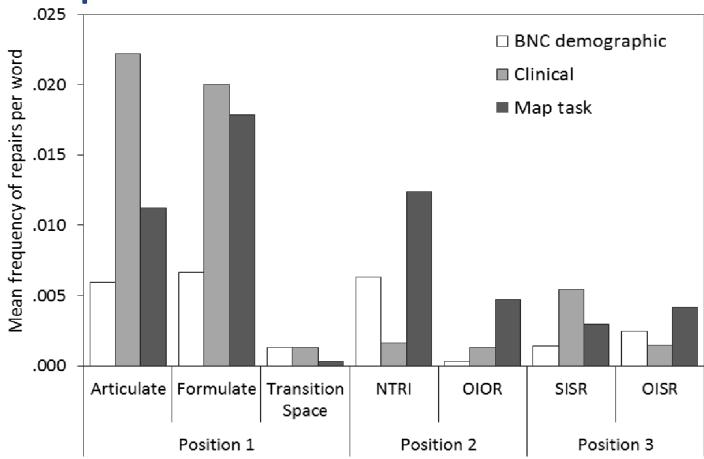
Repair initiation (e.g. P2NTRI then P3OISR)

Dr: Yeh, it doesn't happen in real life does it?

P: What do you mean by real life?

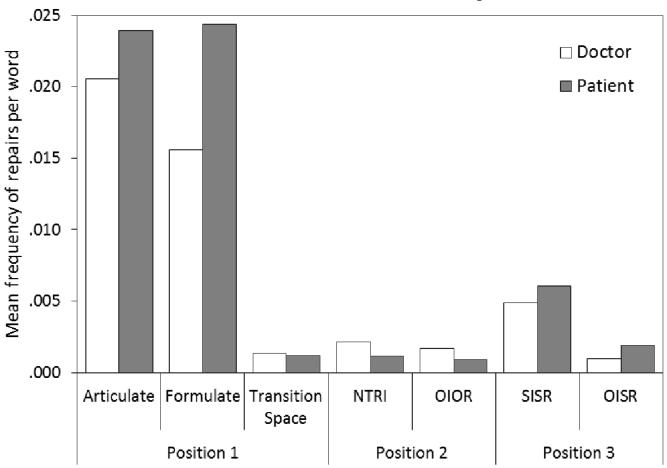
Dr: You can't - there are no messages coming from the television to people are there?

Comparison with other contexts



• Therapy: more self-repair, less other-repair & initiation

Patient-doctor comparison



• Patients: more self-repair, less other-repair & initiation

Detecting Other-Repair

- Need to detect instances of repair
 - Next-turn repair initiation and P2 repair
- How do we approach this?

- Define some features that characterise repair
 - (which we can extract automatically)
- Learn a statistical model
 - (using some standard machine learning algorithm)

Sometimes we see specific lexical / phrasal items:

Dr: Ok you have done it before

P: Pardon?

Dr: If you have done it before

Dr: Who is your GP now

P: What?

Dr: Who is your GP

P: They're not negative erm but they're positive as i eh erm it's like imagining how your life will be

Dr: Ok, ok, ok so thinking about how

P: Do you know what I'm talking about?

Sometimes we see repetition/parallelism:

Dr: Yep well that is a possible side effect

P: Side effect?

Dr: Of the err Haliperidol

Dr: One thing that I ask you is when you were low in mood did you have suicidal thoughts

P: Did I have ...?

Dr: Suicidal thoughts

Sometimes it's more complex than that

Wiz: go straight for four blocks turn left at wall street

Subj: turn left where

Wiz: turn left at wall street

TTS: Make sharp right on Arastradero Rd

SR: what road

Wiz: after left at elm street turn right at lois lane

Subj: was that right on lois lane or left on lois lane

Wiz: turn right at lois lane

Sometimes it's more complex than that:

Dr: Are you suspicious are you suspicious of people

P: Suspicious?

Dr: Paranoid

P: Jealous?

Dr: Jealous yeah

Dr: Paroxitine

P: Fluoxitine

Dr: Ah Fluoxitine

Sometimes it's more complex than that

Dr: Who's your key worker there do you know

P: Err the person who comes to see me?

Dr: Yeah the person you see most often

Dr: Do you do you really feel it or is it a sensation

P: Is it what I'm thinking is that what you mean?

Dr: No is it just err the mind playing tricks on you

Dr: was it couple of months three months

P: Since I saw you?

Dr: Aaa so have you had any more thoughts about studying

P: What music?

