M.Phil. Project
Computer Speech and Language Processing

Simplistic Question Answering

Matthew Purver
Sidney Sussex College
University of Cambridge

October 9, 2000

Abstract

The aim of this project was to develop a system that could identify text passages
which answer a question. The approach taken used ideas from various partici-
pants in the recent TREC-8 conference, and added the use of notions of sentence
structure - particularly structural transformation and matching. The system was
successfully tested on training data incorporating a wide range of sentence struc-
ture phenomena. Performance was evaluated in blind tests on two sets of data
and results were encouraging, with good levels of both recall and precision being
achieved.

Contents

I Thesis
1 Introduction
1.1 Overviewo o
1.2 Question-Answering Lo
1.3 The State of the Art
1.3.1 Early Work in QA oo
1.3.2 The TREC-8 QA Track
1.3.3 Possible Improvements
1.4 Description of Project
1.4.1 Objectives and Approach
1.4.2 System Overview
2 Shallow Text Processing
2.1 Overview e e
2.2 TheFront End,
2.2.1 Part-of-Speech Tagging
2.2.2 Simple Noun Phrase Bracketing
223 Rewriting oo oo
224 Stemming oL
2.2.5 Simple Noun Phrase Adjustment
2.3 Syntactic Processing L oL
231 VerbGroups.o
2.3.2 Noun Groups o
2.3.3 Prepositional Phrases 0oL
234 Output.
2.4 Semantic Feature Attachment
2.4.1 Verb Group Semantics
2.4.2 Noun Group Semantics
2.4.3 Prepositional Phrase Semantics

3 Relational Structures
3.1 Coreference s
3.1.1 Entity Indexing Lo oL

M.Phil. CSLP Project Simplistic Question Answering

3.1.2 Coreference Resolution 25

3.2 Extraction of Sub-sentential Units 26
3.2.1 Conjunctions Lo 27
3.2.2 Subordinate/Relative Clauses 28
3.2.3 Punctuation 28

3.3 Structure Extraction 28
3.3.1 Predicate-Argument Structures 28
3.3.2 State Structures 29

3.4 Coindexing 29
4 Structure Matching 31
4.1 Direct Structure Matching 32
4.1.1 Word Matching 32
4.1.2 Verb Group Matching 33
4.1.3 Noun Group Matching 34
4.1.4 Modifier Phrase Matching 35

4.2 Structure Transformation. 37
4.2.1 General Structural Transformations 37
4.2.2 Specific Structural Equivalences 39

4.3 Question-word Matching oL 40
4.4 Summary of Capabilities 42
4.4.1 Answer Passage Phenomena 42
4.4.2 Query Types oo 44
4.4.3 Problematic Phenomena 44

5 Evaluation and Results 48
5.1 System Output 48
5.2 Training Data Lo oo 49
5.3 Evaluation Method 49
5.3.1 Manual Annotation 49
5.3.2 Performance Measures 50
5.3.3 Blind Testing 20

54 Results.o 50
5.4.1 Training Data o o000 50
54.2 First Blind Test 51
54.3 Second Blind Test 52
5.4.4 TREC-8 Comparison 53

5.5 Conclusions e 55

Matthew Purver 2 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

IT Appendices 60
A Query/Answer Corpora 61
Al Training Set oL 61
A2 First Blind Test Set 68
A.3 Second Blind Test Set 70

B Code Listing 72
B.1 Perl/Shell Scripts L 72
B.1.1 Perl Code for OALD Pre-processing 72

B.1.2 Perl Scripts for Test Data Pre-processing 74

B.1.3 Shell Scripts for Shallow Text Processing 74

B.2 Prolog Lexical Resources 76
B.2.1 OALD Resources 76

B.2.2 Hand-Coded Lexicon 7

B.3 PrologCode 81
B.3.1 Top Levelo 81

B.3.2 Structural Matching/Transformation 90

B.3.3 Structural Extractiono 101

B.3.4 Shallow Text Processing 125

B.3.5 Miscellaneous Lo 168

Matthew Purver 3 October 9, 2000

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6

3.1

System Overview 13
Shallow Text Processor: Front End 15
Example Al after PoS tagging & NP bracketing 16
Example A1 after pre-processing 17
Shallow Text Processor: Main Functions 18
Example Al after syntactic processing 20
Example Al after shallow text processing 23
Example Q after entity indexing 25

List of Tables

2.1
2.2

4.1
4.2
4.3
4.4
4.5

5.1
5.2
9.3

NG semantic classes oo 22
PP semanticclasses 22
Wh-query word semantic classes and phrase types 41
Lexical /Structural Phenomena 43
Query Types o 44
Problematic Phenomena 45
Problematic Query Phenomena 45
Performance on Training Data ol
Performance in First Blind Test 52
Performance in Second Blind Test 53

Part 1
Thesis

Chapter 1

Introduction

1.1 Overview

The aim of this project was to develop a question-answering (QA) system that
makes use of sentence structure. Conventional information retrieval (IR) tech-
niques, which do not take structure into account, are not ideally suited to QA -
in terms both of determining whether a passage really answers a query, and of
delivering a satisfactory answer.

A system was developed which used sentence structure to extract simple rela-
tions between words and phrases. These relations could then be matched between
query and answer passages, thus both ensuring that a true answer is present, and
identifying the essential matching words for use as an answer. Chapters 2 and 3
describe the text processing and relation extraction, and chapter 4 describes the
matching process.

The system was evaluated over a wide range of query types and answer sen-
tence phenomena, and had its final performance measured by blind testing. This
process, together with the results, is presented in chapter 5.

The complete sets of training and test data, together with the program code,
are given in a separate volume (appendices A and B).

In this chapter, the problems of QA for IR systems are described, and a
summary of the state of the art is given. I then explain the approach taken in
this project.

1.2 Question-Answering

Conventionally, work in the field of IR has concentrated on ad-hoc document
retrieval (DR), to the extent that the terms are often used synonymously. In DR,
a set of documents is retrieved in response to a user’s query, usually ranked in
order of relevance. This process will be familiar to anyone who has used a WWW
search engine.

M.Phil. CSLP Project Simplistic Question Answering

Conventional DR systems use statistical methods based on the relative fre-
quencies of keywords in the query and in candidate documents. While attempts
have been made to apply natural language processing (NLP) techniques to DR
(see e.g. [21], [38]), they have not found their way into widespread use due to the
high effectiveness and speed of simple statistical methods.

In more recent years, however, attention has begun to be focussed on the
related task of question-answering (QA) from document collections. In contrast to
DR, where complete documents or passages are retrieved and ranked by relevance,
QA requires that the system give an answer to the user’s query. As pointed out in
the specifications of the Eighth Text Retrieval Conference (TREC-8) QA Track
[32], this is highly desirable:

Current information retrieval systems allow us to locate documents
that might contain the pertinent information, but most of them leave
it to the user to extract the useful information from a ranked list.
This leaves the (often unwilling) user with a relatively large amount
of text to consume. There is an urgent need for tools that would
reduce the amount of text one might have to read in order to obtain
the desired information. |...]

People have questions and they need answers, not documents. Au-
tomatic question answering will definitely be a significant advance in
the state-of-art information retrieval technology.

The QA task poses two major problems for standard DR techniques, which
we can understand by considering the following example query:

Q Who 1is the president of the USA?

together with the following sentences which might be selected by a DR system
searching for an answer (as all contain the keywords is the president of the USA):

A1 Bill Clinton is the president of the USA.

A2 FEven if one dislikes Bill Clinton, it is important to remember that although
many people do not agree with his policies, he is one of the most powerful men
on earth: he is the leader of the free world and the president of the USA.

A3 Hillary Clinton is the wife of the president of the USA.

Example Al does not seem to pose a problem: the sentence answers the
question and could even be returned whole as an acceptable answer.

Example A2 shows the first problem: what do we return as the answer?
Returning the whole sentence does not seem to be acceptable, and if we apply a
window to reduce the amount of text returned, there is no guarantee that we will
capture the essential words Bill Clinton due to the distance from the keywords.

Example A3 shows the second problem: although it matches the keywords, it
does not contain an answer at all.

Matthew Purver 8 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

1.3 The State of the Art

1.3.1 Early Work in QA

There has been interest in natural language QA systems for many years, but until
recently the emphasis of the majority of the systems developed was on answering
questions from a structured knowledge-base (see e.g. Lehnert [18], [19]). As a
result, work tended to centre around full syntactic and semantic analysis of both
queries and answers, together with Al techniques such as theorem-proving to
extract answers from the knowledge-base (Levine & Fedder [20] give a succinct
overview of this type of approach).

While this may still be a sensible approach for situations where the body of
information is structured, time and processing constraints (together with a large
degree of unpredictability of format and content) prevent these methods from
being used in the case of QA from large unstructured collections of documents
(such as the WWW).

1.3.2 The TREC-8 QA Track

In 1999, the DARPA-sponsored Text Retrieval Conference (TREC) set up a QA
track for its eighth conference (TREC-8). A description of the track is available at
[31], with the detailed specifications at [32]. The overall aim was to investigate
the possible approaches that could be used to produce a fully automatic QA
system which could provide answers to questions, given an unstructured corpus
of documents which contained those answers.

The participating systems were tested by their performance on 200 test ques-
tions, with each question guaranteed to be answered by at least one document
in the corpus. For each question, systems could return a ranked list of 5 possible
answer strings. These strings were portions of the surface text, of limited length
(two categories of answers were permitted, with the answer text length limited
to either 50 or 250 bytes — so approximately 6 or 30 words). The answers were
then assessed and scored by human judges. A more detailed description of this
process is available in [41].

A variety of approaches were used by the participants, with varying degrees
of success. Most of the systems can be classified as follows:

Pure DR-based Systems

The simplest systems used DR techniques to retrieve the most relevant text pas-
sages based on the keywords in the query. Examples include the systems used by
the University of Massachusetts [3], the University of Waterloo [10], and National
Taiwan University [22], as well as the passage-based runs of AT&T [2] & [33].
Various methods were used to determine which query words should be used for

Matthew Purver 9 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

retrieval, and various DR techniques were employed, but no true NLP techniques
were used for either query or potential answer passage processing.

These systems performed relatively well when retrieving 250-byte passages,
but less well when restricted to 50 bytes as there was no guarantee that the
passage selected would contain an answer as well as the query keywords: this is
the problem we observed with our example A2 above.

Query Processing and Named Entity Extraction

The majority of systems used the same approach as an initial stage to retrieve
documents or shorter passages that contained the answer, but also used some
NLP techniques to process the query and to identify candidate answer entities.
These included the entity-based runs of AT&T [2] & [33] and the systems of
Xerox [15], Southern Methodist University [25], GE/University of Pennsylvania
[26], NRC/University of Ottawa [24], the University of Iowa [12], MITRE [5],
LIMSI-CNRS [13] and IBM [29] & [30].

While the exact techniques used differed, most had the following approaches
in common:

Shallow Query Parsing The query text is tagged and parsed using a shallow
text processor, resulting in a parse tree structure containing (at least) noun
phrases.

Query Type Identification The result of parsing is examined to determine the
type of answer that the query is expecting. This type is defined as being
a member of a set of semantic classes such as, amongst others, OBJECT,
PERSON and TIME. This identification is generally given by a particular
question word (e.g. Who? shows the question expects an answer of type
PERSON) or series of words (e.g. How long? might expect DISTANCE
or DURATION), but may also require identification of a head noun phrase
(e.g. “Which is the largest city in Germany?” might be processed to a
resulting type of CITY).

Entity Extraction The candidate answer passages are similarly processed to
identify noun phrases with their corresponding semantic types. Those that
match the class expected by the query are chosen as possible answers. Var-
ious methods, generally based around frequency and relative position in
sentences, are then used to rank the possible answer entities.

This approach provided some of the best-performing systems in TREC-8, but
is still subject to our second problem above — non-answers can be mistakenly
selected. There is also a reduced version of the first problem: if two entities of
the correct type are present in the answer, there is no guarantee that relative
distance from keywords will select the correct one.

Matthew Purver 10 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

IE-based Systems

A few of the systems (NTT Data [39], Cymfony [35] & [36], the University of
Sheffield [16], New Mexico State University [28]) viewed the problem as one of
Information Extraction (IE). In IE, the central aim is to extract from the text
certain known types of information about entities, and this is generally achieved
by attempting to fill entries in a pre-generated template.

In practice, these systems operated in a similar manner to those described in
the previous section, as they are limited to what Srihari & Li [35] call Named
Entity IE (named entity extraction). However, as they point out, this approach
does reveal a possible next step: the use of what they call General Event IE. This
would involve the extraction of general predicate-argument relations to fill tem-
plates with pre-defined slots (but no set of pre-defined values for the predicate).

Other Approaches

Two systems attempted to parse the answer passages and use the parse tree
structure in some way. The system developed by the University of Maryland [27]
used a shallow parser to produce a dependency tree for both query and answer.
Entities in the answer then had to be nodes in the tree connected by a path in
the same order as the corresponding entities in the query. However, as neither
direction nor path length were required to match, sentences like our example A3
would not be prevented from being chosen.

The CL Research system [23] used the notion of semantic triples. This ap-
proach involved the identification of entities together with their roles in the sen-
tence (subject, object, location etc.). However, performance was degraded by the
necessary use of a deep (and non-robust) parser, as well as by the lack of coref-
erence resolution. It was also hindered by its method of reporting: by reporting
full sentences instead of attempting to identify an answer entity or summarise
the structure, it suffered from the same problem as DR systems in that answers
were often lost when truncating to the TREC length limit.

1.3.3 Possible Improvements

Many of the TREC participants cite the following possibilities for improvement:
better DR, coreference resolution, use of structural relations and treatment of
synonyms. In this project I hope to show that some of these improvements are
possible.

In particular, most of the TREC systems make no use of answer sentence
structure, and so have no way of distinguishing between answers (say, examples
A1 and A2 above) and non-answers (like A3), or to choose the correct answer en-
tity from a number of possibilities. Those that did attempt to use parse structure
were either not robust or did not enforce structural relations fully.

Matthew Purver 11 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

1.4 Description of Project

1.4.1 Objectives and Approach

The aim of my project was therefore to investigate the use of sentence struc-
ture in answer identification, by attempting to match simple structures extracted
from both query and candidate answer passages. The intention was to combine
the common query type/semantic class approach with some shallow structure
information and then devise techniques for matching these structures.

Due to the restricted time available, certain necessary but existing-technology
elements of a real-world system were simulated rather than developed. The initial
identification of candidate answer passages containing question keywords through
standard DR techniques was assumed, by only considering such passages (here-
after referred to as answers). The identification and classification of unknown
named entities (e.g. proper names) was also assumed, by adding all entities to a
lexicon.

For the same reason, it was also decided not to attempt to deal with certain
classes of query/answer passage phenomenon: those that deal with tense and thus
require knowledge of document creation time; and those that require inference
and real-world knowledge.

1.4.2 System Overview

The system has the following overall structure (see figure 1.1):

Shallow Text Processing The query and answers are PoS-tagged and parsed
to give a shallow tree structure, and semantic information is attached.

Structural Relation Extraction The resulting tree is subjected to coreference
resolution and sub-sentential unit identification before simple structures are
extracted.

Structural Matching The system attempts to match the query and answer
structures, using a combination of plain matching rules and structural trans-
formations. Matching portions are then selected and given as output.

These modules are described in chapters 2, 3 and 4 respectively. Where
possible, their operation is illustrated by use of the example query and answers
given above - although other examples are used to illustrate certain phenomena.

The system was developed and tested using a wide variety of query types
and answer phenomena. Final performance was evaluated by blind testing: the
evaluation process and results are detailed in chapter 5.

Matthew Purver 12 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

Query Answer Passage

Shallow Text Processing

! !

Structural Relation Extraction

Structural Matching

Figure 1.1: System Overview

Matthew Purver 13 October 9, 2000

Chapter 2

Shallow Text Processing

2.1 Overview

A suitable text processor was required to extract information about both syntactic
structure and lexical semantics from the query and answers. A shallow parser
was preferred, due to its inherent robustness and to the fact that full parse tree
information was not required.

Various shallow parsers are available, and both FASTUS (see [4]) and TTP
(see [37], [38]) were investigated. However, as the requirements in terms both
of parse tree complexity and semantic features were not precisely known at the
start of the project, a processor was independently developed specifically for the
task.

A finite-state transducer design was used, coded in Prolog (and incorporating
an external part-of-speech (PoS) tagger). It is non-deterministic: several possible
parse trees can be extracted in the case of ambiguity. The output consists of
noun groups (NGs) and verb groups (VGs) under a single sentence node, with
modifiers (prepositional phrases (PPs) and adverb groups) optionally attached
to these groups.

In addition to syntactic structure, the processor also attaches certain lexical
semantic features to the groups (including semantic classes as described in the
previosu section). These are required for later matching with question words and
structures, and are also used in coreference resolution.

This chapter describes of the operation of the processor: section 2.2 describes
the front end (tagging, stemming and NP grouping); section 2.3 describes the
syntactic processing; and section 2.4 describes the semantic processing. The
process is illustrated by use of example answer Al from the previous section: the
processing of queries is very similar. Code is given in full in the second volume,
appendix B.

14

M.Phil. CSLP Project Simplistic Question Answering

2.2 The Front End

Before full syntactic processing, text is PoS tagged and stemmed. Simple rewrit-
ing rules are used to expand abbreviations, and simple noun phrases (NPs) are
formed. This stage is described in detail in this section (and illustrated in figure
2.1). The output is a list of tagged words and NPs as shown in figure 2.3.

Text

PoS Tagging

1 ! External Module

NP Grouping

[ttt /A o Front End

Rewriting
U

Stemming i Interface

v

NP Adjustment

g

To Syntactic Processor

Figure 2.1: Shallow Text Processor: Front End

2.2.1 Part-of-Speech Tagging

The tagger used is shallowproc, developed at Cambridge University by Sylvia
Knight and described in [17]: it uses its own tagset developed from the Wall Street
Journal corpus which contains useful extensions from more standard tagsets, such
as new tags for prepositions and conjunctions.

As the tagger is an external module called from Prolog, any PoS tagger could
be used as long as it could be trained on the same tagset: for example, a version
of the Brill tagger is available.

Matthew Purver 15 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

2.2.2 Simple Noun Phrase Bracketing

An additional feature of shallowproc is its ability to group words to form simple
NPs according to a list of rules (essentially groups of determiners, adjectives,
nouns, proper nouns, numbers and pronouns). While the results of this grouping
process were not ideal for the purposes of this project, it was considered quicker
to use this feature and modify the results (see below) than build a more suitable
NP grouper from scratch.

More features were available (more complex NP identification, verb subject
identification) but were not used as they were often found to be inaccurate.

The output of shallowproc, a list of tagged words together with brackets to
indicate NPs (see figure 2.2), is then piped directly into Prolog.

(NP

Bill NN
)NP

(NP
Clinton NP
) NP

is VBZ

(NP

the DET
president NN
)NP

of PREP
(NP

the DET
Usa NP

) NP

Figure 2.2: Example A1l after PoS tagging & NP bracketing

2.2.3 Rewriting

After reading in this output, converting to lower case and attaching PoS tags to
words to form compound Prolog terms, some rewriting rules are applied.

Known abbreviations are expanded using information from the Oxford Ad-
vanced Learner’s Dictionary (OALD) (e.g. it’s — it is). Hand-coded rules are
also used to build multi-word units (e.g. such as) and to correct some common
mistaggings.

Matthew Purver 16 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

2.2.4 Stemming

Nouns, verbs, adjectives and adverbs are stemmed to their root form. This is
required in order to enable later stages to match queries and answers containing
words with different surface forms (e.g. matching different verb formations with
each other, singular nouns with their plural equivalents, comparative adjectives
with their root forms).

A dictionary-based stemmer was written. The OALD was used as it provides
inflectional information, and a set of rules was composed for each of its inflectional
types. Irregular words were extracted from the dictionary using Perl scripts and
then simply listed in all forms. An exception was made for many noun plurals
described as irregular by the dictionary, but which could be captured by a number
of rules, avoiding a full listing.

2.2.5 Simple Noun Phrase Adjustment

After stemming, the NPs produced by shallowproc are adjusted to better suit
the purposes of the system. As adverbs are not included in NPs, they have to be
adjusted to allow for cases where an adverb modifies an adjective (“an extremely
fat man” would be given the form “/an/ extremely [fat man/”, which is then
adjusted to “lan extremely fat man/”). The existential there is removed from
NPs, as it is treated as part of verb groups by later stages. Question-words are
also removed from NPs as they are treated differently during later stages.

Once these pre-processing stages are complete, the resulting Prolog list of
tagged, stemmed words (see figure 2.3) is passed to the main parsing functions.

[np:[bill/nn],np:[clinton/np]l,be/vbz,np:[the/det,president/nn],
of /prep,np:[the/det ,usa/npl,’.?/’.”]

Figure 2.3: Example Al after pre-processing

2.3 Syntactic Processing

This stage of the processor builds NGs, VGs and PPs under a single S node. These
groups consist of Prolog lists with a phrase type marker prefix. The output is a
shallow tree as shown in figure 2.5.

2.3.1 Verb Groups

The first step is to build VGs: these consist of verbs with associated function
words, together with modifiers such as adverbial groups.

Matthew Purver 17 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

From Front End

VG Formation | Syntactic Processing

I

Semantic Processing

NG Formation

VG Voice/Pred Features
| | :] |

PP Formation

NG Num/Class Features
] =

PP Class Features

PP Attachment

[S——— —
!

To Structure Extraction

Figure 2.4: Shallow Text Processor: Main Functions

Basic VGs

Strings of consecutive VG-type words are grouped together. This includes: all
verbs (including modals); all adverbs not already assigned to NPs; complementis-
ers (such as that, whether); the infinitive to; and the existential there (although
in answers, only when followed by the verb be - it is otherwise assumed to be a
mistagged adverbial there).

Adverb Attachment

Any VGs resulting from the previous stage that contain only adverbs are attached
to the nearest VG as modifiers: “he [drove] the car [quickly]” — “he [drove
quickly/ the car”. Adverbs are given a separate adv: sub-group within a VG: the
actual form of the VG in this example would be

vg: [v: [drive/vbd] ,adv: [quickly/rb]].

Adverb Grouping

Any adverbs left within the main v: sub-group are moved to the adv: sub-group.

Question-verb Combination

Queries often have an inverted surface syntactic form. The inversion is removed
by combining the auxiliary VG with the main VG: “/does/ he [drive] the car” —
“he [does drive] the car”). In the case of conjoined VPs (e.g. “does he [drive]
the car and [walk] the dog”), the auxiliary is combined with both following VGs.

Matthew Purver 18 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

Movement of wh-query words due to inversion is also removed at this stage: “what
[does] he [drive]” — “he [does drive] what”.

2.3.2 Noun Groups

The next stage groups simple NPs together, either as conjunctions or compounds,
to form NGs. VGs acting as noun modifiers can also be included.

Compound NPs

Consecutive NPs containing only a single noun-type word are combined - these
may be either compound nouns (banana production) or proper names (Bill Clin-
ton). Possessives are also combined here (the PoS tagger returns the possessive
adjunct ’s as a separate word), as are some adjectival forms such as the common
(in QA) how long/old/etc..

The formation of these compounds is currently not compulsory to avoid forc-
ing errors, but it might be acceptable to enforce it to prevent unnecesary time
being spent in later backtracking.

Conjoined NPs

Lists of conjoined NPs (separated by conjunctions or commas, and possibly in-
cluding phrases such as etc.) are combined. This combination is not compulsory,
as mistakes could be made: we want to use it in cases like “Bill likes [Jane and
Mary]”, but not in “Bill likes [Jane and Mary] likes John”.

An additional constraint imposed to prevent erroneous combination is that all
NPs in the list must belong to the same semantic class (see below): this worked
for all examples used, but might not be desirable in all cases (“cabbages and
kings”, “arms and the man”).

VG-NP Combination

VGs consisting of single-word present participles or of to-+infinitives were com-
bined with the NP following them (singing policemen).

2.3.3 Prepositional Phrases

PPs are formed by combining a preposition with the following NP/NG: pp: [of
np: [the USAI].

Once formed, PPs are non-deterministically attached to NGs and VGs. This
stage is actually delayed until after semantic feature attachment (see next section)
so as to allow some degree of determinism: only PPs of certain classes (e.g. time)
can be attached to VGs.

Matthew Purver 19 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

2.3.4 Output

The output of this stage is therefore a sentence with words assigned as far as
possible to NGs, VGs and PPs. Function words (such as conjunctions) remain
outside groups, as do most wh-question words and punctuation.

[ng:[np:[bill/nn],np:[clinton/np]l],

vg:[v:[be/vbz]],

ng:[np:[the/det,president/nn],
pp:Llof/prep,np:[the/det ,usa/npl]l],

)_)/)_)]
S
T
NG VG NG
N | T~
NP NP A% NP

PP
Bill Clinton be the president P NP

|
of the USA

Figure 2.5: Example Al after syntactic processing

2.4 Semantic Feature Attachment

Once grouping is complete, the heads of groups are identified and various seman-
tic features are attached. For NGs, these features are number (singular/plural)
and semantic class; for PPs, semantic class only. In both cases, the features
are required for coreference resolution and for matching against query words.
For VGs, the features are voice (active/passive) and predicate name: these are
required for structural matching.

2.4.1 Verb Group Semantics

VG features are attached as a compound term between phrase type marker and
phrase list: vg:VOICE#PRED: [. . .]

Voice

Voice is represented as a Prolog atom: act or pas. A VG is taken to be passive if
it includes a verb such as be, become followed by a past participle (“John [is liked]
by Mary”), or includes only a past participle (“John, [liked] by Mary, ...").

Matthew Purver 20 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

Predicate

Predicate name is also atomic, and is the stem of the head verb in the VG.
The head verb is taken to be the last verb in the VG, except in the case where
it is preceded by a verb like want, where this preceding verb is taken instead.
This prevents a VG such as “want to X7, “intend to X” being taken to have the
meaning X. The list of such verbs is specified manually in a lexicon.

2.4.2 Noun Group Semantics

Again, NG features are attached as a compound term between phrase type marker
and phrase list: np:NUMBER/CLASSLIST: [...] Both features are taken from the
head of the NG: this is taken to be the last noun (including numbers) in the
phrase, or just the last word if no nouns are found.

Number

Number is represented as an atom: either s or p. Any NG whose head has a
plural PoS tag is marked as plural, as are NGs that are lists of conjunctions;
otherwise this feature defaults to singular.

Semantic Class

This feature is represented as a list of possible class names (each NG might have
more than one possible class). If the head of a NG is not a noun, a dummy value
is assigned.

Most TREC-8 participants identified a number of classes which corresponded
to various question types. A similar approach was taken here, although less fine-
grained than most of the TREC systems: the number of classes was kept to the
minimum required to satisfy the demands of coreference resolution and the query
types of the examples used. The possible NG classes are shown in table 2.1.
The “person” class also had an attached gender feature, to aid in coreference
resolution.

A real-world system might require a wider range of classes: for example, many
subdivisions of the “number” class might be required such as “date”, “length”
and “money”.

The OALD provides names of many common towns, cities and countries, so
was used to look up classes for these words. It also provides many common
personal names, but does not provide gender information, so all other classes
were simply listed in a hand-built lexicon. This would become cumbersome for a
large system: a neater solution for dictionary words might be to use a hierarchical
dictionary such as the Cambridge University Press CIDE+. However, this would
still leave the problem of being unable to deal with unseen words (extremely

Matthew Purver 21 October 9, 2000

M.Phil. CSLP Project

Simplistic Question Answering

| Class | Description | Examples |

per/m | Person (male) Mr., Mike

per/f | Person (female) queen, Mary
per/_ | Person (either) | student, candidate
obj | Concrete object banana, kitchen
abs | Abstract object election, answer
loc Location Wales, Cambridge
org Organisation | university, Microsoft
num Number 1991, length
XXX Non-noun (e.g. adjectives)

Table 2.1: NG semantic classes

common in news text, where new names occur frequently), so a named entity
extractor (of the type now state-of-the-art) would have to be used.

2.4.3 Prepositional Phrase Semantics

For PPs, class must depend both on the preposition and the class of the sub-
sequent NG: while in Wales is a location, about Wales is not, and neither is
in moderation. Based on the analysis in [34], a set of classes for prepositions
was created, and some simple rules devised to determine whether these could be
carried over to form the overall class of the PP:

‘ Class ‘ Description ‘ Examples ‘ Required NG Class ‘
loc Location in, outside loc, obj
tim Time in, before num
man Manner by (anything)
pos Possession in, of (anything)
sop | “Inverse” possession | with, without (anything)
XXX Unknown (anything) (anything)

Table 2.2: PP semantic classes

Any combination that does not fit a rule is given the “unknown” class: at
present, due to the narrow coverage of the small set of rules, this applies to the
majority of PPs. The rules have been chosen only to cover PPs that can be
answers to “where” and “when” questions (together with aspects of possession,
which were also determined to be useful). Classes for prepositions are listed in a
hand-created lexicon: as there is a finite (and small) number of them (prepositions
are closed-class words), this seems reasonable.

Matthew Purver 22 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

[ng:s/[per/m]l:[np:s/[per/m]:[bill/nn],

vg:act#be:[v:[be/vbz]],
ng:s/[per/_J:[np:s/[per/_]:[the/det,president/nn],

J

NP:s/|per/m| NP:s/|per/m V NP:s/|per/_| PP:[loc,pos
/[|p/] /[|p/] | /Iper/] /[\p]

_7/:_7]

np:s/[per/m]:[clinton/npl],

pp:[loc,pos]:[of/prep,
np:s/[loc,pos]:[the/det,usa/npl],

NG:s/[per/m] VG:aTt#be NG:s/[per/]

Bill Clinton be the president P NP:s/[loc]

|
of the USA

Figure 2.6: Example A1l after shallow text processing

Matthew Purver 23 October 9, 2000

Chapter 3

Relational Structures

After the processing described in chapter 2, we have a shallow parse tree: a
sentence consisting of verb and noun groups. In order to make a decision as to
whether an answer truly matches a query, we need some information about how
these groups are related (i.e. about their roles in the sentence). This is important
if we want to exclude examples like A3 from being identified as correct answers.

In the TREC-8 conference, two systems made clear attempts to do this. The
University of Maryland system [27] used a parser that produced a dependency
tree encapsulating relational information; while the CL Research system [23]
extracted entities and stored them together with direct information about their
role (e.g. subject or object and the verb governing them).

A similar (if more simplistic) approach to the CL system was taken here, with
simple relational structures being extracted. These structures can either convey a
general predicate-argument relation (for example, the subject-verb-object relation
“X likes Y”) or an existential relation (“X is Y”). The form of these structures
is described in section 3.3.

In order that these structures carry all the information required, we first
need to go through a process of coreference resolution, described in section 3.1.
Complex sentences are then syntactically simplified (see section 3.2), to allow the
structures to be easily extracted (section 3.3).

Finally, T describe a method of coindexing which allows information to be
shared between simple structures extracted from a complex sentence (section
3.4).

3.1 Coreference

Before attempting to identify structures, we attempt to resolve anaphoric expres-
sions, including pronouns, proper and definite NGs, and expressions of quantities,
time and location. This is vital in cases such as our example A2, where we need to
establish that he refers to Bill Clinton: extraction of the structure corresponding

24

M.Phil. CSLP Project Simplistic Question Answering

to he is the President of the USA will not help us unless this has been done.

3.1.1 Entity Indexing

All NGs are asserted in the Prolog database as possible referent entities, and
replaced in the sentence by index markers pointing to these entities. An exception
is made for NGs which contain only pronouns, as we do not wish to use them as
referents.

[who/wp,vg:act#be:[v:[be/vbz]l],e(3),’7/7."]
S where e3 , el , e2
/\ A
who VG e3 el PP the president the USA

|

V P e2

| |

be of

Figure 3.1: Example Q after entity indexing

3.1.2 Coreference Resolution

Anaphoric expressions can now be replaced with suitable referents, if these can
be found.

Pronouns

Pronouns are listed in a lexicon with details of the allowable semantic class,
gender and number of their possible referents. Some pronouns need than one
entry: they can refer to a singular organisation (“Microsoft announced today that
they have bought China”) but must refer to a plural entity of any other class. Each
indexed entity is examined in turn: if features match, the pronoun is replaced
by the index marker pointing to this entity. In example A2, this results in he
(both occurrences) being replaced by the index marker pointing to the entity Bill
Clinton.

Prolog backtracking ensures that all possible referents can be considered in
turn. Certain personal pronouns (such as I, you) are not resolved as they are
both unlikely to have referents in the sentence and unlikely to be helpful in terms
of QA.

Matthew Purver 25 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

Proper names

Proper NGs can be resolved to other proper NGs which contain the same or
more information (e.g. also including an attached PP): the index marker for the
anaphoric NG is changed to point to the referent NG.

This is required in cases such as the matching of “Today Ken Livingstone
opened London’s new assembly; Livingstone is London’s mayor” to the query “Is
Ken Livingstone the mayor of London?” - we need to resolve Livingstone to Ken
Livingstone.

The referent NG is not allowed to be a list of conjunctions: we would not
want Livingstone to be resolved to Ken Livingstone and Frank Dobson.

Definite NPs

Similarly, definite NPs (containing definite articles) can be resolved to NPs that
contain more information. Again, referents must not be lists of conjunctions.

In this way we could deal with “Bush is running for president of the USA:
currently Clinton s the president” by resolving the president to the president of
the USA.

Numerical Expressions

Numerical expressions such as one, some, a lot can be resolved to plural NPs
(consider a case such as “there are many mountains in Wales, and one is Snow-
don” as an answer to “Is Snowdon in Wales?”). In most cases, the numerical
expression is replaced directly by the plural referent: in the case of one, a new
singular NP equivalent must be created (consider “there are many high moun-
tains in Wales, but only one is worth climbing, and it is Snowdon” - we need it
— one — mountain(s) in Wales, and this will only be possible if one is taken to
be singular).

Location and Time

These expressions (there, then) can be resolved to suitable PPs (“I love climbing
in Wales: after all, Snowdon is there” requires there — in Wales). At present,
as PPs are not indexed, the anaphoric expression is replaced directly by a copy of
the referent PP, rather than an index marker. This is acceptable with the system
in its current state, but might become undesirable if later operations are added
which affect the PPs.

3.2 Extraction of Sub-sentential Units

Most sentences consist of more than one clause. As we are attempting to extract
simple structures, we need to split such sentences into smaller units, each of

Matthew Purver 26 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

which correspond as closely as possible to individual structures. For our example
A2, this would produce “Although one may dislike Bill Clinton”, “it is important
to remember that Bill Clinton is one of the most powerful men in the world”,
and “Bill Clinton is president of the USA”. This section describes the method of
splitting into these small units.

For answers, a single possible sub-unit is extracted, and Prolog backtracking
chooses each in turn until one matches the query in hand. For queries, the
findall/3 predicate is used to build a list of sub-sentences, all of which must be
matched by an answer.

3.2.1 Conjunctions

The most obvious method of combining two or more simple concepts into a com-
plex sentence is by the use of conjunctions. Three methods of conjunction have
been considered here: sentence, verb phrase and noun phrase conjunction.

The descriptions below are expressed in terms of a single conjunction joining
two phrases: in all cases the same rules are applied to multiple conjunctions
(comma/conjunction-separated lists of phrases).

S Conjunction

If a conjunction separates two parts of a sentence, both of which contain VGs, it is
considered to be a conjunction of two separate sentences and these are extracted
as individual sub-sentences. “Pat is in the kitchen and Mike is in the garden” will
be split into the sub-units “Pat is in the kitchen” and “Mike is in the garden”.

VP Conjunction

If a conjunction separates two parts of the sentence containing VGs, and is imme-
diately followed by a VG, it is considered to be a conjunction of two VPs. In this
case, the sentence is split into two sub-units at the conjunction, and the first NP
argument from the first unit copied to the second. “Livingstone defeated all the
other candidates and is London’s mayor” will be split into “Livingstone defeated
all the other candidates” and “Livingstone is London’s mayor”.

NP Conjunction

As described above, the parser groups NP conjunctions as NGs. For answers, this
treatment is sufficient (they are left as NGs, and later matching rules allow for
this). For queries, it is not sufficient, as we need to extract two logical sub-queries
which can both be checked against an answer - Q10 “Where are Pat and Mike?”
must be converted to “Where is Pat?” and “Where is Mike?”. This allows not
only obvious matches such as A10.1, but more complex examples such as A10.2.

Matthew Purver 27 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

To achieve this, the sentence is copied, once for each of the NPs in the con-
junction, with each individual NP in turn replacing the conjoined NG.

3.2.2 Subordinate/Relative Clauses

Relative clauses introduce a similar situation, as illustrated by example A10.6
“Pat, who is reading, is in the lounge ...”. We can extract two smaller units,
each corresponding to a single simple structure: the “internal” sentence “Pat s
reading” and the “external” sentence “Pat us in the lounge”. Punctuation is used
to determine the extent of the relative clause, after Briscoe ([6], [7]).

Other subordinate clauses are dealt with in the same way: “Pat, although he

1s reading, s in the lounge” would produce two very similar sub-sentences.

3.2.3 Punctuation

Further use of punctuation is made to split into sub-sentences at colons and
semi-colons, or even at e.g. full stops if more than one sentence is present in the
passage.

3.3 Structure Extraction

Once simple sentential units are available, relational structures are extracted.
This section describes both the form of these structures and their method of
extraction.

3.3.1 Predicate-Argument Structures

Any relation involving a predicate (a non-existential verb) is expressed as a
predicate-argument (PA) structure. A PA-structure takes the form

s:[Predicate, Argumentl, Argument2]

This is based on the first-order logic interpretation of a standard transitive
verb, more usually expressed as Predicate(Argumentl, Argument2): it can be
considered as a more general version of a verb-subject-object relationship.

The extraction of these structures is based entirely on word order. The pred-
icate is the VG of the simple sentence. Any NGs and other words before the
predicate are compounded to form the first argument. Similarly, all NGs after
the predicate form the second argument.

This compounding process allows ditransitive verbs (“A gives B C”) to fit
the same structure - in this case, of the form s: [Pred, A1, [A2 A3]]. This was
shown to deal successfully with examples including the ditransitive verb “make”
(see example 9).

Matthew Purver 28 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

While verbs of many other sub-categories can be similarly accommodated,
some give problems: for instance complementising verbs. In answer passages,
we circumvent this problem by choosing a subset of the sentence with which we
can deal successfully: a form such as “it has been confirmed that Hawaii produces
bananas” will still allow us to produce the expected simple structure from Hawasi
produces bananas. In queries there is currently no method for doing this: it is
assumed that query sentences remain simple.

Intransitive verbs can form PA-structures with only one argument: this allows
intransitive queries to be matched by transitive answers (as the shorter structure
can still be extracted). However, we considered no intransitive verbs in our
training or test sets, and examination of the TREC data shows that intransitive
verbs are very uncommon in queries.

It may be that further study of examples including verbs of different sub-
category show that a more advanced treatment is required: if so, it would be
possible to allow PA-structures to have variable length (number of arguments).

3.3.2 State Structures

Although it is possible to represent existential verbs (e.g. be) as predicates in a
PA-structure as above, this was found to have disadvantages. Existential relations
are not only expressed by verbs, but by forms such as compound NGs or PP
attachment: we would like our example QQ to be matched by a sentence containing
the NG Bill Clinton, the president of the USA.

In order to facilitate the matching that this requires, existential verbs and
NGs (but not conjunctions) were used to produce structures with no predicate
value (state-structures), of the form

s: [Argumentl, Argument2]
Our example Al will produce the structure
s:[[bill clinton], [the president of the usa]]

as will A2 (along with other less relevant structures).

3.4 Coindexing

This method of producing simple structures from sub-units of a complex sentence
has an associated problem: what do we do if we require some information from
more than one structure? We would like a query such as “Does the President
of the USA smoke cigars?” to be answered successfully by “Bill Clinton is the
President of the USA and smokes cigars”: but this produces structures which
express “Bill Clinton is the President of the USA” and “Bill Clinton smokes
cigars”. Neither of these contain the answer to the query.

Matthew Purver 29 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

A possible approach might be to enter these two structures in a knowledge
base, and attempt to answer the query using some sort of logical theorem prover.
A simpler approach has been taken here: as both structures contain the same
entity Bill Clinton, we can modify this entity with the state information from the
first structure, and it will automatically be carried over to the second.

We do this by setting up an equivalence between state-structures and com-
pound NGs: if a state-structure corresponds to a compound NG, this NG is cre-
ated: the entity [bill clinton] becomes [[bill clinton], [the president
of the USA]]. Now, our second (PA) structure refers to this NG and so becomes
[smoke, [[bill clinton], [the president of the USA]],cigars]: and this
is able to match the original query. Similar rules are defined for NG formation
by PP attachment.

Matthew Purver 30 October 9, 2000

Chapter 4

Structure Matching

Once the possible state- and/or PA-structures can be extracted from an answer,
they can be examined and matched against the current query structure. This
chapter describes this matching process.

In cases where the structures are sufficiently similar, this can be achieved by
direct matching of predicates and arguments, using a set of lexical matching rules.
There are 15 of these rules (3 at the word level and 12 for phrases). They are
applied simplest first (from individual word matching to complex NG matching),
but can be used in any combination via Prolog backtracking. These rules are
described in section 4.1.

However, it is often the case that query and answer structures are significantly
different. In this case, direct matching would only be possible if rules were very
loose — in other words, tending towards DR-style keyword matching with its
associated problems. In order to keep matching tight, I transform the structures
to make them sufficiently similar for the matching rules to then be applied. There
are 6 transformation rules (4 rules dealing with general phenomena and 2 rules
only applicable to certain classes of predicate/argument) which are described in
section 4.2. The transformations are generally applied to the answer structures
(as query structures are usually already in a simple form) but some can be applied
to either - see below. In testing, it was found that the majority of answers required
at least one transformation before matching was successful.

This combination of structural transformation and matching is sufficient to
deal with yes/no queries. For other query types involving wh-words, a further
set of rules is required to specify the matching of these words against answer
phrases. Some complex query types observed in TREC-8 also require structural
transformation. These query-specific rules (6 word/phrase matching rules and 4
structural transformations) are described in section 4.3.

I then give a summary of the structural phenomena that can be dealt with
using this philosophy in section 4.4, together with a discussion of some that are
problematic. As a number of different structural phenomena must be illustrated,
the examples throughout this chapter are taken from the training data given in

31

M.Phil. CSLP Project Simplistic Question Answering

appendix A rather than the running examples used until now.

4.1 Direct Structure Matching

If the structures are sufficiently similar (lists of the same length), then each
element of the query structure is matched individually against its corresponding
element in the answer structure:

$:[Q1,Q2,.. | & s:[A1,A2,..] if Ql& Al, Q2 A2, ... (4.1)

(The symbol < denotes matching).

In the simplest cases, where the corresponding elements of the structures are
identical, this rule is sufficient (I use the symbol ~» here to denote structure
extraction, and only show a simplified version of the structure to aid legibility):
Q1 “Is Snowdon in Wales?” ~~ s:[snowdon, [in wales]]

Al.1 “Snowdon is in Wales” ~~ s:[snowdon, [in wales]]

4.1.1 Word Matching

It is unusual to find such a high degree of similarity, so a series of rules are
required to allow the individual elements of the structures to match each other.
The simplest form of matching is tried first: similar but non-identical words can
be allowed to match under the following conditions.

Noun Matching

Nouns can match other nouns with the same stem, even if the PoS tag is not
identical. This allows plurals (with a NNS tag) to match singular nouns (with
NN tag) or nouns that have been mistagged as NP.

Adjective/Adverb Matching

Adjectives match other adjectives with the same stem, as long as the answer word
has at least the same comparative degree as the query word: this allows a query
about tall mountains to be matched by a passage about the tallest mountain,
but not vice versa.

Pronoun Matching

Non-resolvable personal pronouns can match each other (you matches one).

Matthew Purver 32 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

4.1.2 Verb Group Matching

The word matching outlined above will only be sufficient in cases where the
structures are identical except for individual word variations. More usually, there
will be differences at the phrase level, so phrase matching rules are applied next.
In the case of PA-structures, we first try to match the predicate (a VG).

Unmodified VGs

VGs without attached modifiers are allowed to match as long as both the voice
and predicate features are identical, no matter what words are within the V
sub-group.
VG : V0|ice#Pred S VGy: V0|z'ce#Pred (4.2)
Vo Va

This deals with cases such as:
Q5 “Does Hawaii produce bananas?”

~+ s: [vg:act#produce: [v: [does produce]],hawaii,bananas]
A5.1 “Hawaii produces bananas”

~ s: [vg:act#produce: [v: [produces]] ,hawaii,bananas]

VG Modifiers

If a VG from an answer structure contains modifiers (adverbial phrases or PPs),
it is allowed to match an unmodified query VG as above:

VGq:V#P & VGy:VH#P (4.3)

VQ VA M0d1 M0d2 e

However, if the query VG contains a modifier, the answer VG must contain a
matching modifier (see below for the rules used to match PPs):

%\
VQ MOdQ1 MOdQQ e VA MOdA1 MOdA2 .

if Vi |3j[Modg; < Modyj]|

This allows A6.1 to match Q5 shown above:
A6.1 “Hawaii produced bananas in 19917
~+ g: [[produce, [in 1991]1] ,hawaii,bananas]
& s:[produce,hawaii,bananas]

but would not allow the previous A5.1 to match QG6:
Q6 “Did Hawaii produce bananas in 199127
~> s: [[produce, [in 1991]] ,hawaii,bananas]

Matthew Purver 33 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

4.1.3 Noun Group Matching

If predicate matching is successful, we proceed to try to match the arguments
(which are usually NGs, although they can be PPs - see next section). In the
case of state-structures, where no predicate needs to be matched, these rules are
tried immediately.

Simple NPs

NPs match if they share a semantic class, and all words from the query NP
except for determiners are present in the answer NP. This will allow a query
like Q2 about a racecourse to be matched by an answer containing a very long
racecourse, but not vice versa.

NPQ : SemQ = NP, : Semy (45)

DeIwiAXvQZ ...DetAy...XAj...
if 3S[(S € Semg) N (S € Semy)]
and Vs HJ[XQZ@XAJ]

An exception is made for certain determiners (such as every, all) which must
be present in the answer if present in the query - this allows answers containing a
racecourse, the racecourse, racecourse to match a query concerning a racecourse,
but not a query about all racecourses.

Number does not have to be matched (“there are racecourses in Newmarket”
is an acceptable answer to “is there a racecourse in Newmarket?”, and conversely
“there is a racecourse ...” answers “are there racecourses ... ?”).

Complex NGs

Any NG matches any other NG if they share a semantic class, and all words
contained in sub-NPs or the query NG are present in sub-NPs of the answer NG.
NPs contained within PPs are not considered as sub-NPs for this purpose. Any
PPs present in the query NG must also be matched (see below for PP rules). In
this way, large racecourse [with a water jump] matches a query about racecourses,
but not vice versa.

XQZ XA]

Matthew Purver 34 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

Members of Complex NGs

Any query phrase can be matched by a NG in the answer if that NG contains
a matching phrase. This allows an answer containing a mountain in Wales to
match queries about mountains and queries about in Wales.

Xo& NG, if Xoe X4 (4.7)

X4

Inclusions

An NG can match a phrase (usually a PP) beginning with an “inclusive” word
(like, such as) if it matches the rest of the phrase. This allows, say, Hawaii to
match islands such as the beautiful Hawaii.

SN

Inc NGy

Expansions

A NG can match the form “NG1 of NG2” if it matches NG2, as long as NG1
and NG2 share semantic class, This allows expanded descriptions to be matched
(Newmarket matches the town of Newmarket) but not general possessives (the
mayor of Newmarket).

NGy & NGp if NGy < NG, (49)

/\

NGy : Semy PP

N

of NGy : Semsy

and 35[(S € Semq) N (S € Semy)]

Relaxed NG-PP Matching

An additional rule allows NGs to match PPs containing them, but only in the
context of a verb nominalisation construction (see below).

4.1.4 Modifier Phrase Matching

We have already mentioned the requirement to match PPs and adverbial phrases
as part of VG and NG matching. We may also require PPs to be matched if they
are arguments themselves.

Matthew Purver 35 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

Simple Prepositional Phrases

PPs match each other if they share semantic class, and their constituent NGs

match.
PP13567’)’L1 = PPQZS&TI’LQ if NG1<:>NG2 (410)

Prepy NGy Preps NGo

and 3S[(S € Semy) N (S € Semy)]

This allows PPs with any “location”-class preposition to match each other
(in Newmarket matches at Newmarket). Of course, this therefore allows outside
Newmarket to match as well: this was considered reasonable, as it conveys in-
formation likely to provide an answer to the related query. This behaviour could
be changed if prepositions are given a finer-grained semantic classification (e.g.
“internal location”, “external location”, “general location”).

Complex PPs

PPs can also match the inner levels of “stacked” PPs if all levels share semantic
class.

PPx & PP, : Sem; if PPy < PP, (4.11)
/\
Prep, NG,

NGy PP, : Semsy

and 3S[(S € Sem;) N (S € Semy)]

This allows the simple PP in Suffolk to match constructions such as in a town
wn Suffolk.
Possessive PPs

“Possession”-class PPs are allowed to match NGs that contain the possessive
suffix ’s, as long as they contain a NG that matches the other contents of the
possessive NG. Thus of London matches London’s.

PP :pos < NG :pos if NG; & NG, (4.12)

Prepy NG; NGy s

Matthew Purver 36 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

Adverbial Phrases

Adverbial phrases match if all words present in the query phrase are present in
the answer phrase:

AdvPy & AdyPy if Vi[3j[Xei ¢ Xuj] (4.13)

CXoi-. X

4.2 Structure Transformation

For cases where the structures do not match directly, a set of structural trans-
formation rules is defined. Application of these rules is achieved by applying a
transformation to one structure and then testing for a direct match using the
matching rules from the previous section.