Sometimes it's more complex than that

Wiz: go straight for three blocks turn right at wall street

Subj: please repeat left where

Wiz: go straight for three blocks turn right at wall street

Subj: left where

Subj: how long

Wiz: dave's house is sixteen minutes away

Subj: was that one six or six zero minutes

Wiz: six minutes away

Requirements

- They're context-dependent
- They need semantics
- They need phonology
- They even need spelling

- They're incremental
- They can be very sparse

Detecting Other-Repair

- Define features manually, extract automatically
- Linguistically/observationally informed:
 - Wh-question words, closed class repair words
 - Repetition, parallelism with prior turn(s)
 - Backchannel behaviour, fillers
 - Pauses, overlaps
- Brute force:
 - All the unigrams used (patient-only to avoid doctor specificity)
- Train SVMs to detect NTRIs & P2Rs
 - 44,000 turns of which 567 NTRIs (159 patient), 830 P2Rs (262)
 - 5-fold cross-validation
 - (Howes et al, 2012-14)

Results – balanced data

Balanced data (i.e. small dataset), patient only:

Target	Features	Accuracy (%)
NTRI	Repeated proportion	61.2
NTRI	All high-level	83.2
NTRI	All unigrams	82.4
NTRI	All features	86.3
P2R	Repeated proportion	61.5
P2R	All high-level	78.5
P2R	All unigrams	77.1
P2R	All features	79.8

• But of course the real data's not balanced ...

Results – repair detection

- On balanced data: accuracy 80-86%
- Full dataset, patient only:

Target	Features	P (%)	R (%)	F (%)
NTRI	OCRProportion	85.7	22.6	35.8
NTRI	All high-level	42.8	40.6	41.4
NTRI	All features	44.9	43.6	44.0
P2R	OCRProportion	56.4	11.8	19.6
P2R	All high-level	36.2	28.4	31.6
P2R	All features	43.8	30.3	35.4

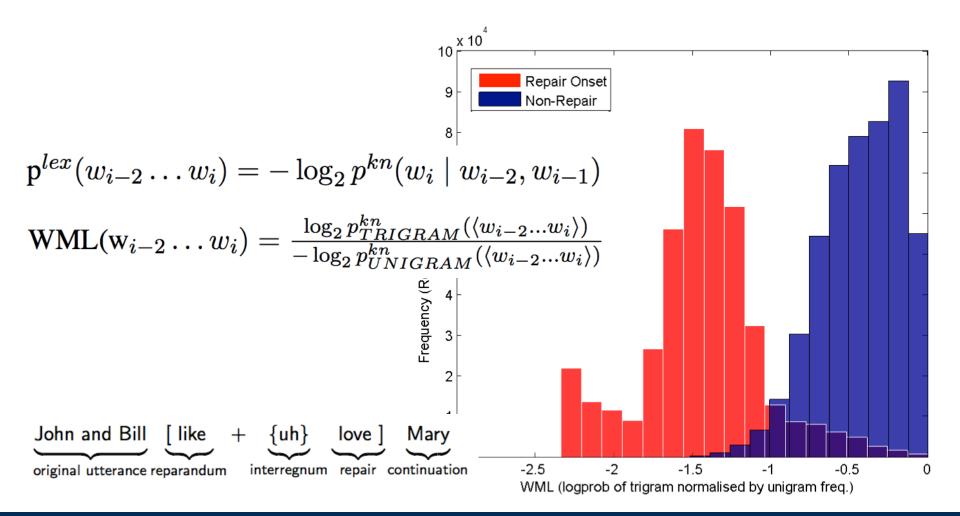
- We'd like to do better!
 - Audio/video: intonation, non-verbal behaviour
 - Context: follow-up dialogue turns incl. other-person reaction
 - Semantic and pragmatic parallelism

Detecting Self-repair

- No grammar; no similar data ...
- Probabilistic / information-theoretic model
 - (Hough, to appear)

- Interregnum: characteristic words, fillers
- Repair & reparandum boundaries: changes and/or (dis)similarities in probability and expectation (lexical, syntactic, semantic)
- Incremental process:
 - 1: repair onset 2: reparandum start 3: repair end

Lexico-syntactic distribution



Self-repair: Results

Accuracy on Switchboard corpus (held-out):

detection	precision	recall	F-score
w_{rp}^{start} position	0.862	0.755	0.805
repairs in turn	0.904	0.787	0.841

- Good, and incremental!
 - Comparable to (Zwarts et al, 2010) ... but 1 word, not 4.6
- Accuracy on therapy corpus:

detection	precision	recall	F-score
w_{rp}^{start} position	0.527	0.536	0.532
repairs in turn	0.682	0.679	0.680

- Good for coarse-grained measures (correlation 0.9)
- But not yet good in detail

What have we learnt?

- We need computational models of repair
 - But different from standard ones

- We can do a reasonable job
 - On self- and other-repair
 - Using fairly low-level features
- Doing better is a difficult task:
 - Semantics, pragmatics, phonology, intention … ?