Qe A if Qe A" where A'=Ty(A) (4.14)
or
QoA if QoA whre Q=ToQ) (4.15)

4.2.1 General Structural Transformations

The first set of transformation rules capture general concepts about sentence
structure equivalence: their use is independent of the predicate or argument
semantics.

Active-Passive

A PA-structure (query or answer) with a passive VG at its head can be converted
into the equivalent active structure, as long as its second argument is a by-PP.
This argument is converted into a NP and the argument order is reversed.

s : [V Gpas, Argl,pp : [by, Arg2]] — s : [V Gaet, Arg2, Argl] (4.16)

This rule will enable the following example to match Q9:
A9.6 “One is made very fat by bananas”
~+ s: [vg:pas#:make: [...], [one very fat], [by bananas]]
— s:[vg:act#make: [...],bananas, [one very fat]]

Matthew Purver 37 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

Existential Ordering

A state-structure (query or answer) can have the order of its arguments reversed
(“A is B” and “Bis A” are logically equivalent). Care needed to be taken here
to prevent infinite recursion when applying the transformations.

s:[Argl, Arg2] — s : [Arg2, Argl] (4.17)

This rule will enable the following examples to match Q2:
A2.2 “In Newmarket there is a racecourse”
~+ 8:[[in newmarket],racecoursel
— s:[racecourse, [in newmarket]]

Existential Arguments

The contents of a single NG argument of any structure can be treated as a
separate state-structure, unless that argument is a list of conjunctions.

s:l...,ng:[Argl, Arg2,..],...] = s:[Argl, Arg2,..] (4.18)

This allows the following example to match Q1:
A1.4 “Snowdon, in Wales, is a serious mountain”
~> s: [ng: [snowdon, [in wales]],[a serious mountain]]
— s:[snowdon, [in wales]]

This rule is only applicable in answers: queries of the form “Snowdon, in
Wales?” do not seem to be common!

Verb Nominalisation

A PA-structure whose predicate is a generic utility verb (do, have, make) and
one of whose arguments contains a NP with a head noun whose lemma corre-
sponds to a verb, can be converted into the equivalent PA-structure with the new
lemma verb as its predicate. The lemmatised NP is removed from its argument.
This lemma information is currently entered manually in the lexicon as a series
of verb/noun pairs (e.g. produce/production, produce/product) - a lemmatising
dictionary such as CIDE+ could be used instead.

s 1 [VGui, Argl, Arg2, ... = s : [V Giemma, Argl’, Arg2, ..] (4.19)

WheI‘e ATgl' = ATgl \ NF)lemma

Similarly, a state-structure containing such an argument can be converted
into the corresponding PA-structure.

s:[Argl, Arg2,...] = s: [VGiemma, Argl’, Arg2, ..] (4.20)

Matthew Purver 38 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

WheI‘e AT‘gl’ = ATgl \ NPlemma

This rule is only applied to answer structures as it is assumed that queries
will not exhibit verb nominalisation. However, it would be trivial to create a
parallel rule for query structure conversion. It is of course only applied if we
are attempting to match to a query PA-structure with the lemma verb as its
predicate.

In order for this transformation to allow successful matching, subsequent rules
are relaxed: in particular, PPs are allowed to match NGs once this transforma-
tion has been applied. This is due to the large variation in forms that can be
encountered within this general class of phenomenon: “production [of bananas]/ [in
Hawaii]”, “[banana] production [by Hawaii]”, “[bananas/, products [of Hawaii]”,
“/Hawaii/, producer [of bananas/” would all be expected to match Q5. This re-
laxation makes this possible:

A5.12 “In Hawaii, [...], there is [...] production of bananas”
~+ s:[[in hawaii], [production of bananas]]
— s:[produce, [in hawaii], [of bananas]]
& s:[produce, [hawaii], [bananas]]

The disadvantage of this relaxation is that forms such as all products of Hawaii
except bananas will match successfully, although they do not logically provide an
answer to the query. This might be avoided if the lemma-containing nouns can be
further classified (as, say, “agents”, “entities”, “concepts”) and individual rules
created for each class, but time did not permit investigation of this.

4.2.2 Specific Structural Equivalences

Some answer phenomena required structural rules that should only apply in cer-
tain contexts (for example, with arguments of certain semantic classes).

Verbs of Possession

A PA-structure whose predicate corresponds to the notion of “possession” (have,
contain) can be transformed into a state-structure containing a “possession” -class
PP.

s 1 [VGpos, Argl, Arg2] — s : [Arg2,pp : [pos] : [of, Argl]] (4.21)

This will allow the following example to match Q2:
A2.4 “Newmarket has a racecourse”
~+ 8: [have, [newmarket], [a racecourse]]
— s:[[of newmarket],[a racecourse]l
& s:[[in newmarket], [a racecourse]ll]

An analogous rule allows the same kind of structure to be transformed into a

Matthew Purver 39 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

state-structure containing an “inverse-possession”-class PP:
s : [VGep, Argl, Arg2] — s : [Argl,pp : [sop| : [with, Arg2]] (4.22)

A2.4 “Newmarket has a racecourse”
~+ s: [have, [newmarket], [a racecourse]l]
— s:[[newmarket], [with a racecourse]l]
(although this isn’t useful in this example).

Numerical Quantities

This rule is currently only implemented for “number”-class arguments. A PA-
structure whose predicate corresponds to the notion of “possession” (have) can
be transformed into a state-structure.

st [VGpos, Argl, Arg2] — s : [Argl, Arg2] (4.23)

This will allow the following example to match QT:
A'7.2 “Fverest has a height of 28,000”
~+ 8: [have, [everest], [a height of 280001]]
— s:[[everest], [28000]]

4.3 Question-word Matching

So far, all rules have been query-type-independent. The rules and transformations
outlined above are sufficient to allow answers to be matched to yes/no queries,
but there many other important types (as can be seen in the list of TREC-8
queries given in [41]).

A further set of rules is required to allow wh-queries to be dealt with - these
rules specify the types of phrase that wh-query words (and phrases) can match.

Single Wh-Words

Wh-query words are specified in the lexicon with lists of semantic class and of
phrase type. When on their own, they are allowed to match any phrase of the
correct type which shares a semantic class with the wh-word. When combined
with other words in an NP, other rules apply (see below).

Quantities

A common query form involves how with adjectives of quantity: many of the
TREC queries begin with how many, how much, etc. With our semantic class
system, this construction is allowed to match any NG in the “number” class:
how high can match 28,000 ft., or just 28,000. A finer-grained classification

Matthew Purver 40 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

where loc PP
when tim PP, NG, NP
who, whom per, org NG, NP

what abs, obj, org NG, NP
which abs, obj, org NG, NP

whose pos PP
how man PP, AdvP
why rea PP

Table 4.1: Wh-query word semantic classes and phrase types

would allow a distinction between, say “height” and “money”, to prevent this
query from being matched by $28,000.

Queries of the form what with nouns of quantity are matched in the same
way: what height will match the same phrases as how high.

A structural transformation has also been created to allow the additional form
of such queries what is the height of X to match the same phrases as what height
is X (and how high is X).

How+Adjective

This general structure, wherein the adjective is not an adjective of quantity, can
match any phrase that contains a form of the same adjective. This allows, say,
how useful in a query to be matched by extremely useful in an answer passage.

What/Which+NG

This is a very common query form in the TREC exercise: what city, which cos-
tume designer. In this case, we allow this query NP to match any NG of the
same semantic class (what costume designer will match a “person”-type NG).
Once again, a more detailed semantic classification system would be useful here
to prevent what city from accidentally matching non-city “locations”, such as
countries.

“Name” Queries

Another common query form observed in TREC is What is the name of ...,
both for people (e.g. ... the president of the USA) and other objects (e.g. ... the
largest city in Germany). As answers to this kind of query are extremely un-
likely to contain any phrase literally corresponding to the name, these queries
are transformed structurally into their logical equivalent (Who is ... for people,
What is ... for others) and then matched as before.

Matthew Purver 41 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

In the same way, the form Name ... — Who/What is ..., and Name the X
who ... — Which X

4.4 Summary of Capabilities

This section gives a summary of the capabilities of the system. It shows that
a wide range of answer phenomena can be dealt with, along with all the most
common query types. I conclude by describing some of the phenomena that are
currently beyond its capabilities and suggesting possible methods for tackling
them.

4.4.1 Answer Passage Phenomena

Table 4.2 gives a list of the wide range of phenomena (lexical and structural)
which can be matched by the system, together with examples taken from the
training and test data shown in full in appendix A. The requirements posed
by the phenomena range from simple non-identical word matching to complex
structural transformation.

Matthew Purver 42 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

Direct Match A1.1“Snowdon is in Wales”
Singular/Plural A2.6 “There are several racecourse in New-
market”
Unnecessary Modifiers A2.14 “There is a fine racecourse for all

lengths in Newmarket”
A1.5 “Snowdon, the highest mountain in the
UK, is in Wales”

Stem Matching A4.1“The biggest IT company s Microsoft”
Inclusions L5.1 “The Pacific islands like Hawait produce
tropical fruit like bananas”
Expansions A2.12“In the Suffolk town of Newmarket
there is a racecourse”
Simple PPs A3.2 “Livingstone is mayor of London”
Possessive PPs A3.5 “Ken Livingstone defeated all the other
candidates and s London’s mayor”
Verb Form Variations A5.6 “Hawait is producing bananas”
VG Modifiers A6.1 “Hawait produced bananas in 1991”
Verbs of Possession A2.4 “Newmarket has a racecourse”
Passives A9.6 “One is made very fat by bananas”
Existential Ordering A2.2 “In Newmarket there is a racecourse”
Existential Compounds A1l1.4“Snowdon, in Wales, is a serious
mountain”
Coreference A10.5 “Pat is in the kitchen and Mike is
there too”
Conjunctions A10.2 “Pat is in the lounge and Mike is in

the garden”

Relative Clauses (internal) | A5.16 “Hawaii specializes in the production
of tropical fruit, which includes bananas and
pineapples”

Relative Clauses (external) | A10.6 “Pat, who is reading, is in the lounge”
Relative Clauses (coindexed) | A5.16 “Tropical fruit production, which in-
cludes banana production, is the mainstay
[-..] of Hawaii”

Subordinate Clauses A12.6 “There is a library, with all the texts
the student needs, in every college in Cam-
bridge”

Verb Nominalisation A5.12 “In Hawaii, which is not far from Cal-
ifornia, there is large scale production of ba-
nanas”

Table 4.2: Lexical/Structural Phenomena

Matthew Purver 43 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

4.4.2 Query Types

Table 4.3 shows the range of query types that can be dealt with. Where possible,
these are illustrated with examples from appendix A: where no example was
encountered, an example from TREC-8 is given.

The “simple wh-word” type includes why and how questions. These were
not tested: although they will form legitimate query structures, they may cause
problems as no effort has been spent in developing the necessary rules for answer
entity matching. It should be noted that they also caused problems for many
TREC-8 participants.

Yes/No Q1 “Is Snowdon in Wales?”
Simple Wh-Word | Q3 “Who is Mayor of London?”
Quantities Q7 “What is the height of Everest?”

(“What height is Everest?”)
(“How high is Fverest?”)

How+Adjective | TREC Q161 “How rich is Bill Gates?”
What/Which+NG | TREC Q47 “What company is the largest Japanese ship
builder?”

What Name TREC Q5 “What is the name of the managing director
of Apricot Computer?”

Name TREC Q66 “Name the first private citizen to fly in
space.”
Name+NG TREC Q65 “Name a country that is developing a mag-

netic levitation system.”

Table 4.3: Query Types

4.4.3 Problematic Phenomena

Table 4.4 outlines structural phenomena which are currently beyond the capa-
bilities of the system: while all are illustrated with answer examples, they could
also occur in queries. The first two are thought to be achievable: the rest pose
larger problems.

Table 4.5 gives a similar list of problematic phenomena which only appear in
queries. All could be dealt with given more time.

Tense, Synonyms

While these phenomena might be important in a real-world QA system, they
were not dealt with in this project due to the limited time available. However,
both have been shown to be treatable.

Matthew Purver 44 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

Tense “There used to be a racecourse in Newmarket”
Synonyms “There is a racetrack in Newmarket”
Negatives “Snowdon is not in England”

Inference “Students in Cambridge can use the many li-
braries”
Reasoning “K2 1is 27,500 ft. high, and Everest is 500 feet
higher”
Comparatives “Snowdon is higher than the mountains in Eng-
land”
Ellipsis “Wales is a fine country and Snowdon [is] a fine
mountain”
Adjuncts “Microsoft is a big IT company and so is IBM”
Hypothetical “If Snowdon were in Nepal, it would seem tiny”
Sub-category Variations | “Did Pat give Mike a present?”
“Pat gave a present to Mike”

Table 4.4: Problematic Phenomena

PPs split from their NGs | “Of which country is Clinton the president?”
Split PPs “Which country is Clinton the president of ?”

Table 4.5: Problematic Query Phenomena

A treatment of tense could be achieved in a similar manner to the current
treatment of passives: identification of verb forms together with a “tense” feature
on VGs or structures. However, this would need to be combined with time-stamp
information associated with the answer passages: a passage in the present tense,
but written in 1985, might be considered as a legal answer to a query in the
past tense, but not to a query in the present tense. This issue was addressed
successfully by some TREC participants: see [26].

Synonymous (or hypo/hypernymous) expressions will require the addition of
a suitable lexical resource such as WordNet, together with some matching rules
specifying acceptable degrees of synonymity (perhaps with a score?). Again, this
was tackled successfully in TREC: see e.g. [13], [22].

Negatives, Inference, Reasoning

These phenomena were also not attempted due to the limited time available:
however, they seem to pose real problems.

Negative sentences are currently treated exactly as their affirmative counter-
parts. To a certain extent, this approach seems reasonable, as our aim is to
identify a passage that answers a query: “Hawaii does not produce bananas”

Matthew Purver 45 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

would be a perfectly acceptable and informative answer to Q5. It is less clear for
wh-questions, however: “Macrosoft, despite the name, is not a large I'T company”
is probably not a useful answer to Q4. While these negative answers would be
easily spotted by a user if presented in full (and might even be considered useful),
they could be positively misleading if the system attempted to answer the ques-
tion directly (so produced “Macrosoft” from the previous example). If this were
the case, a treatment of negatives would be required: this might be achievable
by using negative words as adverbial modifiers and thus creating a “negative”
feature for VGs or structures, although more complex cases will require more
thought: “Hawaii produces bananas but not guavas” is a good answer to Q5, but
should be rejected for the similar “Does Hawaii produce guavas?”. This might
be treatable by extracting two conjoined structures (one negative, one positive)
- in other words, by treating NP conjunctions in answers in a similar manner to
their current treatment in queries.

The phenomena we have described as inference and reasoning are in them-
selves large areas. As a minimum, we will require: some real-world knowledge;
a logical capability such as theorem-proving; calculation capability; pragmatic
theory.

Comparatives

Sentences of the type shown above are difficult to exclude due to our lack of
ability to determine the attachment point of PPs. While it might be possible to
spot and constructions such as higher than X and prevent them from matching
X, it is difficult to determine the scope of the than-phrase, especially when it
contains PPs that might attach anywhere (even to the VG).

Ellipsis, Adjuncts

It appears to be in the nature of our predicate-argument approach that sentences
with ellipsis of a predicate will cause problems. Resolution of ellipsis is non-trivial
and is the subject of much research. Similarly, it is not easy to determine the
referent of adjunct words like so and too.

Hypothetical

Some attempt has already been made to address a particular instance of hy-
pothetical sentences: the parser prevents VGs such as want to be from being
assigned the meaning be. While it might be possible to similarly detect phrases
introduced by hypothetical conjunctions (if, unless), it will be difficult to deter-
mine their scope (and thus determine which apparently-matching phrases should
be excluded). Matters are made worse if subordinate phrases are introduced
within the hypothetical phrase: “If Snowdon, which is in Wales, were in Nepal,
...” does provide a legal answer.

Matthew Purver 46 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

Query Phenomena

All of these phenomena could be dealt with by structural transformations. The
first two are versions of the inverted query form and could be transformed to their
non-inverted equivalent. The “name who” form could be dealt with either by a
structural transformation or a phrase matching rule: in either case, matching
“Name the X who/which/that” with the same rules currently used for “Which
X7

Matthew Purver 47 October 9, 2000

Chapter 5

Evaluation and Results

One of the advantages of the structural matching approach is that it identifies
the matching portions of answer text, providing us with sensible material for use
as the system output.

This output (described in section 5.1) also provides a basis for a method of
evaluation: the system output could be compared with an equivalent manual
annotation of the answer text. Achieving consisteny in manual annotation is
notoriously difficult (as noted in the TREC-8 evaluation [41]), and two different
methods were investigated before settling on a reasonably consistent minimal,
“narrow-scope” technique (see section 5.3).

Using this method, the performance of the system was measured in two blind
tests, as well as over all the training data used in development, and the results
are given in section 5.4. Performance on the training data and the first blind
test was good, despite a wide range of sentence phenomena being present. The
second test caused problems as it introduced several new phenomena which had
not been encountered in development.

Finally, I set out the conclusions that can be drawn from this project in section
refsec:conc.

5.1 System Output

Answer generation is a large and problematic area in itself (see e.g. [18]). The
TREC-8 QA track avoided the need for full natural language answer generation
by returning suitable portions of surface text. This seems a sensible approach for
QA from a document corpus, and was adopted here.

Structural matching allows us to avoid the problems of text windowing expe-
rienced by DR systems (see example A2 in chapter 1), as we can return only the
portions of text which are matched. In example A2, this would mean returning
Bill Clinton and the president of the USA. This suggests a possible user interface:
the answer passage could be displayed, with matching text highlighted. In this

48

M.Phil. CSLP Project Simplistic Question Answering

way, the user would be able to reject any falsely identified answers. Given the
short timescale of this project, a highlighting interface was not developed, and
the matching portions are returned as plain text.

The text returned is therefore unlikely to make up a well-formed linguistic
entity. Due to the structural transformation approach, it may not directly mirror
the structure of the query (consider cases involving verb nominalisation). It was
therefore also though useful to identify the answer entity corresponding to the
wh-word in wh-questions.

5.2 Training Data

In order to test the system on a wide range of answer structure phenomena,
while keeping the demands on the manually specified lexicon to a minimum,
it was necessary to use specially created examples rather than real-world (e.g.
newspaper) text.

The full set of training sentences is given in appendix A. For each query, there
is a set of potential answer passages, all of which contain the keywords of the
query. Some do provide the answer (marked A) and some do not (marked N).
Sentences which were regarded as logically providing an answer, but one which
would probably be rejected by a human judge with world knowledge, were marked
L. Sentences outside the scope of this system due to use of synonyms or inference
were marked P.

5.3 Evaluation Method

5.3.1 Manual Annotation

In order to evaluate performance, each set of answer sentences was annotated
manually by an independent “notional user” who had no detailed knowledge of
how the system worked. The idea was to manually mark the portions of text
which were felt to match the query — this could then be used as a basis for
judging whether the output of the system was acceptable.

It is not easy to develop a strategy for manually selecting phrases which can
be successfully and consistently applied in all situations. Two strategies were
considered: a “narrow-scope” approach whereby the minimum possible amount
of text required to show a match was selected (not including any unnecessary
adjectives or other modifiers), and a “broad-scope” approach whereby all text
which could be considered to match was selected (allowing whole phrases to be
selected). Although neither were easy to apply consistently, the narrow-scope
selections were considerably more consistent and so were used in the evaluation.

Even this strategy was difficult for some of the more complex sentences, for
example when deciding whether to include prepositions in sentences that included

Matthew Purver 49 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

verb nominalisation. Because of this, an “overlap” category was included in the
results as well as an “exact match” category - see below.
All manually judged selections are given in full in appendix A.

5.3.2 Performance Measures

The system output for a particular answer could now be judged to be correct if
it matches the manual annotations. The manually and automatically generated
sets of output were considered to match exactly if all words matched apart from
determiners, conjunctions and existential words (e.g. “there is”).

Due to the difficulty of consistent marking, they were also considered to over-
lap if the only non-matching words were parts of a verb form (e.g. modals,
complementisers), prepositions, or anaphors whose referent had already been se-
lected. Otherwise they were considered not to match.

The conventional measures of recall and precision can now be calculated:

Recall = n(correct & identified)/n(correct)

Precision = n(correct & identi fied) /n(identified)

5.3.3 Blind Testing

For performance evaluation, a set of blind tests was performed. Query and answer
sets were prepared and manually annotated by the same independent user.

Due to the requirement for manual lexicon entries, a special procedure had
to be established. Before the unseen sentences were submitted to the system,
the vocabulary was presented and added to the lexicon. Once sentences had
been received, a preliminary run of the shallow text processor was made to check
for any missed words and spelling mistakes. Once any final additions had been
made, the test was run. Once testing was complete, the manual annotations were
provided and results assessed.

5.4 Results

5.4.1 Training Data

The final system was tested retrospectively over all training data, and the follow-
ing results were obtained:
Errors were due to the following causes:

False Identifications Only two N-class answer passages were falsely selected:
one is a comparative (A1.8) and one a hypothetical sentence (A2.3).

Matthew Purver 50 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

| Query | Exact Match | Overlap | No Match | Not Identified | Falsely IDd |
Q1 4 0 1 0 1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11

—
[N}

DN O | W W DO W[Ot
RO OoOINOIOROO
PNl ol N en) Henl Bev] Hevl Hen) Nen) Nan)

OO UOIN oo N
jev]l Hen) Hen) ool Bev] Hev) Neo) Ren] Naw) i o

Table 5.1: Performance on Training Data

Missing Identifications 6 A-class answers were not identified. One is a verb
nominalisation form that has not yet been dealt with, and the rest would
now, with hindsight, be classified as P-class: they either involve real-world
knowledge (the secretary’s job — something the secretary *does*) or the
acceptance that with PERSON is a location.

No Match Six answers have been classed as not matching. In two cases, alter-
native answers that seem acceptable have been generated from the sentence:
in the UK instead of in Wales from A1.5, “in the extension building” in-
stead of at a meeting from A10.4. In the other four cases, information has
been indeed been missed or added (A4.2,A11.1).

Considering exact and overlapping matches as successes, the performance on
the training set is therefore 71 successes, 12 failures and 2 false identifications,
which gives figures of 86% recall and 97% precision. If we accept our new classi-
fication and alternative answers, the measured recall improves to 94%.

5.4.2 First Blind Test

In the first blind test (query set 12), one yes/no-query and 24 possible answer
sentences were presented to the system. Manual judgement after the test classified
three sentences as N-class (no answer) and three as P-class (pragmatic inference,
world knowledge). This left 18 sentences that should have been identified.

The system identified 14 of the 18, and falsely identified one of the N-class
sentences. Without examining the output, this appears reasonable: recall of 78%
and precision of 93%. The N-class sentence 12.3 was mistakenly chosen as it
contained a pseudo-answer in a hypothetical clause. The four correct sentences
not identified (12.6, 12.7, 12.8, 12.9) were missed due to, respectively: inability to

Matthew Purver 51 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

| Query | Exact Match | Overlap | No Match | Not ID’d | Falsely ID’d |
Q12 6 3 5 4 1
(broad-scope)
Q12 9 3) i 1
(narrow-scope)
Q12 11 4 2 1 1
(final system)

Table 5.2: Performance in First Blind Test

handle subordinate clauses; no resolution of possessive pronouns; no resolution of
numerical anaphora; no notion of “inverse possession”. Most of these deficiencies
have since been remedied (as described in the previous chapters).

However, once the output had been examined, five of the correctly identified
sentences were judged to have given non-matching output, which reduces the
measured performance to 50% recall and 90% precision. In four cases, this was
due to poor reporting (at this stage, broad-scope answers were being used, and
it was difficult to keep the scope of the answer consistent with the manual set).
In one case, a false structure had been generated.

In preparation for the second blind test, the reporting was greatly improved
(mainly by the choice of the more consistent narrow-class answers). This in-
creased measured performance to 67% recall, 93% precision. The addition of
features (subordinate clauses, anaphora, possession), also increased the perfor-
mance, to 83% recall and 94% precision. Those remaining incorrect are due to
either the lack of possessive pronoun resolution, or the returning of (probably
acceptable) alternative output which does not match the manual annotations.

Of the 17 correct answers given by the final system, 12 (or 70%) required at
least one structural transformation, showing how important this concept is.

5.4.3 Second Blind Test

With the system in its final state, a second blind test was performed, this time
using eight separate wh-queries. While performance was reasonable on the first
two, a number of hitherto unseen query and answer phenomena together with
many requirements for world knowledge made overall performance poor: only 4
of a possible 21 correct answers were identified.

Some of the failures were caused by deficiencies in the system as it stood —
for example, anaphora resolution needs to be improved (the most important —
town in Norway). Some were caused by incorrect PoS tagging (subject as an
adjective, cost as a noun). Some were caused by phenomena that were known to
be problematic, e.g. hypothetical clauses and inference.

However, most were caused by the introduction of new phenomena: multiple
query-words in Q15; category words (in Q17 we don’t need to match newspaper in

Matthew Purver 52 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

| Query | Exact Match | Overlap | No Match | Not Identified | Falsely IDd |
Q13 0 0 1 0
Qid
Q15
Q16
Q17
Q18
Q19
Q20

(ool Hen) Nen) Nen] Nan) Ba]
N W W N —

ORI OoOIoooIN ==
(o]l Hen) Hen) Nen) New] Ren] N an)
(el Hen) o el Newl Rawl i

0 4

Table 5.3: Performance in Second Blind Test

the compound the Guardian newspaper); adverbial modifiers of quantity (how fast
- only adjectival versions had been considered previously); and some properties
of words which come from world knowledge (a X company — company which
produces X, their beer — the beer they produce, X is married to Y — X and Y
are married).

It seems that while the structural transformation approach can be successful
at handling known phenomena, it is (unsurprisingly) not robust to new phe-
nomena which require new transformations. A real-world system based on this
approach would require a large amount of training data in order to allow these
transformations to be determined and tested.

5.4.4 TREC-8 Comparison

Although the TREC-8 questions are available in [41], the answer corpora were
not, so a direct comparison with the TREC-8 performance is not possible. Some
portions of answer text were available (from the output of AT&T’s 250-byte
DR-based system [33]) and some of these showed the immediate context of the
answer. Of these, slightly over half would have been answerable (with the appro-
priate lexicon additions), but half would not. Many of these required inference
or calculation:

Q199 “How tall is the Matterhorn?”

required the answer 14,776 feet 9 inches from “about 7 inches higher than
14,776 feet 2 inches”. The rest introduced new phenomena:

Q1 “Who is the author of the book [...[?”

had in the answer sentence “/...]J by Hugo Young”. In order to cope with this
kind of example, we need the knowledge that “by” indicates authorship. While
this could be expressed as a structural transformation, we would also need one
to cope with “Who wrote [...]” and other equivalents. As stated in the previous

Matthew Purver 53 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

section, some effort would be required to determine and test a wide range of
possible transformations.

Matthew Purver 54 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

5.5 Conclusions

e An operational QA system based on structural matching was developed and
tested.

e A structural matching approach requires the use of structural transforma-
tions. The majority of answers from both training and test data required
at least one transformation before successful matching was possible.

e A wide range of query and answer phenomena can be dealt with (see chapter
4).

e This approach gave good performance on the training data and first blind
test set.

e The approach does not appear to be robust to unseen phenomena, so re-
quires a large amount of training data.

Matthew Purver 55 October 9, 2000

Bibliography

[1] AARTS, B. English syntaz and argumentation. Macmillan, 1997.

[2] ABNEY, S., COLLINS, M., AND SINGHAL, A. Answer extraction. In Pro-
ceedings of the Sizth Applied Natural Language Processing Conference (Apr.-
May 2000), Association for Computational Linguistics, Morgan Kaufmann,
pp- 296-301.

[3] ALLAN, J., CALLAN, J., FENG, F.-F., AND MALIN, D. INQUERY and
TREC-8. In The Eighth Text REtrieval Conference (TREC 8) (1999). NIST
Special Publication: in press.!

[4] AppeELT, D. E., HoBBS, J. R., BEAR, J., ISRAEL, D., AND TYSON,
M. FASTUS: a finite state processor for information extraction from real
world text. In 13th International Joint Conference on Artificial Intelligence
(IJCAI-93) (1993), vol. 2, pp. 1172-1178.

[5] BRECK, E., BURGER, J., FERRO, L., Housg, D., LicHT, M., AND
Mani1, 1. A Sys called Qanda. In The Eighth Text REtrieval Conference
(TREC 8) (1999). NIST Special Publication: in press.!

[6] BRISCOE, E. J. Parsing (with) punctuation etc. Rank Xerox Research
Laboratory, Grenoble, MLTT-TR-002, 1994.

[7] BRISCOE, E. J. The syntax and semantics of punctuation and its use in in-
terpretation. In Punctuation in Computational Linguistics (1996), B. Jones,
Ed., pp. 1-8. Proceedings of ACL SIGPARSE Workshop.

[8] BURTON-ROBERTS, N. An introduction to English syntaz, second ed. Ad-
dison Wesley Longman, 1997.

[9] CArDIE, C., NG, V., PIERCE, D., AND BuckLEY, C. Examining the
role of statistical and linguistic knowledge sources in a general-knowledge
question-answering system. In Proceedings of the Sixth Applied Natural Lan-
guage Processing Conference (Apr.-May 2000), Association for Computa-
tional Linguistics, Morgan Kaufmann, pp. 180-187.

! Available at http://trec.nist.gov/pubs/trec8/t8 proceedings.html

26

M.Phil. CSLP Project Simplistic Question Answering

[10] CorMACK, G. V., CLARKE, C. L. A., PALMER, C. R., AND KismaAN, D.
I. E. Fast automatic passage ranking (multitext experiments for TREC-8.
In The Eighth Text REtrieval Conference (TREC 8) (1999). NIST Special
Publication: in press.!

[11] CowlE, J., AND LEHNERT, W. Information extraction. Communications
of the ACM 39, 1 (Jan. 1996), 80-91.

[12] EixcHMANN, D.; AND SRINIVASAN, P. Filters, webs and answers: The
University of lowa TREC-8 results. In The Fighth Text RFEtrieval Conference
(TREC 8) (1999). NIST Special Publication: in press.!

[13] FERRET, O., GrRAU, B., ILLouz, G., JACQUEMIN, C., AND MASSON,

N. QALC - the question-answering program of the language and cognition
group at LIMSI-CNRS. In The Fighth Text REtrieval Conference (TREC
8) (1999). NIST Special Publication: in press.!

[14] GAZDAR, G., AND MELLISH, C. Natural language processing in PROLOG:
an introduction to computational linguistics. Addison-Wesley, 1989.

[15] Hurr, D. A. Xerox TREC-8 question answering track report. In The Fighth
Text REtrieval Conference (TREC 8) (1999). NIST Special Publication: in

1

press.

[16] HUMPHREYS, K., GAIZAUSKAS, R., HEPPLE, M., AND SANDERSON, M.
University of Sheffield TREC-8 Q & A system. In The Fighth Text REtrieval
Conference (TREC 8) (1999). NIST Special Publication: in press.!

[17] KNIGHT, S. First Year Report. PhD thesis, Computer Laboratory, Univer-
sity of Cambridge, 2000. In publication.?

[18] LEHNERT, W. G. The Process of Question Answering: A Computer Simu-
lation of Cognition. Lawrence Erlbaum Associates, 1978.

[19] LEENERT, W. G. Question answering in natural language processing. In
Natural Language Question Answering Systems, L. Bolc, Ed. Carl Hanser
Verlag, 1980, pp. 9-71.

[20] LEVINE, J. M., AND FEDDER, L. The theory and implementation of a bidi-
rectional question answering system. Tech. Rep. 182, Computer Laboratory,
University of Cambridge, Oct. 19809.

[21] LEwis, D. D., AND SPARCK JONES, K. Natural language processing for
information retrieval. Communications of the ACM 39, 1 (Jan. 1996), 92—
101.

2 Available at http://www.cl.cam.ac.uk/”sfk1000

Matthew Purver 57 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

Lin, C.-J., AND CHEN, H.-H. Description of preliminary results to TREC-
8 QA task. In The Eighth Text REtrieval Conference (TREC 8) (1999). NIST
Special Publication: in press.!

Litkowski, K. C. Question-answering using semantic relation triples. In
The FEighth Text REtrieval Conference (TREC 8) (1999). NIST Special
Publication: in press.

MARTIN, J., AND LANKESTER, C. Ask Me Tomorrow: the NRC and Uni-

versity of Ottawa question answering system. In The FEighth Text RFEtrieval
Conference (TREC 8) (1999). NIST Special Publication: in press.!

MoLpovAaN, D., HARABAGIU, S., PAscA, M., MIHALCEA, R.,
GoobpruM, R., GirJU, R., AND Rus, V. LASSO: A tool for surfing
the answer net. In The Eighth Text REtrieval Conference (TREC 8) (1999).
NIST Special Publication: in press.}

MorroN, T. S. Using coreference in question answering. In The Eighth

Text REtrieval Conference (TREC 8) (1999). NIST Special Publication: in
1

press.

OArD, D. W., WANG, J., LIN, D., AND SOBOROFF, I. TREC-8 experi-
ments at Maryland, CLIR, QA and routing. In The FEighth Text RFEtrieval
Conference (TREC 8) (1999). NIST Special Publication: in press.!

OGDEN, B., Cowlig, J., LuboVviK, E., MOLINA-SALGADO, H., NIREN-
BURG, S., SHARPLES, N., AND SHEREMTYEVA, S. CRL’s TREC-8 systems.

In The Eighth Text REtrieval Conference (TREC 8) (1999). NIST Special
Publication: in press.

PRADER, J., RADEV, D., BROWN, E., CODEN, A., AND SAMN, V. The

use of predictive annotation for question answering in TRECS. In The Fighth

Text REtrieval Conference (TREC 8) (1999). NIST Special Publication: in
1

press.

RADEV, D. R., PRAGER, J., AND SAMN, V. Ranking suspected answers
to natural language questions using predictive annotation. In Proceedings of
the Sixzth Applied Natural Language Processing Conference (Apr.-May 2000),
Association for Computational Linguistics, Morgan Kaufmann, pp. 150-157.

SINGHAL, A. 1999 TREC-8 question answering track. WWW document,
July 1999.3

3http://www.research.att.com/~singhal /qa-track-spec.txt

Matthew Purver 58 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

SINGHAL, A. Question answering track at TREC-8. WWW document,
1999.4

SINGHAL, A., ABNEY, S., BAccHIANI, M., CoLLINS, M., HINDLE, D.,
AND PEREIRA, F. AT&T at TREC-8. In The Eighth Text RFEtrieval Con-
ference (TREC 8) (1999), National Institute of Standards and Technology.
NIST Special Publication: in press.!

SpPARCK JONES, K., AND BOGURAEV, B. A note on a study of cases.
Computational Linguistics 13, 1-2 (Jan.-June 1987), 65-68.

SRIHARI, R., AND L1, W. Question answering supported by information
extraction. In The FEighth Text REtrieval Conference (TREC 8) (1999).
NIST Special Publication: in press.

SRIHARI, R., AND L1, W. A question answering system supported by in-
formation extraction. In Proceedings of the Sizth Applied Natural Language
Processing Conference (Apr.-May 2000), Association for Computational Lin-
guistics, Morgan Kaufmann, pp. 166-172.

STRZALKOWSKI, T. TTP: a fast and robust parser for natural language.

In Proceedings of the 15th International Conference on Computational Lin-
guistics (COLING-92) (1992), GETA(IMAG), pp. 198-204.

STRZALKOWSKI, T. Robust text processing in automated information re-
trieval. In Readings in information retrieval, K. Sparck Jones and P. Willett,
Eds. Morgan Kaufmann, 1997, pp. 317-322.

TAKAKI, T. NTT DATA: Overview of system approach at TREC-8 ad hoc
and question answering. In The Fighth Text REtrieval Conference (TREC
8) (1999). NIST Special Publication: in press.!

THOMPSON, P., AND DOZIER, C. C. Name recognition and retrieval per-
formance. In Natural Language Processing Information Retrieval, T. Strza-

lkowski, Ed. Kluwer Academic Publishers, 1999, pp. 261-272.

VORHEES, E. M., AND TICE, D. M. The TREC-8 question answering track
evaluation. In The FEighth Text REtrieval Conference (TREC 8) (1999).
NIST Special Publication: in press.

*http:/ /www.research.att.com/"singhal /qa-track.html

Matthew Purver 59 October 9, 2000

Part 11

Appendices

60

Appendix A

Query/Answer Corpora

This appendix contains all query and answer passages used, both for training and
blind testing.

Q denotes a query.

A denotes sentences containing a correct answer.

L denotes sentences containing a legitimate answer, though one that might not
be picked out by a human.

N denotes non-answer sentences that would have been selected as candidates by
an initial keyword search.

P denotes sentences containing a correct answer that would require capabilities
beyond the scope of the system as originally envisaged.

Text segments marked (text) are those chosen by the system for highlighting. If a
sentences contains no such marked segment, it was rejected by the system. Text
segments marked [text] are the equivalent manual selections.

A.1 Training Set

Q 1 Where is Snowdon ¢

A 1.1 [(Snowdon) is (in Wales)].

A 1.2 [(Snowdon) is] a mountain [(in Wales)].

A 1.3 Mount [(Snowdon) is (in Wales)].

A 1.4 [(Snowdon, in Wales)], is a serious mountain.

A 1.5 [(Snowdon)], the highest mountain (in the UK), [is in Wales].

L 1.1 (Snowdon) is (in the UK).

61

M.Phil. CSLP Project Simplistic Question Answering

P 1.1 (Snowdon) is located (in Wales).

P 1.2 (Snowdon) is to be found (in Wales).

N 1.1 Snowdon is easy to climb.

N 1.2 Snowdon is a beautiful mountain.

N 1.3 Snowdon is in every guide book.

N 1.4 Snowdon, among UK mountains, is not very impressive.

N 1.5 When travelling in England and Wales, you should see Snowdon.
N 1.6 Wales is a fine country and Snowdon a fine mountain.

N 1.7 Wales is a fine country and Snowdon is a fine mountain.

N 1.8 (Snowdon) is taller than any mountain (in England).

Q 2 Is there a racecourse in Newmarket ¢

A 2.1 [There is (a racecourse in Newmarket)].

A 2.2 [(In Newmarket) there is (a racecourse)].

A 2.3 [(In Newmarket)], like many country towns, [there is (a racecourse)].
A 2.4 [(Newmarket has a racecourse)].

A 2.5 [There is (a racecourse at Newmarket)].

A 2.6 [There are several (racecourses in Newmarket)].

A 2.7 [The (racecourse)] at Ascot is finer than that [(at Newmarket)].
A 2.8 [As (in Newmarket), there is (a racecourse)] in Wetherby.

A 2.9 [There is (a racecourse)] in Wetherby, [as (in Newmarket)].

A 2.10 [There is (a)] beautiful [(racecourse in Newmarket)].

A 2.11 [(In Newmarket) there is (a)] very popular [(racecourse)].

A 2.12 [(In)] the Suffolk town of [(Newmarket) there is (a racecourse)].

Matthew Purver 62 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

A 2.13 [(In Newmarket)], a small country town, [there is (a)] magnificent [(race-
course)].

A 2.14 [There is (a)] fine [(racecourse)] for all lengths [(in Newmarket)].
L 2.1 There is a racecourse on Newmarket heath.
N 2.1 Newmarket immediately suggests a racecourse to me.

N 2.2 There is a racecourse in many small towns but I am not sure about New-
market.

N 2.3 There are a lot of jockeys to be seen (in Newmarket) so there must be (a
racecourse) nearby.

Q 3 Who is Mayor of London ?

A 3.1 The ballot result is that [(Ken Livingstone) is (Mayor of London)].
A 3.2 [(Livingstone) is (Mayor of London)].

A 3.3 [The (Mayor of London) is (Ken Livingstone)].

A 3.4 Many voters are very glad that [(Livingstone) is (Mayor of London)].

A 3.5 [(Ken Livingstone)] defeated all the other candidates and [is (London’s
Mayor)].

L 3.1 (Ken) is (Mayor of London)!

N 3.1 There were many early candidates, including Ken Livingstone, for the
Mayor of London.

N 3.2 Frank Dobson and Ken Livingstone both wanted to be Mayor of London.
P 3.1 Ken Livingstone has won the race for Mayor of London.

Q 4 Which are the big IT companies ¢

A 4.1 [(Microsoft, Intel and Cisco) are] all [(big IT companies)].

A 4.2 [(Microsoft) is a (big IT company) and so is IBM].

A 4.3 [(Microsoft) is a (big IT company)] and ShinyNew.com is a tiny IT com-
pany.

Matthew Purver 63 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

A 4.4 [(Cisco) is a] recent [(big IT company)].

L 4.1 (The biggest IT company) is (Microsoft).

L 4.2 All (the big IT companies), like (IBM), get fossilised.
N 4.1 The big IT companies have innovation problems.

N 4.2 There are many big IT companies.

P 4.1 (The big IT companies) include (IBM).

Q 5 Does Hawaii produce bananas ?

A 5.1 [(Hawaii produces bananas)], coconuts and dates.

A 5.2 [(Hawaii produces bananas)] as well as coconuts.

A 5.3 [(Hawaii)] does not produce apples, but [(does produce bananas)].
A 5.4 [(Bananas are produced by Hawaii)].

A 5.5 Most [(bananas are produced by Hawaii)].

A 5.6 [(Hawaii is producing bananas)].

A 5.7 [The (production of)] tropical fruit, pineapples, [(bananas)], etc, is a ma-
jor operation [(in Hawaii)].

A 5.8 [The (production) of] tropical fruit, that is pineapples and [(bananas)], is
important [(in Hawaii)].

A 5.9 [(Hawaii)] specializes in [the (production) of] tropical fruit, which includes
[(bananas)] and pineapples.

A 5.10 [(Hawaii)] specializes in [the (production) of] tropical fruit, which in-
cludes pineapples and lychees, and most importantly [(bananas)].

A 5.11 [(Hawaii)] specializes in [the (production of)] tropical fruit, pineapples,
lychees, and especially [(bananas)].

A 5.12 [In (Hawaii)], which is not far from California, [there is] large scale
[(production of bananas)].

A 5.13 [In (Hawaii)], which is not far from California, [there is] large scale
[(banana production)].

Matthew Purver 64 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

A 5.14 [(Hawaii)], the biggest island in its group, is conspicuous for [the (pro-
duction of)] tropical fruit, pineapples, [(bananas)] and the like.

A 5.15 [(Hawaii)], which is the biggest island in the group, is conspicuous for
[its (production of bananas)].

A 5.16 Tropical fruit production, which includes [(banana production)], is the
mainstay of the economy [in] the US Pacific island (of [Hawaii)].

A 5.17 Tropical fruit production, including [(banana production)], is visible ev-
erywhere [(in Hawaii)].

A 5.18 (All A answers to Q6)

L 5.1 The Pacific islands like (Hawaii produce) tropical fruit like (bananas).
N 5.1 The US imports bananas from Jamaica and pineapples from Hawais.
P 5.1 The (products of Hawaii) include (bananas).

Q 6 Did Hawaii produce bananas in 1991 ¢

A 6.1 [(Hawaii produced bananas in 1991)].

A 6.2 [(Hawaii] used to [produce bananas in 1991)].

A 6.3 [(In 1991, Hawaii produced bananas)].

N 6.1 (All A answers to Q5)

Q 7 What is the height of Everest ?

A 7.1 [(The height of Everest) is (28000)].

A 7.2 [(Everest has a height of 28000)].

A 7.3 There are many mountains in the Himalayas, including [(Everest), which
(has a height of 28000)].

A 7.4 [(Everest)] is the highest mountain in the world, [with (a height of 28000)].

A 7.5 K2 in the Himalayas has a height of 27000, K4 is 27500 high, but [(Fver-
est)] overtops them all [with (a] magnificent [height of 28000)].

A 7.6 If we list [the heights of] the biggest mountains in the Himalayas we have
K2 at 27000, K4 at 27500, [Everest at 28000).

Matthew Purver 65 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

A 7.7 If we list [the heights of] the biggest mountains in the Himalayas we have
K2 27000, Kj 27500, [Everest 28000].

L 7.1 The height of Fverest is staggering.

L 7.2 (FEverest has a staggering height).

N 7.1 One can ask the height of Everest, but the answer isn’t really important.
P 7.1 (Everest) is (28000), but height isn’t everything: Kayfour is more beautiful.
P 7.2 (Everest) is (28000), it’s an impressive height.

P 7.3 (Everest) is (28000 high).

Q 8 Does the Queen live in London ?

A 8.1 [(The Queen lives in)] several different places which include Windsor,
[(London)] and Edinburgh.

A 8.2 [(The Queen)] of England [(lives in London)].

A 8.3 People object to [(the Queen)] having so many palaces, and certainly she
has them all over the place, so sometimes she lives at Windsor and sometimes
she lives at Sandringham and sometimes she [(lives in London)].

N 8.1 The Queen often goes to London from where she lives in Windsor.
Q 9 Do bananas make you fat ?

A 9.1 There is a lot of argument about whether it is possible for fruit to make
you fat, but the general opinion is that some fruit, especially if not eaten in
moderation, for ezample [(bananas], do [make you)] very [(fat)] indeed.

A 9.2 Many studies have been done on the effects of eating different sorts of
fruit, and the conclusion is that while citrus fruits like oranges do not make you
fat, other fruits can make you fat, and [(bananas)] especially (do [make you fat)].

A 9.3 [(Bananas)] and papayas, but not guavas, (do [make you fat)).

A 9.4 Many people say they like eating fruit and they don’t worry about whether
it makes you fat, but eating a lot of [(bananas)] sure (does [make you fat)].

A 9.5 There’s a lot of argument about [bananas making you fat].

A 9.6 [(One is made)] very [(fat by bananas)].

Matthew Purver 66 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

A 9.7 Eating [(bananas makes you fat)].

A 9.8 [(You are)] sure (going to be [made fat by)] eating [(bananas)].
A 9.9 The doctor said that eating [(bananas makes you fat)].

A 9.10 A lot of things make you fat, and [a (banana makes you fat)].
L 9.1 Things like chocolates and (bananas do make you fat).

L 9.2 (Bananas can make you fat).

N 9.1 Fat is a problem for many teenagers because they do so much eating, but
it is not clear whether bananas are pernicious, though it is certainly the case that
a lot of chocolate makes teenagers fat.

P 9.1 Bananas contribute to obesity.

Q 10 Where are Pat and Mike ?

A 10.1 [(Pat) and (Mike) are (in the lounge)].

A 10.2 [(Pat) is (in the lounge) and (Mike) is (in the garden)].
A 10.3 [Pat and Mike are with Sue and Mary].

A 10.4 [(Pat) and (Mike) are at a meeting] on new projects somewhere (in the
extension building).

A 10.5 [(Pat) is (in the kitchen) and (Mike) is there too].

A 10.6 [(Pat)], who is reading, [is (in the lounge) and (Mike)], who is singing,
[is (in the bathroom)].

A 10.7 [(Pat) is] reading [(in the lounge) and (Mike) is] singing [(in the bath-
room)].

A 10.8 [(Pat) and (Mike)], who loathe one another, [are] unfortunately both [(in
the lounge)].

L 10.1 Pat is in the lounge and Mike is somewhere.
N 10.1 I do not know where Pat and Mike are.

N 10.2 I know where Pat is but not Mike.

Matthew Purver 67 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

N 10.3 Pat is thinking and Mike is thinking too.

P 10.1 [think (Pat) and (Mike) are still (in the lounge).

Q 11 Who decides on student admissions ¢

A 11.1 [(The secretary)] is (the person) who [(decides on student admissions)].
A 11.2 [(Decisions on student admissions are made by the secretary)].

A 11.3 [Deciding on student admissions is the secretary’s] job.

A 11.4 [Deciding on student admissions is| the job [of the secretary].

A 11.5 [Deciding on student admissions is done by the secretary].

A 11.6 [Its deciding on student admissions that] makes [the secretary’s] job hard.

A 11.7 [(The secretary and his advisors decide on student admissions)].

A.2 First Blind Test Set

The sentences in this section (and the next) are listed in the order in which they
were received (and submitted to the system), rather than being separated into
groups of A, N, P and L.

Q 12 Is there a library in Cambridge?

A 12.1 All the colleges [in (Cambridge have libraries)].
A 12.2 All the colleges [in (Cambridge have a library)].
A 12.3 Each college [in (Cambridge has a library)].

A 12.4 [There is (a library)], a chapel, and a hall in each of the colleges [(in
Cambridge)].

A 12.5 [There is (a library)] in each of the colleges and each of the departments
[(in Cambridge)].

A 12.6 [There is (a library)], with all the texts the student needs, in every college
[(in Cambridge)].

A 12.7 Students [in Cambridge] who need books can find them in their college
[library].

Matthew Purver 68 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

P 12.1 Students [in Cambridge] needing books can find them in the many [li-
braries/.

A 12.8 Those needing books while [(in Cambridge)] can find them in one way or
another, for instance in one of the many [(libraries)] that there are there.

A 12.9 [(Cambridge)] is a town [(with)] many [(libraries)].
A 12.10 [(Cambridge)] is a town that [has] many [(libraries] in) it.

A 12.11 [(Cambridge)] is a town which [(has libraries)] in all of its colleges and
departments.

A 12.12 [There is (a)] university [(library in Cambridge)].

A 12.13 [(Cambridge)], a large university town, [has (a) very large university
(library] in) it.

A 12.14 Ozford and [(Cambridge)] both [(have libraries)].

A 12.15 For those wanting [(libraries)] and laboratories when students [(in Cam-
bridge)], there are many there.

A 12.16 We are pleased to announce a large benefaction to the most important
[(library in Cambridge)], the university library.

A 12.17 What about [(libraries in Cambridge)], one may ask, and get the an-
swer, [there are many].

P 12.2 All of the central facilities [in Cambridge] are proving very erpensive,
especially the university [library].

A 12.18 [(Libraries)] and laboratories are everywhere [(in Cambridge)).

P 12.3 One can visit many towns, [Cambridge] for instance, and not be able to

find the town [library].
N 12.1 They announced funds for Cambridge university and for libraries.
N 12.2 Students, in Cambridge as elsewhere, want libraries.

N 12.3 If they want (a library) for disabled children (in Cambridge) they will
have to raise the rates.

Matthew Purver 69 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

A.3 Second Blind Test Set
Q 13 Where is Trondheim ?
A 13.1 [(Trondheim) is (in northern Norway)].

A 13.2 There are a number of old towns [in Norway], of which [Trondheim] is
historically the most important.

N 13.1 The cathedral at Trondheim, then an important town, is a fine example
of the French gothic style.

Q 14 Who is Sylvia ?

N 14.1 Who is (Sylvia), what indeed is (she), as the poet asks of her ¢

A 14.1 [Sylvia is the subject of a well-known song].

A 14.2 [(Sylvia) is (John’s oldest daughter)).

A 14.3 There is noone but [(Sylvia)] for me, [(the queen of my heart)].

Q 15 What and where are the Dardanelles ?

A 15.1 [The Dardanelles are the narrow straits south of Istanbul].

N 15.1 The Gallipoli landings in the Dardanelles were a military disaster.
N 15.2 Many modern politicians have no idea where the Dardanelles are.

A 15.2 [The Dardanelles| are where the Gallipoli landings were, so they [are the
narrow straits near Istanbul].

Q 16 Is Baltimore the capital of Maryland ?

A 16.1 Many of the states have impressive buildings in their [capital] cities, like
[Baltimore in Maryland] has.

A 16.2 Most state [capitals] have fine official buildings, I know that [Baltimore
in Maryland] has.

A 16.3 When in [Baltimore] you can see that this state [capital of Maryland] has
fine buildings.

N 16.1 Baltimore in Maryland is very near the national capital.

Matthew Purver 70 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

Q 17 What does the Guardian newspaper cost ?

A 17.1 The prices of all the [newspapers] have gone up so [the Guardian], which
used to be pretty reasonable, now [costs one pound].

A 17.2 All [newspapers have large costs] of production, but [the Guardian’s] are
lower than most.

A 17.3 [The Guardian costs a lot as a newspaper], both to produce and to buy.
N 17.1 The Guardian newspaper has costs.
Q 18 Are Mary and Joe married ?

N 18.1 (Mary) and (Joe) live together but I cannot say whether they are (mar-
ried).

P 18.1 Being married is something Mary has talked about a lot but I don’t know
how John feels about it.

P 18.2 Mary has been married to John for quite a long time now.

A 18.1 [Mary] is very happy and busy with everything, house, children, the lot,
[in being married to John].

Q 19 Does Bazxters produce both beer and cider ¢

A 19.1 [Baxters are the producers of] the finest [cider] in the west country but
[their beer] is lousy.

A 19.2 [Bazters is a cider and beer| company just like all the other big [produc-
ers/.

A 19.3 The market has decided to dump shares in companies that produce cider,
even though [(Baxters produces beer as well as cider)].

N 19.1 There are beer companies and cider producers, and there is Bazters.
Q 20 How fast does Concorde fly ¢

L 20.1 [Concorde flies as fast as it can].

A 20.1 [Concorde flies at 750 mph].

A 20.2 [Concorde flies very fast].

A 20.3 Among the civilian planes that fly fast, there is one that far exceeds the
others, namely [Concorde], which [goes at 750 mph].

A 20.4 [Concorde flies at supersonic speeds].
N 20.1 Flying fast on Concorde is one way of getting to Washington.
N 20.2 FEwveryone likes to fly fast, and that includes the people who use Concorde.

Matthew Purver 71 October 9, 2000

Appendix B

Code Listing

This appendix contains all code developed as part of the QA system. Section B.1
contains scripts for pre-processing of query and answer passages, and of lexical
resources. Section B.2 contains illustrative excerpts from the lexical resources
developed. Section B.3 contains the main program Prolog code.

B.1 Perl/Shell Scripts

B.1.1 Perl Code for OALD Pre-processing

process.perl

This script processes the OALD dictionary in its original text form into a Prolog-
readable format.
#! /usr/bin/perl

Perl script to process 0TA machine-readable tezt710.dat file
tnto a Prolog-readable format

Usage: ./process.perl < text710.dat [> OUTPUT.PL]

HOROR R BB R

Matthew Purver, 20/6/2000

read a line from stdin
while ($line = <STDIN>) {

split at white-space into words
remembering some "words" have a single space 1in
Qwords = split (/\s{2,}/, $line);

loop through words array
for ($i = 0; $i < 3; $i++) {

$words [$i] =~ s/\’/\\\"/g; # ->\?
$words [$i] =~ s/,/\’,\’/g; #, >,
$words [$i] =~ tr/A-Z/a-z/; # lower case
if ($i == 2) {
$words [$i] =" s/\$//g; # remove §
$words [$i] =~ s/\%//g; # remove [
$words [$i] =" s/*//g; # remove *

72

M.Phil. CSLP Project Simplistic Question Answering

}

and print out the result
print "word(’", $words [0], "’, [’", $words [2], "’]).\n";

irreg nouns.perl

This script pulls out nouns with irregular plurals from the Prolog-readable version

of the OALD. The result must be manually edited to insert the correct plurals.
#! /usr/bin/perl

Perl script to extract nouns with irregular plurals
from processed 0OTA dictionary
the actual irregular plural forms must be put in manually!

Usage: irreg_nouns.perl < ota.pl [> OUTPUT.PL]

H R OR R R R RR

Matthew Purver, 28/6/2000

read a line from stdin
while ($line = <STDIN>) {

find ’ki’ marker
but miss out those with rule-based forms
if (($line =" /.*\’ki\’.*x/) &&

($line ! /.*man\’.x*/) &&

($line '~ /.xum\’.%/) &&

($line '~ /.xus\’.%/) &&

($line '~ /.xa\’.%x/) &&

($line '~ /.xon\’.%/) &&

($1line '~ /.xis\’.x/) &&

($line !” /.*xo\’.%/) &&

($line !” /.*xchild\’.*/) &&
($1line !~ /.xfoot\’.*x/) &&
($line !~ /.xtooth\’.*/) &&
($line ! /.xouse\’.*x/) &&
($line !~ /.xfe\’.%/) &&

($line !~ /.xf\’.x/) &&

($line '~ /.xex\’.%/) &&

($1line '~ /.xix\’.x/) &&

($line '" /.*xeaul’.x/)) {

write out word and (poor!) guess at plural
$line =" s/word\((.*), \[.*/irreg_noun\($1, $1 \D\./ ;
print $line;

irreg_ads.perl

This script pulls out adjectives and adverbs with irregular comparative and su-
perlative forms from the Prolog-readable version of the OALD. The result must

be manually edited to insert the correct forms.

#! /usr/bin/perl
#

Matthew Purver 73 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

Perl script to exzitract adjectives and adverbdbs

with <rregular comparative / superlative forms

from processed 0OTA dictionary

the actual irregular forms must be put in manually!

Usage: irreg_ads.perl < ota.pl [> OUTPUT.PL]

H oW R R BB R R

Matthew Purver, 4/7/2000

read a line from stdin
while ($line = <STDIN>) {

find ’oe’ marker
if ($line =~ /.x\’o0e\’.*/) {

write out word with (poor!) guesses at comp/sup
$line =" s/word\((.*)(\w)\’, \[.*x/

irreg_ad \($1$2\’, $1$2%2er\’, $1$2%2est\’ \)\./ ;
print $line;

B.1.2 Perl Scripts for Test Data Pre-processing
separate.perl

This script separates a text file containing a set of blind test data in the format

received, into individual text files for each query and answer.
#! /usr/bin/perl

#

Script to convert supplied blind test query/sentence tezt file
into individual §/S tezt files for each passage

read line
while ($line = <STDIN>) {

4f query: ezpect e.g. "Q100 Is this a query?"
if ($line =" s/(Q\d+) (.+$)/8$1 $2/) {
‘echo \"$2\" > ./$1.txt\n‘;
}
4f answer: ezpect e.g. "S100.1 Yes it is."

if ($line =" s/(S\d+\.\d+) (.+$)/8%1 $2/) {
‘echo \"$2\" > ./$1.txt\n*;
T

B.1.3 Shell Scripts for Shallow Text Processing
shallowproc.sh

This script is an interface to shallowproc.
#! /bin/sh

shell script to call shallowproc texzt processing tools
ezpects one command-line argument: the sentence to be processed (in quotes)

Matthew Purver 74 October 9, 2000

M.Phil. CSLP Project

Simplistic Question Answering

e.g. shallowproc "the cat sat on the

SHALLOW_DIR="../shallowproc /"
#0UTPUT_DIR="../pl/"

PROG1="./tokenise"
PROG2="./tagtext "
PROG3="./bracket "
PROG4="./cnp"
PROG5="./verbs"

mat . "

change to shallowproc dir (as tools assume we have)

cd $SHALLOW_DIR

pass the sentence to all relevant tools

#echo $1 | $PROG1

echo $1 | $PROG1 | $PROG2 | $PROG3 | $PROGS

no need to change back as we’ve called a new shell

#cd $O0UTPUT_DIR

Matthew Purver

75

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

B.2 Prolog Lexical Resources

B.2.1 OALD Resources

Excerpt from ota.pl

This is an excerpt from the OALD once converted into a Prolog-readable form.

word (’abandon’, [’h0’,’1@’]).
word (’abandoned’, [’hc’,’hd’,’0a’]).
word (’abandoning’, [’hb’]).
word (’abandonment’, [’1@°]).
word (’abandons’, [’ha’]).
word (’abase’, [’h2°]).

word (’abased’, [’hc’,’hd’]).
word (’abasement’, [21Q@’]).
word (’abases’, [’ha’]).

word (’abash’, [’h1°’]).

word (’abashed’, [’hc’,’hd’]).
word (’abashes’, [’ha’]).

Excerpt from irreg_verbs.pl

This is an excerpt from the lexicon of irregular verbs.
% Irregular Verdb List vl1.0
% Sylvia Knight, April 1998

Modified June 2000 - Matthew Purver
now (VB, VBP, VBZ, VBG, VBD, VBN)

B

irreg_verb (agree, agree, agrees, agreeing, agreed, agreed).

irreg_verb(arise, arise, arises, arising, arose, arisen).

irreg_verb (awake, awake, awakes, awaking, awoke, awoken).

irreg_verb (babysit , babysit, babysits, babysitting, babysat, born).
irreg_verb (backbite, backbite, backbites, backbiting, backbit, backbitten).
irreg_verb (backslide, backslide, backslides, backsliding, backslid, backslid).
irreg_verb(be, are, is, being, was, been).

Excerpt from irreg nouns.pl

This is an excerpt from the lexicon of irregular nouns.
ARERELIIREEELRIRIEEELRRIREELELRLIITEELELRLIIEELLL IR

Zz
% irreg_nouns.pl

z

% List of nouns with irregular plurals

%
BIRBLLIRIILLLLRTEIELLLLEIRLLLLLKERLLLLLLLRLLLLLT

irreg_noun (’frau’, ’frauen’).

irreg_noun (’grand .prix’, ’grands._.prix’).
irreg_noun(’herr’, ’herren’).
irreg_noun (’monsieur’, ’messieurs’).

Matthew Purver 76 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

Excerpt from irreg_ads.pl

This is an excerpt from the lexicon of irregular adjectives and adverbs.
AAAABAGAAIAGAIAAIBAGAIIAGAGAAGAGAABAGAIIABAGIALS

%
% irreg_ads.pl

% List of adjectives with irregular comparative
% / superlative forms

V3

BRI RE TR RRETTRREIERRELZLRRRLTL TR

irreg_ad(’bad’, ’worse’, ’worst’).
irreg_ad (’big’, ’bigger’, ’biggest’).
irreg_ad(’cruel’, ’crueller’, ’cruellest’).

B.2.2 Hand-Coded Lexicon

Excerpt from lexical _semantics.pl

This is an excerpt from the semantic lexicon. It contains information about
semantic class for nouns, pronouns, wh-query words and prepositions, together
with lemma information for nominaliseable verbs.

D e e T

4% lexzical_semantics.pl

V3

%% Lezicon of semantic data for nouns, pronouns,

%% prepositions, wh-words

V1

2

A it b bt b

A% Nouns

A% noun (Word, SemanticClass)

s

%% Semantic classes: per(son), obj(ect), loc(ation), tim(e),
VA abs (tract), org(anisation)

%% per also has m/f gender attached

7 look up locations in 0OTA dictionary
% (have code NM (countries) or NN (towns))
noun(A, [loc]) :-
word(A, Code),
(
memberchk (’nm’, Code);
memberchk (’nn’, Code)

).

% locations not listed in the OTA dictionary (like Birmingham!)
noun (dardanelles, [loc]).
noun (gallipoli, [loc]).

4 all other classes

noun (admission, [abs]).
noun (advisor, [per/_]1).
noun (answer , [abs]).

Matthew Purver 7 October 9, 2000

M.Phil. CSLP Project

Simplistic Question Answering

noun (apple, [obj]).

A A e e
A% Noun/Verb Lemma Pairs

4% lemma (Noun, Verdb)

A A e
lemma (admission, admit).

lemma (announcement , announce).

lemma (answer , answer).

lemma (answer , reply).

%% Wh-query words
A% whq(Word, SemanticClass, PhraseType)

%% Semantic classes: per(son), obj(ect), loc(ation), tim(e),
in abs (tract), org(anisation), man(ner), rea(son)
4% Phrase types: pp, np, ng, adv

whq (where/wrb, [locl, [ppl).

whq (when/wrb, [tim], [pp, ng, npl).

whq (how/wrb, [man], [pp, adv]).

whg (why/wrb, [real, [ppl).

whq (who/wp, [per/_, orgl, [ng, np]).

whq (whom/wp, [per/_, orgl, [ng, npl).

whq (whose/det, [pos], [ppl).

whq (what/wp, [abs, obj, num], [ng, npl).

whq (which/det, [abs, obj, org, locl, [ng, npl).

A e e itk bl bk
A% Prepositions

%% prep(Word, SemanticClass)

A

%% Semantic classes: loc(ation), tim(e), pos(session),
% sop (inverse pos), man(ner)

A b b i bbbk kbl b bk e
prep(aka, []).

prep (aboard, [loc]).

prep(about, []).

prep(above, [loc]).

prep(across, []).

prep(after, [tim]).

%% Pronouns
4% pro(Word, SemanticClass, Gender, Number, Resolvable)

pro(he, [per/m], s, y).

pro(her, [per/fl, s, y).
pro(it, [obj, abs, org, locl, s, y).

4% Numerical NP Anaphors
%% np_anaphor (Word, Number)

np_anaphor (some/det, p).

Matthew Purver 78

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

np_anaphor (one/cd, s).
np_anaphor (lot/_, p). % could be stemmed "lots/nmns", or "a lot"
np_anaphor (few/jj, p).

4% PP Anaphors

%% pp_anaphor (Word, SemanticClass)

A= m === m T T T oo
pp_anaphor (there/ex, loc).

pp_anaphor (there/rb, loc).

pp_anaphor (therein/rb, loc).

pp_anaphor (then/rb, tim).

A% Possessive Pronouns
%% pos_anaphor (Word, SemanticClass, Number)

pos_anaphor (their/det, [obj, abs, org, loc, per/_1, p).
pos_anaphor (his/det, [per/m], s).

pos_anaphor (her/det, [per/f], s).

pos_anaphor (its/det, [obj, abs, org, locl, s).

VA A e
A% Ditransitive Verbs

4% verb (Word, SubCat)

A A ittt
verb(make, ditrans).

verb(give, ditrams).

verb(ask, ditrans).

Al === ————————-----
X% Hypothetical Verbs

4% hypo_verdb (Word)

Ve e ittt
hypo_verb (want).

hypo_verb (like).

hypo_verb (wish).

hypo_verb (pretend).

R EEEEEE
%% Generic Utility Verbs

%% generic_verd (Word)

VA A e itk
generic_verb (do).

generic_verb (have).

generic_verb (make).

J = = = o oo
%% Verbs of Possession

%% pos_verb (Word)

A e ittt by
pos_verb(have).

pos_verb(contain).

pos_verb(own).

A% Ezistential Verbs

Matthew Purver 79 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

4% be_verb(Word)

A A e ikl
be_verb (be, _).
be_verb (include, _).

be_verb (locate, pas).
be_verb (find, pas).
be_verb (call, pas).

4% Inclusive words
A% include_word (Word)

include_word (as/prep).
include_word (like/prep).
include_word (with/prep).
include_word (vg:[include /vbgl).
include_word (vg:[be/vbg]l).
include_word (’such.as’/prep).
include_word (’for_example’/prep).
include_word (’for._instance’/prep).
include_word (’that._is’/prep).
include_word (especially/rb).
include_word (say/_).

A= == s
A% Nouns & Adjectives of Quantity

%% quantity (Adjective, Noun)
A
quantity (old, age).

quantity (far, distance).

quantity (high, height).

quantity (tall, height).

quantity (wide, width).

A A b
%% Definite Determiners

%% definite_det (Word)

A A itttk bl bbbl bt
definite_det (both).

definite_det (each).

definite_det (either).

definite_det (every).

Matthew Purver 80 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

B.3 Prolog Code

B.3.1 Top Level
main.pl

A A itttk
A% main.pl

A

%% Loads all modules.

V1

A% Once loaded, use predicates in g_a.pl to run system:
VA query /0, query/1, query_file/1 etc. to set query
Y4 answer /0, answer/1, answer_file/1,

VA answer_all_files/2 etc. to test candidate answers

R E R

% built-in Prolog libraries
:— use_module (library (lists)).
:- use_module (library (system)).

% if old SICStus wversion, load replacements for missing
% built-in predicates
:- prolog_flag(version, VString),

name (VString, VCodes),

(
(
name (’SICStus .3.7’, 0l1ldCodes),
prefix (0ldCodes, VCodes),
compile (prolog)
)
(
name (’SICStus .3.8’, NewCodes),
prefix (NewCodes, VCodes)
)
(
nl, print (’*#**_Unknown .Prolog._***’), nl, nl,
abort
)
).

% lezical data

% only get loaded once as they’re slow & don’t change often

:- current_predicate (word, _);
compile (’../ota/ota’).

:= current_predicate (irreg_verb, _);
compile (’../ota/irreg_verbs’).

:- current_predicate (irreg_noun, _);
compile (’../ota/irreg_nouns’).

:- current_predicate (irreg_ad, _);
compile (’../ota/irreg_ads’).

:- current_predicate (moun, _);
compile (’lexical_semantics’).

% low level modules
:- compile ([lists, display, debug]l).
:- compile ([io, stem, preparse]).

% high level modules

:- compile ([syn_defs, ng_syn, vg_syn, pp, sem]).
:- compile ([anaphora, simplify]).

:= compile ([parse, struct]).

:— compile ([q_a, matchl]).

Matthew Purver 81 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

g-a.pl

e
A% gq_a.pl

V1

%% Contains: top-level /A predicates

2

:- dynamic current_query /1, current_answer /1,
current_answer_list /1, process_type /1.

A== mmmmmmm e e
A% query /0

4

A% Description :

A% Prompts wuser for query and calls query/l

%% Succeeds: 0-1

4% Side Effects: may cause current_query/l1 to be asserted
A

query :-
write (’Query?.:>’),
read (Text),
query (Text).

B == mm e e e

X% query/1

%% query (+String)

4

%% Description:

VA Calls tagger and reads result, passes to query_main/1
%% Succeeds: 0-1

4% Side Effects: may cause current_query/l to be asserted

A== == e

query (Text) :-
call_tagger (Text, Stream),
read_sentence (Stream, Query),
1

query_main (Query).

A== === = mm e mm -
A% query_file/0

4

4% Description:

VA Prompts for query file name, calls query_file/1

4% Succeeds: 0-1

4% Side Effects: may cause current_query/l1 to be asserted
A== === e e e -

query_file :-
write (’Query_file_name?7.:>’),
read (QueryFile),
query_file (QueryFile).

A A e
%% query_file/1

A% query_file (+FileNameString)

V]

%% Description:

V4 Passes query file to tagger, calls query_main/1

%% Succeeds: 0-1

Matthew Purver 82

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

X% Side Effects: may cause current_query/l1 to be asserted

query_file (QueryFile) :-
call_tagger (QueryFile, Stream),
read_sentence (Stream, Query),
1

query_main (Query).

A e e ik bbb kb b bk e
%% query_tagged_file/0

V1

%% Description:

VA Prompts for *tagged* query file name, calls

VA query_tagged_file/1

%% Succeeds: 0-1

X% Side Effects: may cause current_query/l1 to be asserted
A e

query_tagged_file :-
write (’Query._file_name?.:>’),
read (QueryFile),
query_file (QueryFile).

=== m
4% query_tagged_file/1

A% query_tagged_file(+FileNameString)

A

X% Description :

VA Reads *tagged* query from file, calls query_main/1
A% Succeeds: 0-1

%% Side Effects: may cause current_query/l to be asserted

e T SRR

query_tagged_file (QueryFile) :-
get_sentence (QueryFile, Query),
1

query_main (Query).

A== mmmmm e e e e
%% query_main /1

A% query_main (+SentLlist)

VA

%% Description:

V4 Gets structure from query sentence and asserts as

A current_query /1

%% Succeeds: 0-1

4% Side Effects: may cause current_query/l1 to be asserted
A== mmmmm e e e e

query_main (Query) :-
retractall (current_query (_)),
retractall (process_type(_)),
assert (process_type (query))
pre_process (Query, Qi1),
process_query (Q1, Q),
display_struct (Q),
assert (current_query (Q)).

A% answer/0

Matthew Purver 83

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

A
%% Description :

A Succeeds if text contains an answer to current query.
V4 Prompts wuser for potential answer and calls answer/1

%% Succeeds: 0-1
%% Side Effects: may cause current_answer/l1 to be asserted

Y e it
answer :-

write (’Answer ?7.:>’),

read (Text),

answer (Text).
A A e

%% answer/1

A% answer(+String)
V2

%% Description:

V4 Succeeds if String contains an answer to current query.
VA Calls tagger and reads result, passes to answer_main/1

A% Succeeds: 0-1
%% Side Effects: may cause current_answer/l to be asserted

T

answer (Text) :-
call_tagger (Text, Stream),
read_sentence (Stream, Answer),

answer_main (Answer, _, _).
=== m
%% answer_file /0
4
4% Description:
V4 Succeeds if file contains an answer to current query.
VA Prompts for potential answer file name,

V4 calls answer_file/1
4% Succeeds: 0-1
%% Side Effects: may cause current_answer/l1 to be asserted

answer_file :-
write (’Answer .file_name?7.:>’),
read (AnswerFile),
answer_file (AnswerFile).

%% answer_file/1

2% answer_file (+FileNameString)
s

4% Description:

V4 Succeeds if file contains an answer to current query.
A Reads potential answer from file,

V4 calls answer_main/1.

A% Just an interface to answer_file/3 discarding the

A answer info

A% Succeeds: 0-1
2% Side Effects: may cause current_answer/l to be asserted

answer_file (File) :-
answer_file (File,

- -).

Matthew Purver 84 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

F A i
2% answer_file/3

A% answer_file (+FileNameString, -Answer, -Highlight)
V1

%% Description:

V4 Succeeds if file contains an answer to current query.
%% Reads potential answer from file, calls
VA answer_main /1 and passes back answer and output tezxt

%% Succeeds: 0-1
%% Side Effects: may cause current_answer/l to be asserted

answer_file (AnswerFile, Ans, Highlight) :-
call_tagger (AnswerFile, Stream),
read_sentence (Stream, Answer),
!

answer_main (Answer , Ans, Highlight).

A== =TT ooooooooooooooooooo
4% answer_tagged_file/0

4

4% Description:

A% Succeeds if file contains an answer to current query.
V4 Prompts for *tagged* potential answer file name,

V44 calls answer_tagged_file/1
%% Succeeds: 0-1
%% Side Effects: may cause current_answer/l to be asserted

s

answer_tagged_file :-
write (’Answer .file_name?7.:>’),
read (AnswerFile),
answer_tagged_file (AnswerFile).

2% answer_tagged_file/1

4% answer_tagged_file(+FileNameString)
A

%% Description:

A Succeeds if file contains an answer to current query.

V4 Reads *tagged* potential answer from file,

V44 calls answer_main/1.

V4 Just an interface to answer_tagged_file/3 discarding the
s answer info

%% Succeeds: 0-1
%% Side Effects: may cause current_answer/l1 to be asserted

== oo e

answer_tagged_file (File) :-
answer_tagged_file (File, _,

4% answer_tagged_file/3

4% answer_tagged_file(+FileNameString, -Answer, -Highlight)
A

%% Description:

A Succeeds if file contains an answer to current query.
V4 Reads *tagged* potential answer from file, calls
2% answer_main /1 and passes back answer and output text

4% Succeeds: 0-1

Matthew Purver 85

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

4% Side Effects: may cause current_answer/l to be asserted

answer_tagged_file (AnswerFile, Ans, Highlight) :-
get_sentence (AnswerFile, Answer),
1
L)
answer_main (Answer , Ans, Highlight).

A% answer_main /3

%% answer_main (+SentList, -Answer)
s

%% Description:

A Succeeds if SentList contains an answer to the
A current query.
V4 Calls answer_list/3 and passes answer back

4% Succeeds : 0%
4% Side Effects: may cause current_answer/l to be asserted

answer_main (Answer , Ans, Highlight) :-
retractall (process_type(_)),
assert (process_type (answer)),
current_query (QList),
answer_list (QList, Answer, Ans, Highlight).

%% answer_list /4
4% answer_list (+QueryStructlist, +AnswerSentList, -AnswerList)
A%

%% Description:

V4 Succeeds if AnswerSentList contains an answer to each
A% element in the current query Llist.
V4 AnswerList will contain the answer for each element

A% Succeeds : 0%
4% Side Effects: may cause current_answer/l to be asserted

/ base case
answer_list ([]J, _Ans, []1, []).

% for each query, process answer and call match/2,
% then get current answer <f 4t succeeds
answer_list ([Q | Taill, Answer, [Ans | ATail], [High | HTaill]) :-

retractall (current_answer (_)),

retractall (current_answer_list (_)),

display_simple (’Query’, Q),

pre_process (Answer, Al),

process_answer (A1, A, Q),

display_simple (’Found’, A),

match (Q, A),

display_struct (A),

display_answer ,

current_answer (Ans),

current_answer_list (High),

1

answer_list (Tail, Answer, ATail, HTail).

A b il
2% answer_all_files/2
4% answer_all_files(+DirNameString, ?FileNamePatternString)

i

Matthew Purver 86 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

4% Description:

A Tests each potential answer file matching

A FileNamePatternString in the directory DirNameString
% against the current query, and displays results.

VA Gets list of file names & calls answer_all_files/3

%% Succeeds: 1

%% Side Effects: may cause current_answer/l to be asserted

== =

Pattern) :-
FileList),
Pattern, FileList).

answer_all_files (Dir,
directory_files (Dir,
answer_all_files (Dir,

A A e
%% answer_all_files/3

A% answer_all_files(+DirNameString,
V2 +FileNameList)
i
Y
V1
V73

?FileNamePatternString,

Description :

Tests each potential answer file in FileNameList matching

V1

FileNamePatternString

in the directory DirNameString

against the current query,

and displays results.

in Tests name patter match and calls answer_file/3
4% Succeeds: 1
%% Side Effects: may cause current_answer/l to be asserted

e e E T EEEEE

/ base case

answer_all_files (_Dir, _Pattern, []).
% check name matches pattern, call answer_file/2

% then display successful answer

answer_all_files (Dir, Pattern, [Head | Tail]) :-
check_slash (Dir, SDir),
atom_concat (Pattern, _, Head),
atom_concat (SDir, Head, File),
answer_file (File, Ans, Highlight),

Head, Amns,
Tail).

display_result (’Succeeded’,
answer_all_files (Dir, Pattern,

Highlight),

% if name matches pattern but answer_file/2 failed,
% display failure message

answer_all_files (Dir, Pattern, [Head | Tail]) :-
atom_concat (Pattern, _, Head),
1
B}
display_result (’Failed’, Head, []1, []),
answer_all_files (Dir, Pattern, Tail).
% if name doesn’t match pattern, recurse doing nothing
answer_all_files (Dir, Pattern, [_Head | Tail]) :-
answer_all_files (Dir, Pattern, Tail).

A b e ikt bl bk e
X% answer_all_tagged_files/2

%% answer_all_tagged_files(+DirNameString,
A
A
A
A
V2
A
A

?FileNamePatternString)

Description :
Tests each potential answer file matching
FileNamePatternString in the directory DirNameSiring
against the current query, and displays resultis.
Gets list of file names & calls answer_all_tagged_files/3
Succeeds : 1

Matthew Purver 87 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

4% Side Effects: may cause current_answer/l to be asserted

answer_all_tagged_files (Dir, Pattern) :-
directory_files (Dir, FileList),
answer_all_tagged_files (Dir, Pattern, FileList).

A b e e

%% answer_all_tagged_files/3

4% answer_all_tagged_files(+DirNameString , ?FileNamePatternString,
A +FileNameList)

A

%% Description:

2% Tests each potential answer file in FileNameList matching
A FileNamePatternString in the directory DirNameString
V4 against the current query, and displays results.

VA Tests mname patter match and calls answer_tagged_file/3
A% Succeeds: 1
4% Side Effects: may cause current_answer/l to be asserted

== oo

/ base case
answer_all_tagged_files (_Dir, _Pattern, []).

% check name matches pattern, call answer_tagged_file/2
% then display successful answer
answer_all_tagged_files (Dir, Pattern, [Head | Taill]) :-
check_slash (Dir, SDir),
atom_concat (Pattern, _, Head),
atom_concat (SDir, Head, File),
answer_tagged_file (File, Ans, Highlight),
1
display_result (’Succeeded’, Head, Ans, Highlight),
answer_all_tagged_files (Dir, Pattern, Tail).

% if name matches pattern but answer_tagged_file/2 failed,
% display failure message
answer_all_tagged_files (Dir, Pattern, [Head | Taill]) :-
atom_concat (Pattern, _, Head),
1

display_result (’Failed’, Head, [], []),
answer_all_tagged_files (Dir, Pattern, Tail).

% tf mname doesn’t match pattern, recurse doing nothing
answer_all_tagged_files (Dir, Pattern, [_Head | Taill]) :-
answer_all_tagged_files (Dir, Pattern, Tail).

A === e —————--- -
%% process_query /2

4% process_query (+RawSentList, ?StructlList)

4

4% Description:

A StructList is a list of pred-arg/state structures

VA corresponding to the sentence RawSentList.
VA StructList has more than one member <f the query
A% contains conjunctions, wilh one member for each

s logical sub-query

VA4 Calls parse/2 to parse, simplify/2 to simplify syntaz,
VA prep_struct /2 to create ezistential relations,

V4 g_sub_sent /2 to find all possible simple sub-sentence,
VA then q_struct_list /2 to create list of structures

%% Succeeds: 1%

4% Side Effects: none

Matthew Purver 88 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

% parse, make list of conjunctions, get struct for each
process_query (RawSent, StructlList) :-
parse (RawSent , ParseSent),
simplify (ParseSent, SimpleSent),
prep_struct (SimpleSent, PrepSent),
findall (C, q_sub_sent (PrepSent, C), CList),
gq_struct_list (CList, StructList).

% if failed, report
process_query (RawSent, []) :-
process_fail (RawSent).

4% process_answer/3
4% process_answer(+RawSentList, ?AStruct, +{Struct)

4% Description:

VA AStruct <¢s a pred-arg/state structure eztracted from
VA the sentence RawSentList which might match the query
V4 structure Q@Struct.

A Calls parse/2 to parse, simplify/2 to simplify syntaz,

VA prep_struct /2 to create exzistential relations,
V4 sub_sent /2 to pull out one simple sub-sentence, then
VA a_struct/3 to create structure

4% Succeeds : 1%
%% Side Effects: none

% parse, get sub-sentence, get struct
process_answer (RawSent, Struct, Query) :-
parse (RawSent , ParseSent),

simplify (ParseSent, SimpleSent),
prep_struct (SimpleSent, PrepSent),
sub_sent (PrepSent, SubSent),
a_struct (SubSent, Struct, Query).

% if fatled, report
process_answer (RawSent , [], _) :-
process_fail (RawSent).

%% process_fail /1
2% process_fail (+RawSentList)

%% Description:

VA Displays the parse tree and fails, to assist in
VA debugging / understanding failures

%% Succeeds: 0

4% Side Effects: none

% parse, remove e() entities, display tree, fatil
process_fail (RawSent) :-
parse (RawSent , ParseSent),
subst_e (ParseSent, CookedSent),
display_simple (’Parsed’, CookedSent),

display_struct (CookedSent),
!

fail.

Matthew Purver 89 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

B.3.2 Structural Matching/Transformation

match.pl

VA A e
%% match.pl

V74

4% Contains: predicates for structure / element matching

== o

VA A e
4% match /2

A% match (+Q, +4)

s

%% Description:

A Succeeds if § and A match. Interface to match/5.

A @, A may be structures, phrases or words

%% Succeeds: 0%

4% Side Effects: may assert instances of current_answer/1

== oo

B

% call match/5, assert answer text and display debug trace
4 assert answer structure as the last current_answer/l1 so it
% will only be picked up in the case of yn-queries where no
/ other answer has been asserted
match(Q, A) :-

match (Q, A, AnswerList, y/y, Trace),

1

stem(SurfaceAns, AnswerList),

assert (current_answer_list (SurfaceAns)),

assertz (current_answer (yes)),

display_trace (’Succeeded:’, Trace).

% if above fails, get rid of false answers
match(_, _) :-
retractall (current_answer (
fail.

),

A e e ikt b bk ke
A% match /3

4% match (+Q, +A, +ReversedrgsAtom)

V7

%% Description :

in Succeeds if @ and A match. Interface to match/4

VA without debugging info.

Y4 Q, 4 may be structures, phrases or words

%% Succeeds: 0%

4% Side Effects: may assert instances of current_answer/1

D GRS e e EE LR EE RN R L R R R

% call match/4 and throw away debugging info
match(Q, A, YN) :-

match(Q, A, YN, _),

A it b bt b
%% match/5

A% match (+Q, +A, -AnswerList,

V44 +ReversedrgsAdtom, -DebugTrace)

A

%% Description:

A Succeeds if { and A match.

Matthew Purver 90

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

A @, A may be structures, phrases or words.

A AnswerList contains the narrow-class matched phrase
A for display.

V4 ReverseArgsAtom prevents infinite recursion when

V4 matching reversed arguments in state-structures:

% should be initially set to ’y’.

A DebugTrace will contain a list of rules applied with

V4 details of what matched
%% Succeeds: 0%
%% Side Effects: may assert instances of current_answer/1

== oo

AABRRKILAIRRALLLIRIILLLIRILLLLILLLLLIRRILLLIRLLLLLLLLLLLTRRLLLLTLLL Y,
4% The obvious case

R R R R R TR R R RERLE LRI IIERLR IR TKRLL LD

% anything matches itself
% exzcept whole structures & question words
% (to prevent "where <s snowdon" matching "where is snowdon')
match (A, A, A,
/, [[A, A, 011) :-
\+ A = s:_,
\+ (
A = WhWord,
whq (WhWord, _, _)
),

AAREBRILIILTILTIILIILTILTIILIILTILERELIELIILTILLEIETILTILLRELTLLTTIL T
A% Word rules
AIREERILIILIILTRELIILIILTRILIILIELERELIILIELTILLILTILLILLELLILLTIL T

% nouns match the same word with a N-type tag

match (Noun/Typel, Noun/Type2, Noun/Type2,
/, [[Noun/Typel, Noun/Type2, 1]]) :-
member (Typel, [nn, np, nns]),

member (Type2, [nn, np, nns]),
[

% adjectives match the same word with a Adj-type tag
% as long as the tag <n the answer is at least as "strong" as in the query
match (Adj/Typel, Adj/Type2, Adj/Type2,
/, [[Adj/Typel, Adj/Type2, 211) :-

nth(Q, [JJ’ jir, jjS]’ Typel),

nth(A, [jj, jjr, jis], Type2),

A >=Q,

1

% unresolvable pronouns match (e.g. "you" matches "one")
% remembering that "one" may be tagged CD
match (P1/Tagl, P2/Tag2, P2/Tag2,
/, [[P1/Tagl, P2/Tag2, 311) :-

memberchk (Tagl, [cd, ppl),

memberchk (Tag2, [cd, ppl),

pro(P1, _, _, n),

pro(P2, _, _, n),

1

HAAIIIAILIILLLILLLLILLLLILTLLTLTILLLLLLLLLLLLLLLTLLLLLLLLLLLLLLLL LY
%% Verb group rules
ANV I

% VGs match if voice & head match and any modifiers of

Matthew Purver 91 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

% query VG can be matched
match (vg:Voice#Pred:[v:V1l | T1], vg:Voice#Pred:[v:V2 | T2], [V2 | Amns],
/, [[Cv:Vvi | T1], [v:V2 | T2], 11] | Tracel]) :-
sublist (T2A, T2),
match_list (T1, T2A, Ans,
y/y, Trace),
1

% adverbial modifiers match if all query constituents can be matched
match (adv:Listl, adv:List2, Ans,
/, [[adv:Listl, adv:List2, 12] | Trace]) :-

sublist (List2A, List2),

length (Listl, L),

length (List2A, L),

permutation (List2A, List2B),

match_list (Listl, List2B, Ans,

y/y, Trace),
1.

VAV YA I AN I AN Y I YA YAV I AN Y YA I
%% Query word rules

R R R R R R AR R R IR ERE R AIIIERL LTI RRZLL LD

% wh-question words match any phrase if semantics match
% (which gets asserted as answer)
match (WhWord, Type:Feat:Phrase, Phrase,
/, [[WhWord, Type:Feat:Phrase, 21]]) :-

whq (WhWord, WhSemList, WhTypelList),

member (Type, WhTypeList),

member (Sem, WhSemList),

sem (Type:Feat :Phrase, Sem),

asserta (current_answer (Phrase)),

1

% wh-question words match themselves, pre-qualified
% (e.g. "Wales is where (Snowdon is)")
% (first phrase gets asserted as answer)
match (WhWord, T1:F1:[T2:F2:P2, WhWord], P2,
/, [[WhWord, T1:F1:[T2:F2:P2, WhWord], 22]]) :-
whq (WhWord, WhSemList, _WhTypelist),
member (Sem, WhSemList),
sem(T2:F2:P2, Sem),
asserta (current_answer (T2:F2:P2)),
1

% how + adj-word (e.g. how green? (is my valley))
% (not allowed for quantities (e.g. how high? <-/-> wery high)
match (ng:F1:[how/wrb, np:F1:[Adj/AdjTypel]l, Ans,
Type : Feat : Phrase,
/, [[ng:F1:[how/wrb, np:F1:[Adj/AdjTypel],
Type : Feat : Phrase, 23] | Tracel]) :-
ad_type (AdjType),
\+ quantity (Adj, _),
flatten_nps (Phrase, P2),
member (Adj2/Type, P2),
ad_type (Type),
match (Adj/AdjType, Adj2/Type, Ans,
y/y, Trace),
1

% same for quantities (e.g. how long? (is a piece of string))

% -> we want to allow them to match a quantity phrase, so allow
% them to match whatever "what length?" matches

match (ng:F1:[how/wrb, np:F1:[Adj/AdjType]], A, Ans,

Matthew Purver 92 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

/, [[ng:Fi:[how/wrb, np:F1:[Adj/AdjTypell],
ng:[num]:[what/wp, np:[num]:[Noun/nnl], 24] | Tracel]) :-
ad_type (AdjType),
quantity (Adj, Noun),
match (ng:[num]:[what/wp, np:[num]:[Noun/nn]J], A, Ans,

y/y, Trace),
1,

% what + quantity noun (e.g. what height? (is Everest))
% can match any quantity NG
% (which gets asserted as answer)
match (ng:F1:[what/wp, np:F1:[Noun/NTypel]l, A, A,
/, [[ng:F1:[what/wp, np:Fl:[Noun/NTypell, A, 25]]1) :-
noun_type (NType),
quantity (_, Noun),
sem(A, num),

asserta (current_answer (A)),
1.

% what + quantity noun (e.g. what height? (is Everest))
% can match any inv-possessive PP containging a suitable NG
% (everest, with its 28000 height),(everest, a mountain of 28000)
match (ng:F1:[what/wp, np:F1:[Noun/NTypel], pp:Feat:[Prep, NP], Anmns,
/, [[pp:Feat:[Prep, NP], NP, 26] | Tracel]) :-
noun_type (NType),
quantity (_, Noun),
¥4 member (sop, Feat),
np(NP),
match (ng:F1:[what/wp, np:F1:[Noun/NTypel]l, NP, Anmns,

y/y, Trace),
1.

% for quantity nouns,
% (e.g. "what is the height of" -> "what height <s")
% this is actually a whole structure rule, but easier here
match (s:[what/wp, ng:F1:[NP1, pp:F2:[of/prep, NP2]]], A, Anms,
/, [[s:[what/wp, ng:F1:[NP1, pp:F2:[of/prep, NP2]]],
s:[ng:F1:[what/wp, Noun], NP2], 27] | Tracel) :-
np_head (NP1, Noun/_),
quantity (_Adj, Noun),
match(s:[ng:F1l:[what/wp, np:s/[num]:[Noun/nn]], NP2], A, Ans,

y/y, Trace),
1.

% what/which + any NP (e.g. what city? (is the capital of France))
% can match any noun phrase that matches NP sem

% (which gets asserted as answer)

match (ng:F1:[WhWord, NP], A, A,

/, [[ng:F1:[WhWord, NP], A, 28]11) :-
member (WhWord, [what/wp, which/det]),
np(NP),
np(A),
sem(NP, Sem),
sem(A, Sem),
asserta (current_answer (A)),

1

R T R I IR LLILILIILLLLLLLL Y
%% Noun group rules

R R R R AR TR RERLE R IRRERLR I RTRLL LD

% any phrase matches a compound NP 4if <t matches one part of it
match (Q, Type:Feat:List, Ans,
/, [[Q, Type:Feat:List, 31] | Trace]) :-

Matthew Purver 93 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

np(Type:Feat:List),
member (A, List),
match (Q, A, Ans,

y/y, Trace),
1.

% a compound NP matches another 4if all query constituents match
/4 and semantics match
match (ng:_N1/Semi:Listl, ng:_N2/Sem2:List2, Ans,
/, [[List1, List2, 32] | Trace]) :-
member (Sem, Seml),
member (Sem, Sem2),
sublist (List2A, List2),
length (Listl, L),
length (List2A, L),
permutation (List2A, List2B),
match_list (Listl, List2B, Ans,

y/y, Trace),
1.

% any NP matches another 4if all query constituents match after
% flattening sub-NPs, and semantics match
match(T1:_N1/Seml:Listl, T2:_N2/Sem2:List2, Ans,
/, [[Listl, List2, 33] | Tracel]) :-
np_type (T1),
np_type (T2),
member (Sem, Seml),
member (Sem, Sem2),
flatten_nps (Listl, FlatListl),
flatten_nps (List2, FlatList2),
sublist (List2A, FlatList2),
length (FlatListl, L),
length (List2A, L),
permutation (List2A, List2B),
match_list (FlatListl, List2B, Ans,

y/y, Trace),
1.

% a simple NP matches another simple NP <f all <ts words (ezcept
% non-required determiners) are there and semantics match
% (but not necessarily number)
match (np:N1/Seml:Listl, np:N2/Sem2:List2, Ans,
/, [[np:N1/Sem:Listl, np:N2/Sem:List2, 34] | Tracel]) :-
member (Sem, Seml),
member (Sem, Sem2),
remove_dets (Listl, Listi1A),
sublist (List2A, List2),
length (ListiA, L),
length (List2A, L),
permutation (List2A, List2B),
match_list (List1A, List2B, Ans,

y/y, Trace),
1,

% NP matches "NP2 of NP" <f sem the same
% i.e. "the town of Newmarket" 0K, "the mayor of London" not OK
match (A, ng:F1:[B, pp:F2:[of/prep, Cl]l, Anms,
/, [[A, ng:F1:[B, pp:F2:[of/prep, C]1], 351 | Tracel]) :-
np(A),
sem(B, Sem),
sem(C, Sem),
match(A, C, Ans,

y/y, Trace),
1.

Matthew Purver 94 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

% NP1 matches "like NP2" <f NP1 matches NP2
match (Q, Type:Feat:[Word, A], Ams,
/, [[Q, Type:Feat:[Word, A], 36] | Trace]) :-
include_word (Word),
match (Q, A, Ans,

y/y, Trace),
1.

% after verb nominalisation from state structures,
% NPs can match PPs containing them (or NGs containing those PPs)
match(Q, A, [Prep, Ams],
lemma/_, [[A, NP, 37] | Tracel]) :-
np(Q),
(
tree_member (pp:_Feat :[Prep/prep, NP1, A);
A = pp:_Feat:[Prep/prep, NP]
),
np(NP),
match(Q, NP, Ams,

y/y, Trace),
1.

KRURIERIRITRIRITRIEITLIEIE LRI RIRIERIRILLRILIR IR IILEIE LR ITLIL LKL LR
4% Prepositional phrase rules

R R R R R TR RIRIERLRIIRIERLL LD

% PPs match if their consituent NGs match and they share semantics
match (pp:Seml:[Prepl, NP1], pp:Sem2:[Prep2, NP2], [Prep2, Ams],
/, [[pp:Seml:[Prepl, NP1], pp:Sem2:[Prep2, NP2], 41] | Trace]) :-
member (Sem, Seml),
member (Sem, Sem2),
match (NP1, NP2, Amns,

y/y, Trace),
1.

% something matches a stacked PP if it matches the inner PP and
/% all levels share semantics
% "in Suffolk" -> "in a town in Suffolk"” (but not the other way around)
match(Q, pp:Seml:[Prepl, ng:_Feat:[NP1, pp:Sem2:[Prep2, NP2]]], Ams,
/, [[pp:Seml:[Prepl, ng:_Feat :[NP1, pp:Sem2:[Prep2, NP2]]],
pp:Sem2:[Prep2, NP2], 42] | Trace]) :-
member (Sem, Seml),
member (Sem, Sem2),
match(Q, pp:Sem2:[Prep2, NP2], Ans,

y/y, Trace),
1.

% PP "of X" matches possessive form "X’s"
match (pp:_Sem:[of/prep, NP1], ng:F1:[NP2, np:F2:[Pos/pos]], Ans2,
/, [[pp:_Sem:[of/prep, NP1],
ng:F1:[NP2, np:F2:[Pos/pos]], 43] | Trace]) :-
match (NP1, NP2, Amns,
y/y, Trace),
append ([Ans], [Pos/pos], Ans2),
1

% and the same the other way around
match (ng:F1:[NP1, np:F2:[Pos/pos]], pp:_Sem:[of/prep, NP2], [of/prep | Ams],
/, [[ng:F1:[NP1, np:F2:[Pos/posl],
pp:_Sem:[of/prep, NP2], 43] | Trace]) :-
match (NP1, NP2, Ans,
y/y, Trace),

Matthew Purver 95 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

BEBKKRILLEREIIILLRIRIILTEIRIILETEEIIILLTEIIILLTIRIILELEIIILLTZETILLTZILL Y
4% General structure rules

R R TR R R AR R R RERLE LRI IRERLRIIRTRLL LD

% first try to match pred & args individually (no transformation)
match(s:Q, s:A, AnswerList,

YN, [[s:Q, s:A, 100] | Trace]) :-

match_list (Q, A, AnswerList,

YN, Trace),
1.

% existential cases match two phrases within a single arg
% as long as that arg isn’t a list of conjoined NPs
match(Q, s:Args, Ams,
/, [[Q, Type:Feat:List, 101] | Trace]) :-
tree_member (Type:Feat:List, Args),
\+ list_of_nps_no_punct (List),
sublist ([A, B], List),
match(Q, s:[A, B], Ans,

y/y, Trace),
1.

% a query matches a passive answer %f it matches the active version
match (Q, s:[vg:pas#Pred:VG2, A, pp:_:[by/prep, Bl],

[AnsP, AnsA, [by/prep, AnsB]],

/, [[Q, [VG2, A, [by/prep, B1], 102] | Tracel) :-

match(Q, s:[vg:act#Pred:VG2, B, A], [AnsP, AnsB, AnsAl],

y/y, Trace),
1.

% and the same the other way around:
% a passive query matches an answer if its active equivalent does
match (s:[vg:pas#Pred:VG1, A, pp:_:[by/prep, B]], S, Anms,
/, [[CVGL, A, [by/prep, B]], S, 102] | Trace]) :-
match(s:[vg:act#Pred:VGl, B, A], S, Ans,

y/y, Trace),
1.

% possessive pred-arg structures match possessive PP state-structures
match(s:[vg:act#Pred:_, NP1, NP2], A, Ans,
/, [[s:[Pred, NP1, NP2], s:[pp:[of/prep, NP1], NP2], 103] |

Trace]) :-
pos_verb(Pred),
np(NP1),
np(NP2),

match (s:[pp:[loc,pos]:[of/prep, NP1], NP2], A, Ans,

y/y, Trace),
1.

% and the same the other way around

match(Q, s:[vg:act#Pred:[v:VG | _], NP1, NP2], [VG, Ansi, Ans2],
/, [[s:[Pred, NP1, NP2], s:[pp:[of/prep, NP1], NP2], 103] |
Trace]) :-
pos_verb (Pred),
np(NP1),
np(NP2),

match (Q, s:[pp:[loc,pos]:[of/prep, NP1], NP2], [[_Prep, Ansl], Ans2],

y/y, Trace),
[

% and the equivalent rule for inverse possession
match (Q, s:[NP1, pp:Feat:[Prep, NP2]], [Ansl, [Prep, Ans2]],

Matthew Purver 96 October 9, 2000

M.Phil. CSLP Project

Simplistic Question Answering

/, [[s:[NP1, pp:[Prep, NP2]],
Trace])
np(NP1),
np(NP2),
member (sop,
match (Q,

y/y,

Feat),

Trace),
1.

% query matches
match(Q, s:[vg:act#Pred:[v:VG |
/, [[[have, NP1, NP2],
pos_verb (Pred),
sem(NP2, num),
match (Q, s:[NP1, NP2],
y/y, Trace),

-1,
(NP1,

Ans,

7 "what

is the name of (person)"
match (s:[what/wp,

/, [[ng:F1:[WhWord, NP],
np(NP),
sem(NP,
whq (who/wp,
(memberchk (

WhWord

A,

Sem),
WhoSem ,),
Sem, WhoSem)
who /wp

->

WhWord what /wp
),
match (s:[WhWord, NP],

y/y, Trace),

A, Ans,

"

% "name the (person)" translates to
V4 the (non-person)"
match (s:[np:Feat:[name/_], NP], A,
/, [[np:Feat:[WhWord, NP],
np(NP),
sem(NP, Sem
whq (who/wp,
(memberchk (

WhWord

"name
A,

),

WhoSem ,),
Sem, WhoSem)
who /wp

->

WhWord what /wp
),
match(s:[WhWord, NPJ],

y/y, Trace),

A, Ans,

%

% "name the (non-person) which"”

"name

s:[pp:[loc,pos]:[of/prep,

"NP1 has NP2" if 4t matches
NP1,

translates
% "what %s the name of (non-person)" translates to
ng:Fl:[np:_F2:[_/det,

pp: _F3:[of/prep, NP]]],
1061 |

who
translates to
Ans,

the (person) who" translates to
translates to

s:[pp:[of/prep, NP1], NP2], 104] |

NP1], NP2], [[_APrep, Ans1l], Ans2],

"NP1 is NP2" for quantities
NP2], [VG | Ans],

NP2], 105] | Tracel])

to "who is (person)"

"what is (non-person)"”
name/_],

A,

Trace])

Ans,

is (person)"
"what is (nmon-person)"”

1077 |

Trace])

"which (person)"
"which (non-person)’

match (s:[ng:_:[np:_:[name/_], NP, WhWord], X], A, Ans,
/, [[[ng:F:[which/det, NP], X], A, 108] | Trace]) :-
np(NP),
(
whq (WhWord, _, _);
(
WhWord = np:_:[Wh2],
whq(Wh2, _, _)
)
WhWord = that/comp
) 3
feat (NP, F),
Matthew Purver 97 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

match(s:[ng:F:[which/det, NP], X], A, Ans,

y/y, Trace),
1,

% query matches answer %f 4t can match via verb nominalisation
% of the answer (assume for now that queries don’t need this)
% when the answer contains a generic utility wverbd
match(s:[vg:Vol#Pred:VGLl | Q], s:[vg:Vo2#Util:[v:V | T] | Al, Ams,
/, [[s:[vg:Vo2#Util:[v:V | T] | Al,
s:[vg:Vo2#Pred:[v:V2 | T] | A2], 109] | Tracel]) :-
generic_verb (Util),
lemma (Noun, Pred),
check_and_remove (Noun, A, A2),
append (V, [Noun/nn], V2),
match (s:[vg:Vol#Pred:VG1 | Q1],
s:[vg:Vo2#Pred:[v:V2 | T] | A2], Anms,
lemma/y, Trace),

% query matches answer +if ¢t can match via verb nominalisation
% of the answer (assume for now that queries don’t need this)
/% when the answer is a state structure
match(s:[vg:Vol#Pred:VG1l | Ql, s:A, Ams,
/, [[s:A, s:[vg:act#Pred:[v:[Noun/nn]] | A2], 109] | Tracel) :-
lemma (Noun, Pred),
check_and_remove (Noun, A, A2),
match (s:[vg:Vol#Pred:VG1 | QJ,
s:[vg:act#Pred:[v:[Noun/nn]] | A2], Ans,
lemma/y, Trace),

% same for a state structure with reversed args
match(s:[vg:Vol#Pred:VG1l | Ql, s:[J,K], Ams,
/, [[s:A, s:[vg:act#Pred:[v:[Noun/nn]] | A2], 109] | Tracel]) :-
A = [K,J],
lemma (Noun, Pred),
check_and_remove (Noun, A, A2),
match (s:[vg:Vol#Pred:VG1 | QI,
s:[vg:act#Pred:[v:[Noun/nnl]] | A2], Ans,
lemma/y, Trace),

% for ezistential case, try args the other way around, but only once!
match(s:[A, B], C, Amns,
X/y, [C[A, B], [B, Al, 110] | Trace]) :-
match (s:[B, A]l, C, Ans,
X/n, Trace),
1

% (or do the same on the answer side)
match(Q, s:[A, B], [AnsA, AnsB],
X/y, [CCA, Bl, [B, Al, 110] | Tracel) :-
match(Q, s:[B, A], [AnsB, AnsA],
X/n, Trace),

A% match_list /5

A% match_list (+QList, +AList, -AnswerList,

A% +ReversedrgsAtom, -DebugTrace)

V2

%% Description:

VA Succeeds if all elements in QList and AList match (calls

Matthew Purver 98 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

VA match /5 on each one).
%% Succeeds: 0%
4% Side Effects: may assert instances of current_answer/1

== = o m o

/ base case
match_list ([1, [1, (],
/-, [1).

% recurse, calling match/5 and appending debug trace info
% save some time by checking length and only matching head once
match_list ([Headl | Taill], [Head2 | Tail2], [AHead | ATaill,
YN, Trace) :-
length (Taill, L),
length (Tail2, L),

match (Headl, Head2, AHead, YN, Tracel),
1

match_list (Taill, Tail2, ATail, YN, Trace2),
append (Tracel, Trace2, Trace).

A% remove_dets /2
A% remove_dets (+RawWordList, ?CookedWordList)

%% Description:

V4 Removes unnecessary determiners (before matching of
VA NPs)

%% Succeeds: 1

%% Side Effects: none

/ base case
remove_dets ([1, [1).

% remove determiners ezcept "every"”
remove_dets ([Det/det | Taill], Tail2) :-
\+ required_det (Det),
1

remove_dets (Taill, Tail2).

/4 otherwise recurse
remove_dets ([Head | Taill], [Head | Tail2]) :-
remove_dets (Taill, Tail2).

A% required_det /1
%% required_det (+Word)

%% Description:

V4 Succeeds if Word is a determiner that must be matched
s (e.g. "every")

4% Succeeds: 0-1

4% Side Effects: none

% determiners that must be matched
required_det (every).
required_det (all).

4% matchchk /2
A% match (+Q, +A4)

Matthew Purver 99 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

V2
%% Description:

V4 Succeeds if { and A match, but can only succeed once.
V4 Interface to match/5 without debugging info or answer.
V4 @, A may be structures, phrases or words

%% Succeeds: 0%

4% Side Effects: may assert instances of current_answer/1,
i% (which is a shame, I’d like it mot to)

A e

% call match/5 and throw away debugging info
matchchk(Q, A) :-

match(Q, A, _, n/n,
1.

-),

check_and_remove (Noun, A, A2) :-
member (NP, A),
np_head (NP, Noun/Type),
noun_type (Type),
phrase_select (Noun/Type, NP, np:_Num/_Sem:List),
np_semantics (np:List, Sem2),
np_number (np:List, Num2),
substitute (NP, A, np:Num2/Sem2:List, A2).

check_and_remove (Noun, A, A2) :-
member (Arg, A),
tree_member (NP, Arg),
np_head (NP, Noun/Type),
noun_type (Type),
phrase_select (NP, Arg, Arg2),
substitute (Arg, A, Arg2, A2).

Matthew Purver 100 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

B.3.3 Structural Extraction

struct.pl

%% struct.pl

V74

%% Contains: predicates for building pred-arg
s or state structures

:— dynamic co_replace /2.

%% prep_struct /2

A% prep_struct (+RawSentList, ?CookedSentList)
A

%% Description:

VA CookedSentList has ezistential wverbs removed and
A% resulting ezistential relation information

i% propagated throughout by co-indezing. VG-PPs are
A then attached (we’ve waited until now to prevent

V4 them being attached to ezistential wverbs)

%% Succeeds: 1+

A% Side Effects: none

A === mmmm e m e m e mm e -

prep_struct (RawSent , CookedSent) :-
remove_be (RawSent , BeSent),
co_index (BeSent, CoSent),
attach_vg_pps (CoSent, CookedSent).

===
A% remove_be /2

%% remove_be (+RawSentList, ?CookedSentList)

s

%% Description:

2% CookedSentList is the result of converting "X is Y"
in relations into NG "ng:[X, Y]" relations

%% Succeeds: 1+

%% Side Effects: may assert instances of co_replace/2

o Y

e R R

/ base case
remove_be ([1, []).

% convert "X wg:be Y" -> "ng:[X, Y]" if possible

% replace in tail to prevent nasty circular problems with

% co_indez/2 later

remove_be ([X, vg:Voice#Pred:_VG, Y | Taill], [Z | Tail2]) :-
be_verb (Pred, Voice),
be_relation(X, Y, Z)
1
tail_co_index (X, Z, Taill, Tail3),
tail_co_index (Y, Z, Tail3, Taild),
remove_be (Tail4, Tail2).

% or just remove the "be" group
remove_be ([vg:Voice#Pred:_VG | Taill], Tail2) :-
be_verb (Pred, Voice),

remove_be (Taill, Tail2).

Matthew Purver 101 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

% can do the same with any present continous verb followed by PP

% if sem is loc,tim "X 4s Ying in Z" -> "X ¢s in Z"
% first, doing coindex conversion
remove_be ([X, vg:_Feat:[v:V | _T1, pp:PP | Tailll, [Z | Tail2]) :-

member (be/_, V),
member (_/vbg, V),
(
sem(pp:PP, loc);
sem(pp:PP, tim)
),
be_relation(X, pp:PP, Z),
tail_co_index (X, Z, Taill, Tail3),
remove_be (Tail3d, Tail2).

% can do the same with any present continous verb followed by PP

% if sem is loc,tim "X 4is Ying in Z" -> "X 4s in Z"
% or just removing VG
remove_be ([vg:_Feat:[v:V | _T], pp:PP | Taill], Tail2) :-

member (be/_, V),
member (_/vbg, V),
(
sem(pp:PP, loc);
sem(pp:PP, tim)
),
remove_be ([pp:PP | Taill], Tail2).

% otherwise recurse doing nothing

remove_be ([Head | Taill], [Head | Tail2]) :-
remove_be (Taill, Tail2).

4% be_relation/3
A% be_relation (+X, +Y, -Z)

4% Description:

V4 Makes a new indezed entity Z from an ezistential
in relation between X and Y and asserts co_replace/2
V4 for later co-indezing

A% Succeeds: 1
4% Side Effects: may assert instances of co_replace/2,
YA e_number /1, e/2

% PP NP - attach and remember to replace the NP later
be_relation(pp:X, Y, e(N)) :-

np(Y),
]

feat(Y, Feat),
make_e (N, ng:Feat:[Y, pp:X]),
assertz (co_replace(Y, e(N))).

4 NP PP - as above
be_relation(X, pp:Y, e(N)) :-
np(X),
1
feat (X, Feat),
make_e (N, ng:Feat:[X, pp:Y]),
assertz (co_replace(X, e(N))).

% PP PP - attach inside and remember to replace the NP
be_relation(pp:F:[Prep, X], pp:Y, pp:F:[Prep, e(N)]) :-

np(X),

feat (X, Feat),

Matthew Purver 102 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

make_e (N, ng:Feat:[X, pp:Y]),
assertz (co_replace(X, e(N))).

% NP NP - compound and remember to replace both
be_relation(X, Y, e(N)) :-
np(X),
np(Y),
1
member (Z, [X, Y]),
feat (Z, Feat),
make_e (N, ng:Feat:[X, Y]),
assertz (co_replace(X, e(N)))
assertz (co_replace(Y, e(N))).

%% co_indez /2
A% co_indez (+RawSentList, ?CookedSentList)

%% Description:
A CookedSentList is the result of replacing all

VA entities in RawSentList that require co-indezing
A% with their complexr equivalentis. Similar replacements
VA are made within e/2 entities

%% Succeeds: 1
4% Side Effects: retracts co_replace/2 as used, changes
s e/2 definitions

% for each co_replace/2 instance, subst in sentence
% and within any e() entities
co_index (Sentl, Sent3) :-
co_replace(e(X), e(Y)),
retract (co_replace(e(X), e(C Y))),
tree_subst(e(X), Sentli, e(Y), Sent2),
subst_e_e(X, e(Y), Y),
co_index (Sent2, Sent3),
1

% and stop when all done
co_index (Sent, Sent) :-
\+ co_replace(_, _).

4% tail_co_indez //
A% tail_co_indez (X, Y, +RawSentList, ?CookedSentList)

%% Description:
4 CookedSentList is the result of replacing X with

YA Y in RawSentList, if this has been asserted as
V4 something that needs doing (co_replace/2).
VA Does not affect e/2 entitiese or retract co_replace/2

4% Succeeds: 0-1
4% Side Effects: none

% if this one needs replacing, subst
tail_co_index (X, Z, Taill, Tail2) :-
co_replace(X, Z),
tree_subst (X, Taill, Z, Tail2),
]

% if not
tail_co_index (X, Z, Taill, Taill) :-

Matthew Purver 103

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

\+ co_replace(X, Z).

A% q_struct_list /2
A% q_struct_list (+SentList, ?StructlList)

A% Description :

in StructList <s a list of structures, one eziracted from
Y4 each member of the list of sentences SentList. For

V4 use processing queries, where a list of logical

V4 sub-queries %s being considered

4% Succeeds: 0-1
%% Side Effects: none

/ base case
g_struct_list ([], []).

7 tidy, get structure & recurse

g_struct_list ([Sent | Taill], [Struct | Tail2]) :-
tidy (Sent, TidySent),
make_struct (TidySent, Struct),
q_struct_list (Taill, Tail2).

A% a_struct/2

A% a_struct (+SentList, ?Struct)
A

4% Description:

A% StructList 1s one possible structure exztracted from
% the sentence SentList. For use with answers

%% Succeeds: 1%
%% Side Effects: none
A b bbb bbb

% tidy, get sublist, then get structure

a_struct (Sent, Struct, Query) :-
tidy (Sent, TidySent),
get_sub_list (TidySent, SubList, Query),
check_num_args (SubList , ArgList, Query),
make_struct (ArglList, Struct).

%% get_sub_list /3
2% get_sub_list (+Sent, ?SubSent, +{Struct)

%% Description:

Y4 SubSent ¢s a possible sub-list of the sentence Sent
V4 that will be useful %in matching the query structure
A% QStruct (i.e. contains the right number of VGs).

4% Succeeds : 1%

4% Side Effects: none

% if query contains a predicate, answer must contain <t
get_sub_list (Sentence, SubList, s:Query) :-

Query = [vg:_#Pred:_ | _Taill,

append (_PreSubList, SubList, _PostSubList, Sentence),

member (vg:_#Pred:_, SubList),

count_verbs (Query, N),

count_verbs (SubList, N),

length (Query, Q),

Matthew Purver 104 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

length (SubList, S),
S >= Q.

% if query contains a nominaliseable predicate, answer can
% contain a utility predicate
get_sub_list (Sentence, SubList, s:Query) :-
Query = [vg:_#Pred:_ | _Taill],
lemma (_, Pred),
append (_PreSubList, SubList, _PostSubList, Sentence),
member (vg:_#Util:_, SubList),
generic_verb (Util),
count_verbs (Query, N),
count_verbs (SubList, N),
length (Query, Q),
length (SubList, S),
S >= Q.

% tf query contains a pos-predicate or nominaliseable predicate,
/7 answer can contain no verbs
get_sub_list (Sentence, SublList, s:[vg:_#Pred:_ | _Taill) :-
(
pos_verb (Pred);
lemma(_, Pred)
),
append (_PreSubList, SubList, _PostSubList, Sentence),
count_verbs (SubList, 0),
length (SubList, S),
S >= 2.

% if no query predicate, just needs the same number of VGs (i.e. 0)
get_sub_list (Sentence, SubList, s:Query) :-

count_verbs (Query, 0),

append (_PreSubList, SubList, _PostSubList, Sentence),

count_verbs (SubList, 0),

length (Query, Q),

length (SubList, S),

S >= Q.

% unless we allow a pos-predicate <n the answer
get_sub_list (Sentence, SubList, s:Query) :-
count_verbs (Query, 0),
append (_PreSubList, SubList, _PostSubList, Sentence),
member (vg:_#Pred:_, SubList),
pos_verb (Pred),
count_verbs (SubList, 1),
length (Query, Q),
length (SubList, S),
s >= Q.

A% check_num_args/3
4% check_num_args(+Sentl, ?Sent2, +{Struct)

%% Description :
A Sent2 is an adjustment of Sentl with NGs/PPs compounded

% where necessary to give the correct number of
V4 arguments to match the query structure (Struct

%% Succeeds: 1+
4% Side Effects: none

% with ditransitive wverbs, passive form may need some massaging
check_num_args ([SNP, vg:pas#Sem:VG, ONP, ByPP], Sent, Query) :-
verb(Sem, ditrans),

Matthew Purver 105 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

check_num_args ([SNP, ONP, vg:pas#Sem:VG, ByPP], Sent, Query).

% create pred-arg relation (list of same length as query with one VG)
% if query is a pred-arg structure
check_num_args (Sentl, Sent2, s:Query) :-
member (vg:_, Query),
append (Prefix, [vg:List | Suffix], Sentl),
squish_to_length (1, Prefix, Pre2),
length (Pre2, P),
length (Query, Q),
squish_to_length ((Q - 1) - P, Suffix, Suf2),
append (Pre2, [vg:List | Suf2], Sent2),
length (Sent2, Q).

% create pred-arg relation (list of (same length as query)+l with one VG)
% if query 4s a state structure and the answer VG i¢s a pos_verbd
check_num_args (Sentl, Sent2, s:Query) :-

\+ member (vg:_, Query),

append (Prefix, [vg:Voice#Sem:List | Suffix], Sentl),

pos_verb(Sem),

squish_to_length (1, Prefix, Pre2),

length (Pre2, P),

length (Query, Q),

squish_to_length (Q - P, Suffix, Suf2),

append (Pre2, [vg:Voice#Sem:List | Suf2], Sent2),

S is Q + 1,

length (Sent2, S).

% create state relation (list of length 2 with no VGs)
% if query <s state structure
check_num_args (Sentl, Sent2, s:Query) :-
\+ member (vg:_, Sentl),
\+ member (vg:_, Query),
append (Prefix, Suffix, Sentl),
squish_to_length (1, Prefix, Pre2),
length (Pre2, 1),
squish_to_length (1, Suffix, Suf2),
length (Suf2, 1),
append (Pre2, Suf2, Sent2).

% create state relation (list of length 2 with no VGs)
% if query <s a pred_arg structure with a pos-predicate or lemma-predicate
check_num_args (Sentl, Sent2, s:Query) :-
\+ member (vg:_, Sentl),
member (vg:_#Sem:_, Query),
(
pos_verb(Sem);
lemma(_, Sem)
),
append (Prefix, Suffix, Sentl),
squish_to_length (1, Prefix, Pre2),
length (Pre2, 1),
squish_to_length (1, Suffix, Suf2),
length (Suf2, 1),
append (Pre2, Suf2, Sent2).

A= mmmm
%% squish_to_length/3

4% squish_to_length(+L, +Listl, ?List2)

Y

%% Description:

V4 Sent2 is an adjustment of Sentl with NGs/PPs compounded

2% where necessary to give the correct number of
V4 arguments to match the query structure (Struct

Matthew Purver 106 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

A% Succeeds: 1+
%% Side Effects: none

% tf already short enough, do nothing
squish_to_length (L, In, In) :-
length(In, I),
L >= I,
',

% otherwise squish the last lot together as a NG, finding a
% suitable set of features
squish_to_length (L, In, Out) :-

L2 is L-1,

append (Prefix, Suffix, In),

length (Prefix, L2),

get_feats (Suffix, Feat),

append (Prefix, [ng:Feat:Suffix], Out).

2% get_feats /2
%% get_feats (+List, ?Feats)

A% Description :

A% Feats are possible semantic features chosen from a
VA member of List - NG 2f possible, PP if not

4% Succeeds : 1%

%% Side Effects: none

% if we can find NGs with defined semantics, use any of them
get_feats (Suffix, Num/Sem) :-

member (_:Num/Sem:_, Suffix),

\+ Sem = [xxx].

% if only NGs with undefined semantics available, use that
% but no point doing this more than once
get_feats (Suffix, Num/[xxx]) :-

member (_:Num/[xxx]:_, Suffix),
\+ (
member (_:_/Sem:_, Suffix),
\+ Sem = [xxx]
),

% if no NGs, use a PP class
get_feats (Suffix, s/Sem) :-
member (pp:Sem:_, Suffix).

4% make_struct /2
A% make_struct (+SentlList, ?Struct)

%% Description:

V4 Checks that SentList contains suitable material
V4 and converts it into a pred-arg or state structure

%% Succeeds: 0-1
4% Side Effects: none

% pred-arg structure (S-V-0 -> P-4-4)
make_struct ([SNP, vg:VG, ONP], s:[vg:VG, SNP, ONP]).

Matthew Purver 107 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

/ state structure
make_struct ([NP1, NP2], s:[NP1, NP2]).

2% tidy/2
%% tidy (+RawSentList, ?CookedSentList)

%% Description:
V44 CookedSentList is the result of replacing e() indezed

A entities with their referents, removing punctuation
4 (we don’t need it any more) and checking that we
V4 haven’t been over-zealous in compounding ewverything

%% Succeeds: 1
%% Side Effects: none

tidy (MessySent, TidySent) :-
subst_e (MessySent, ESent),
strip_punct (ESent, PunctSent),
expand (PunctSent, TidySent).

2% expand/2
%% ezpand (+RawSentList, ?CookedSentList)

%% Description :

A If RawSentList contains only one member (because we’ve
A% overcompressed an exzistential sentence into one big

VA NP), CookedSentList becomes the contents of that
A single phrase

A% Succeeds: 1

%% Side Effects: none

% if we’ve over-compressed (just one phrase in sentence), split
expand ([_Type:_Feat:List], List) :-
!

% otherwise do nothing
expand (A, A).

anaphora.pl

%% anaphora.pl

4% Contains: predicates for resolving anaphoric references
:- dynamic e/2, e_number /1, pp_referent /1.
%% anaphora/2

%% anaphora (+RawSentList, ?SemSentList)

%% Description :

Y SemSentList is the result of resolving anaphoric pronouns.
in Just an interface to anaphora/5

A% Succeeds : 1%
%% Side Effects: none

% just call anaphora/4

Matthew Purver 108 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

anaphora(A, B) :-
anaphora(A, B, [],

B mm e e e e
%% anaphora/4

%% anaphora (+RawSentList, ?SemSentList,

V4 +ResolvedInList, -ResolvedOutList)

A

4% Description:

V4 SemSentList is the result of resolving (where possible)

VA anaphoric pronouns in sentence RawSentList.

VA ResolvedInList & ResolvedOutList maintain lists of resolved
A pronoun-referent pairs at each stage.

%% Succeeds: 1%
4% Side Effects: none
A it il bl b

/7 base case
anaphora ([1, I[1,
Resolved, Resolved).

% if a pronoun already resolved, keep the same referent
anaphora([Head | Taill], [Referent | Tail2],
ResolvedIn, ResolvedOut) :-
pronoun (Head, Pronoun),
member ([Pronoun, Referent], ResolvedIn),
1
anaphora(Taill, Tail2,
ResolvedIn, ResolvedOut).

% if any entity already resolved, keep the same referent
anaphora([Head | Taill], [Referent | Tail2],
ResolvedIn, ResolvedQOut) :-

member ([Head, Referent], ResolvedIn),
1

anaphora (Taill, Tail2,
ResolvedIn, ResolvedOut).

% a resolvable pronoun can be resolved to a suitable NP referent
4 and added to the resolved list
anaphora([Head | Taill], [e(N) | Tail2],
ResolvedIn, ResolvedOut) :-

pronoun (Head, Pronoun),

pro(Pronoun, ProSem, Num, y),

np(e(N)),

sem(e(N), Sem),

num(e(N), Num),

member (Sem, ProSem),

V4 e(N, Type:Num/NPSem:List),
4 np (Type:Num/NPSem:List),
V4 member (Sem, ProSem),
¥4 member (Sem, NPSem),
anaphora(Taill, Tail2,
[[Pronoun, e(N)] | ResolvedIn], ResolvedOut).
% a definite NP or proper NP can be resolved
% to a suitable NP/NG referent and added to the resolved list
% must match so that referent contains same or more info, not less
% (i.e. "ken" -> "the lovely ken livingstone", but not wvice wversa)
% and referent musn’t be a conjoined list
% (i.e. "ken" -/-> "ken and frank")

anaphora([e(M) | Taill], [e(N) | Tail2],
ResolvedIn, ResolvedOut) :-
(

Matthew Purver 109 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

definite_np(e(M));
proper_np(e(M))
),
e(M, NP1),
e(N, Type:Feat:NP2),
np_type (Type),
\+ N = M,
\+ list_of_mnps (NP2),
\+ list_of_nps_no_punct (NP2),
matchchk (NP1, Type:Feat:NP2),
anaphora (Taill, Tail2,
[e(M), e(N)] | ResolvedIn], ResolvedOut).

% PP anaphors can be resolved to a suitable PP
anaphora([Head | Taill], [PP | Tail2],
ResolvedIn, ResolvedQut) :-

4 np_head (Head, H),

pp_anaphor (Head, Sem),

pp_referent (PP),

sem(PP, Sem),

anaphora (Taill, Tail2,

[[Head, PP] | ResolvedIn], ResolvedOut).

% a NP anaphor can be resolved to a plural NP referent
% which should be forced to be the next one in "many of the Xs" cases
anaphora([Head | Taill], [e(N) | Tail2],
ResolvedIn, ResolvedOut) :-

np_head (Head, H),

np_anaphor (H, p),

np(e(N)),

num(e(N), p),

anaphora (Taill, Tail2,

[[Head, e(N)] | ResolvedIn], ResolvedOut).

% as above, but in the case of "one", we need to create a new singular
% equivalent (which might be referred to by e.g. a later "4it"!)
anaphora([Head | Taill], [e(M) | Tail2],
ResolvedIn, ResolvedQOut) :-

np_head (Head, H),

np_anaphor (H, s),

np(e(N)),

num(e(N), p),

e(N, Type:p/Sem:List),

make_e (M, Type:s/Sem:List),

anaphora(Taill, Tail2,

[[Head, e(M)] | ResolvedIn], ResolvedOut).

% recurse into phrases (not bothering with VGs)
anaphora ([Type:Feat:Listl | Tailll], [Type:Feat:List2 | Tail2],
ResolvedIn, ResolvedQut2) :-
\+ Type = vg,
\+ pronoun (Type:Feat:Listl, _),
1
anaphora (Listl, List2,
ResolvedIn, ResolvedOutl),
anaphora (Taill, Tail2,
ResolvedOutl , ResolvedOut2).

% recurse into e()s that are NGs
/% (don’t bother with NPs - we’’ve dealt with ones with PP heads)
% retracting first so things inside don’t refer to this!
anaphora([e(N) | Tailll], [e(N) | Tail2],
ResolvedIn, ResolvedOut2) :-
e(N, ng:Feat:Listl),
retract (e(N, ng:Feat:Listl)),

Matthew Purver 110 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

1
anaphora (Listl, List2,

ResolvedIn, ResolvedOutl),
retractall(e(N, _)), % required to allow above line
assert (e(N, ng:Feat:List2)),
anaphora(Taill, Tail2,

ResolvedOutl , ResolvedOut2).

% for anything else (including unresolved promnouns),
% recurse, not adding to seen list
anaphora([Head | Taill], [Head | Tail2],
ResolvedIn, ResolvedOut) :-
anaphora(Taill, Tail2,
ResolvedIn, ResolvedOut).

%% find_anaphora /1
%% find_anaphora (+SentList)

%% Description:

A Finds possible NP referents for later pronoun resolution
A% and asserts them in the Prolog database

%% Succeeds: 1
%% Side Effects: asserts referent/1 clauses

7 base case
find_anaphora ([]).

find_anaphora ([Type :Feat:NP | Tail]) :-
np_type (Type),
np_head (Type:Feat:NP, _/pp);
!,

find_anaphora (NP),
find_anaphora (Tail).

find_anaphora ([Type:Feat:NP | Taill]) :-
np_type (Type),
',
asserta (referent (Type:Feat:NP)),
find_anaphora (NP),

find_anaphora (Tail).

find_anaphora ([_Head | Tail]) :-
find_anaphora (Tail).

%% find_anaphora /2
4% find_anaphora (+SentList, ?RefList)

%% Description:

A Finds possible NP/PP referents for later anaphor resolution
A and asserts them in the Prolog database, while replacing

A them with e/2 indezed entities

%% Succeeds: 1

4% Side Effects: causes e/2, e_number/l1 clauses to be asserted

/ base case
find_anaphora ([J1, []1).

% NPs that aren’t themselves anaphoric:
% check inside NP, then indez & recurse

to backtrack

Matthew Purver 111

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

find_anaphora ([Type:Feat:NP1 | Taill], [e(N) | Tail2]) :-
np_type (Type),
np_head (Type:Feat:NP1, H),
\+ H = _/pp,
\+ np_anaphor (H, _),
\+ pp_anaphor (H, _),
1
find_anaphora (NP1, NP2),
make_e (N, Type:Feat:NP2),
find_anaphora (Taill, Tail2).

% location or time PPs: check inside & assert without indexzing
find_anaphora ([pp:Sem:PP1 | Taill], [pp:Sem:PP2 | Tail2]) :-
(
memberchk (loc, Sem);
memberchk (tim, Sem)
),
',
find_anaphora (PP1, PP2),
asserta (pp_referent (pp:Sem:PP2)),
find_anaphora (Taill, Tail2).

% any other phrase: check inside & recurse, but don’t index this one
find_anaphora ([Type:Feat:P1 | Taill], [Type:Feat:P2 | Tail2]) :-
',
find_anaphora (P1, P2),
find_anaphora (Taill, Tail2).

% otherwise recurse doing nothing
find_anaphora ([Head | Tailll], [Head | Tail2]) :-
find_anaphora (Taill, Tail2).

%% prep_anaphora /0
V2
%% Description:

2% Retracts indezed entity predicates, and staris the
VA entity number predicate e_number/1 at 1.

A% Succeeds: 1
4% Side Effects: retracts co_replace/2, e/2, e_number/1

VA clauses, asserts e_number/1
A ittt il b
prep_anaphora :-

retractall (co_replace(_, _)),

retractall(e(_, _)),

retractall (e_number (_)),

retractall (pp_referent(_)),
assert (e_number (1)).

A% make_e/2
4% make_e (-Number, +NP)

4% Description:

A% Finds the next available number for an indezed entity
VA and asserts it (referring to NP). Increments e_number/1
VA counter

4% Succeeds: 1
4% Side Effects: asserts e/2, retracts & asserts e_number/1

% find number, assert e/2, increment number, reset e_number/1

Matthew Purver 112 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

make_e (N, NP) :-
e_number (N),
assert (e(N, NP)),
M is N + 1,
retract (e_number (N)),
assert (e_number (M)).

A% subst_e/2
A% subst_e(+ESentList, ?NPSentList)

%% Description :

A NPSentList ¢s the result of substituting the indezed
% NPs back in for the e/2 entities. Interface to

V1 subst_e/3

%% Succeeds: 1

A% Side Effects: none

% call subst_e/3 beginning with the last to be asserted
% as later ones may refer to earlier ones
subst_e (Sentl, Sent2) :-

e_number (N),

M is N - 1,

subst_e (Sentl, Sent2, M).

%% subst_e/3
A% subst_e(+ESentList, ?NPSentList, +CounterNumber)

%% Description:

% NPSentList 4s the result of substituting the indezed
VA NPs back in for the e/2 entities.

4% Succeeds: 1

4% Side Effects: none

% finished
subst_e (Sent, Sent, 0).

% substitute all occurrences of this e() and recurse for nezt
subst_e (Sentl, Sent3, N) :-

e(N, NP),

tree_subst (e(N), Senti, NP, Sent2),

subst_e_e(N, NP, N),

M is N - 1,

subst_e (Sent2, Sent3, M).

A% subst_e_e/3
A% subst_e_e (+ENumber, ?NP, +CounterNumber)

%% Description:

L Substitutes occurrences of e(ENumber) for NP in

V4 other e()s with numbers less than or equal to CounterNumber
%% Succeeds: 1

%% Side Effects: may change some definitions of e/2

subst_e_e(_N, _NP, 0).

% make sure we don’t create recursive references

Matthew Purver 113

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

subst_e_e(N, e(X), X) :-
Y is X - 1,
1

subst_e_e(N, e(X), Y).

subst_e_e(N, NP, X) :-
e(X, NP1),
tree_subst(e(N), NP1, NP, NP2),
retract (e(X, NP1)),
assert (e(X, NP2)),
Y is X - 1,
1

subst_e_e(N, NP, Y).

A it b bt by
A% subst_e_e_up /3

4% subst_e_e_up (+ENumber, ?NP, +CounterNumber)

A

%% Description:

A Substitutes occurrences of e(ENumber) for NP in
VA other e()s with numbers less than or equal to CounterNumber

%% Succeeds: 1
4% Side Effects: may change some definitions of e/2
Y A ittt bl bbbl bt

subst_e_e_up (_N, _NP, X) :-
e_number (X).

% make sure we don’t create recursive references
subst_e_e_up(N, e(X), X) :-

Y is X + 1,

!

subst_e_e_up(N, e(X), Y).

subst_e_e_up (N, NP, X) :-
e(X, NP1),
tree_subst(e(N), NP1, NP, NP2),
retract (e(X, NP1)),
assert (e(X, NP2)),
Y is X + 1,
1

subst_e_e_up (N, NP, Y).

A it bt b by
%% promoun/2

4% pronoun (+WordOrNP, ?Pronoun)

A

%% Description :

% Succeeds if WordOrNP is a pronoun (either on its oun
VA or in its own NP, and instantiates Pronoun to the
A pronoun word

A% Succeeds: 0-1
4% Side Effects: none
A i e it bt b

% X/pp is a pronoun
pronoun (Pronoun/pp, Pronoun).

% np:_:[X/pp]l is too
pronoun (np:_Feat :[Pronoun/pp], Pronoun).

Matthew Purver 114 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

e
4% proper_np/1

%% proper_np (+NP)

A

%% Description:

V4 Succeeds if NP i¢s a proper NP - must contain no
A4 determiners, and head must be of type ’np’

%% Succeeds: 0-1
4% Side Effects: none
s

% for simple NPs, head will be tagged as ’np’
proper_np (Type:Feat:List) :-
np_type (Type),
np_head (Type:Feat:List, _Word/mnp),
\+ memberchk (List, _Det/det).

% for compound NPs, head must be a proper NP
proper_np (Type:Feat:List) :-
np_type (Type),
np_head (Type:Feat:List, NP),
\+ memberchk (List, _Det/det),
proper_np (NP).

% for indezed entity, look up & recurse
proper_np(e(N)) :-

e(N, NP),

proper_np(NP).

A b e
%% definite_np /1

4% definite_np (+NP)

s

%% Description:

A Succeeds if NP is a definite NP - must contain a
V44 definite article and cannot be a NG (as this might
A contain PPs).

%% Succeeds: 0-1

%% Side Effects: none

A ekl bl b

% for simple NPs, must contain (begin with?) definite determiner
definite_np (np:_Feat:List) :-
% np_type (Type),

memberchk (Det/det, List),

definite_det (Det).

% for compound NPs, head must be a definite NP
Zdefinite_np (NG) :-

A np(NG),
A np_head (NG, NP),
A definite_np (NP).

% for indezed entity, look up & recurse
definite_np(e(N)) :-

e(N, NP),

definite_np (NP).

Ly —
%% indefinite_np /1

%% indefinite_np (+NP)

A

%% Description:

Matthew Purver 115 October 9, 2000

M.Phil. CSLP Project

Simplistic Question Answering

V4 Succeeds if NP is an indefinite NP - must

A indefinite article, or be plural

%% Succeeds: 0-1

%% Side Effects: none

A e e b
% if plural, just check it’s not definite

indefinite_np (NP) :-
np(NP),
num(NP, p),
\+ definite_np (NP).

% if singular, check not definite and contains
indefinite_np (Type :Feat:List) :-

np_type (Type),

num (Type:Feat:List, s),

memberchk (List, Det/det),

\+ definite_det (Det),

\+ definite_np (Type:Feat:List).

% for compound NPs, head must be an indefinite NP
indefinite_np (NG) :-

np(NG),

np_head (NG, NP),

indefinite_np (NP).

% for indezed entity, look up & recurse
indefinite_np (e(N)) :-

e(N, NP),

indefinite_np (NP).

simplify.pl

simplify.pl

Contains: predicates for simplifying

A into lists of simple logical

A and for later exztracting them

A== === mmmm e s
A== === mmmm e e s

sub_sent /2
sub_sent (+RawSentList, ?SubSentList)
%% Description:

SubSentList

%% Succeeds: 1%
4% Side Effects: none
A==
sub_sent (Sentence, SubSent) :-
append (Prefix, SubSent, Suffix, Sentence
\+ memberchk (&, SubSent),

sub_prefix (Prefix),
sub_suffix (Suffix).

%% q_sub_sent /2

4% q_sub_sent (+RawSentList,
VA

%% Description:

V4 For use with queries only: SubSentList
V4 sub-sentence of RawSentList.

?SubSentList)

contain an

article

complex sentences
sub-sentences

is a possible sub-sentence of RawSentList.

),

s a possible
Differs to sub_sent/2

Matthew Purver 116

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

V4 in that NP conjunctions are separated out, so that
V4 a separate query will be formed for each member

%% Succeeds: 1
%% Side Effects: none

g_sub_sent (Sentence, Result) :-
n_conjunctions (Sentence, Sentl),
sub_sent (Sentl, Result).

%% n_conjunctions/2

4% n_conjunctions(+RawSentList, ?CookedSentList)
s

%% Description :

4 Substitutes any NP conjunctions with any

VA single one of the individual NPs, for use in
Y4 making individual logical queries. Must be used
A while we still have e() entities present

%% Succeeds: 1%
4% Side Effects: none

% substitute any conj-list e() with one of its members
n_conjunctions (Sentence, Result) :-

e(N, ng:_Feat:List),

list_of_nps_no_punct (List),

tree_member (e(N), Sentence),

member (NP, List),

np(NP),

\+ conj_word(NP),

tree_subst (e(N), Sentence, NP, Result).

% or do mnothing %f no such e() exzists
% & is present in the sentence
n_conjunctions (Sentence, Sentence) :-

\+ (
e(N, ng:_Feat:List),
list_of_nps_no_punct (List),
tree_member (e(N), Sentence)
).

A% sub_prefiz/1
4% sub_prefiz (+Sentlist)

%% Description:

A Succeeds if SentList is empty or ends with the
Y4 sentence separator ‘&’

%% Succeeds: 0-1

%% Side Effects: none

A s
sub_prefix(P) :-

reverse (P, S),

sub_suffix (S).

4% sub_suffiz/1

4% sub_suffiz (+SentList)
s

%% Description:

== oo

Matthew Purver 117

October 9, 2000

M.Phil. CSLP Project

Simplistic Question Answering

V4 Succeeds if SentList <s empty or begins with the
V4 sentence separator ‘&’

%% Succeeds: 0-1

%% Side Effects: none

A === === mm e mm -
% empty list is 0K

sub_suffix ([]).

% anything beginning with & is 0K

sub_suffix ([& | _S1).

A= mmmm
%% simplify/2

4% simplify (+RawSentList, ?SubSentList)

i

4% Description:

VA Turns a syntactically complex sentence into a list

% (conjunction) of logically equivalent simple

sentences,

VA separated by the character ’&°. Can’t deal with

i isjunctions - treats "or us 1ke "an
%% disjunctd treats "or" just like "and"
%% Succeeds: 1

%% Side Effects: none

simplify (RawSent , CookedSent) :-
sub_clause (RawSent , SubSent),
vp_conjunctions (SubSent, VPSent),
s_conjunctions (VPSent, SCSent),
s_punct (SCSent, CookedSent).

4% sub_clause/2
A% sub_clause (+RawSentList, ?SubSentlList)

%% Description:

V4 Turns a sentence containing relative & subordinate
A clauses into a list (conjunction) of logically
A equivalent simple sentences separated by &’

%% Succeeds: 1
%% Side Effects: none

% inter relative clauses (subj)

4 X, who likes ..., hates ... -> X likes ... & X hates

sub_clause (Sentl, Sent3) :-

append (Pre, [Punct, SubWord, vg:VGl | Taill,

[Punct, vg:VG2 | Suffix], Sentl),
sub_punct (Punct),
get_last (Pre, X, _),

match_rel (SubWord, X),
!

append (Pre, [vg:VG1l | Tail], [&, X, vg:VG2 | Suffix],

Sent2),
sub_clause (Sent2, Sent3).

% post relative clauses (subj)
Z ... X, who likes ... -> ... X & X likes
sub_clause (Sentl, Sent3) :-

append (Pre, [Punct, SubWord, vg:VG | Taill], Sentl),

sub_punct (Punct),
get_last (Pre, X, _),
match_rel (SubWord, X),

Matthew Purver 118

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

',
append (Pre, [&, X, vg:VG | Taill], Sent2),
sub_clause (Sent2, Sent3).

7% as above, but don’t need the comma

4 ... X who likes ... -> ... X & X likes

sub_clause (Sentl, Sent3) :-
append (Pre, [SubWord, vg:VG | Tail], Sentl),
get_last (Pre, X, _),
match_rel (SubWord, X),

append (Pre, [&, X, vg:VG | Taill], Sent2),
sub_clause (Sent2, Sent3).

% inter relative clauses (obj)
4 X, who Y likes ..., hates ... -> Y likes X ... & X hates
sub_clause (Sentl, Sent3) :-
append (Pre, [Punct, SubWord, Y, vg:VGl | Taill],
[Punct, vg:VG2 | Suffix], Sentl),
sub_punct (Punct),
np(Y),
get_last (Pre, X, Pre2),

match_rel (SubWord, X),

append (Pre2, [Y, vg:VGl, X | Taill, [&, X, vg:VG2 | Suffix], Sent2),
sub_clause (Sent2, Sent3).

% post relative clauses (obyj)
Z ... X, who Y likes ... -> ... X 8 Y likes X
sub_clause (Sentl, Sent3) :-
append (Pre, [Punct, SubWord, Y, vg:VG | Tail], Sentl),
sub_punct (Punct),
np(Y),
get_last (Pre, X, _),
match_rel (SubWord, X),
1

append (Pre, [&, Y, vg:VG, X | Tail], Sent2),
sub_clause (Sent2, Sent3).

/4 as above but don’t need the comma
4 ... X who Y likes ... =-> ... X 8 Y likes X
sub_clause (Sentl, Sent3) :-
append (Pre, [SubWord, Y, vg:VG | Taill], Sentl),
np(Y),
get_last(Pre, X, _),
match_rel (SubWord, X),
1
-9
append (Pre, [&, Y, vg:VG, X | Tail], Sent2),
sub_clause (Sent2, Sent3).

/ subordinate clauses
% X, though he likes Y, hates Z -> X though he likes Y & X hates Z
% X, like the people he likes, hates Z ->
V4 X like the people he likes & X hates Z
sub_clause (Sentl, Sent3) :-
append (Pre, [Punct, SubWord | Taill,
[Punct | Suffix], Sentl),
sub_punct (Punct),
sub_word (SubWord),
memberchk (vg:_VG1, Tail),
last (Pre, X),
1
append (Pre, [SubWord | Taill], [&, X | Suffix],
Sent2),
sub_clause (Sent2, Sent3).

Matthew Purver 119 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

/4 subordinate clauses

% Though he likes Y, X hates Z -> Though he likes Y & X hates Z

sub_clause (Sentl, Sent3) :-
append ([SubWord | Tail], [Punct | Suffix], Sentl),
sub_punct (Punct),
sub_word (SubWord),

memberchk (vg:_VG1, Tail),
1

append ([SubWord | Tail], [& | Suffix], Sent2),
sub_clause (Sent2, Sent3).

% if none of the above apply, stop
sub_clause (Sent, Sent).

2% get_last/3
4% get_last (+SentList, ?Last, ?Rest)

%% Description:

VA Last is either the last member of SentList, or the
A% NP inside 4t (if 4s i4s a PP). Rest is what’s left of
A SentList after Last has been removed

4% Succeeds: 1+

4% Side Effects: none

% if the last element is a PP, we might just want <ts NP
% "In Wales, which is a lovely country, <¢s a mountain'
get_last(Pre, NP, Pre2) :-
reverse (Pre, [pp:_F:[_Prep, NP] | Erpl),
reverse (Erp, Pre2).

% or just return last element - even if PP
4 "In Wales, which is where I live, is a mountain"
% match_rel /2 should only allow the right choice to be made
get_last(Pre, X, Pre2) :-
reverse (Pre, [X | Erpl),
reverse (Erp, Pre2).

4% match_rel /2
A% match_rel (?RelWord, +Phrase)

%% Description:

V4 Succeeds if RelWord %s a rTelative pronoun which suits
V4 Phrase in both ezpected phrase type and semantic class

%% Succeeds: 1%
%% Side Effects: none

match_rel (RelWord, X) :-
rel (RelWord, SemList, Typelist),
type(X, Type),
member (Type, TypeList),
sem(X, Sem),
member (Sem, SemList).

A% rel/3
%% rel (?RelWord, ?SemList, ?TypeList)
A%

Matthew Purver 120

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

4% Description:
VA SemList and TypeLlist contain the features that are

A% suitable for RelWord when introducing a relative
s clause

%% Succeeds: 0-1
%% Side Effects: none

% any wh-word with its related features
rel (Word, Sem, Type) :-
whq (Word, Sem, Type).

% "that" with any class, any NP
rel (that/comp, [loc, tim, per/_, obj, abs, num, orgl, [np, ngl).

A% sub_word/1
A% sub_word (?SubWord)

%% Description:

VA SubWord %¢s a word which can introduce a subordinate
A% clause

%% Succeeds: 1%
%% Side Effects: none

% e.g. Jack, though I dislike him, is worthy
sub_word (_/subconj).

% e.g. Jack, when I 4nsult him, is polite
sub_word (_/wrb).

% e.g. Jack, among those I dislike, is the worst
sub_word (_/prep).

% (as prep, but all preps are in PPs by this point)
sub_word (pp:_).

%% sub_punct /1
2% sub_punct (?SubWord)

4% Description:

V4 SubPunct is a punctituation mark which can iniroduce
V4 and end a relative or subordinate clause

4% Succeeds: 1%
%% Side Effects: none

4 comma
sub_punct (’,’/?,’).

% dash
sub_punct (’-?/7:’).

%% vp_conjunctions/2

2% vp_conjunctions (+RawSentList, ?SubSentList)
A

%% Description :

% Turns a sentence containing a list of conjoined VPs
V4 into the equivalent list of conjoined full sentences

Matthew Purver 121 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

N e.g. "X did Y and did Z" -> "X did Y and X did Z"
4% Succeeds: 1

%% Side Effects: none
A e

% if sentence contains conjoined VPs, find subject (last
% previous NP) and insert in appropriate places
vp_conjunctions (Sentl, Sent2) :-

append (Subj, [vg:VG | List1], Sentl),

list_of_vps ([vg:VG | List1]),

end_member (NP, Subj),

np(NP),

1
insert_subj (NP, Listl, List2),
append (Subj, [vg:VG | List2], Sent2).

% otherwise do nothing
vp_conjunctions (Sent, Sent).

4% s_conjunctions/2

%% s_conjunctions(+RawSentList, ?ConjSentList)
s

A% Description :

A Replaces conjunctions separating sub-sentences (i.e.
V4 those that separate portions of sentences containing
VA VGs) with sentence boundary marker &’

4% Succeeds: 1

4% Side Effects: none
TS EE TR

% if sentence contains a conjunction prefized by a whole

% number of sub-sentences, and there’s a werb after it,

% turn it into ‘&’ and check again

% I’d like to make V = S, but we’re not picking up sub-sents
7 separated by adverbs like "so"

s_conjunctions (Sentence, Sent2) :-

append (Prefix, [_Conj/Type | Suffix], Sentence),
memberchk (Type, [cc, subconjl),

count_sents (Prefix, S),

count_syn_vgs (Prefix, V),

vV >= 8§,

memberchk (vg:_, Suffix),

/% maybe this should be count_syn_vgs (Suffiz, >0) ?27?
1
append (Prefix, [& | Suffix], Sentl),
s_conjunctions (Sentl, Sent2).

% otherwise stop
s_conjunctions (Sentence, Sentence).

A% s_punct/2

4% s_punct (+RawSentList, ?ConjSentList)
s

%% Description:

A Replaces sentence-boundary (. ? !) and sub-sentence
VA (; : - ...) punctuation marks at the top level with
A sentence boundary marker &’

%% Succeeds: 1
%% Side Effects: none

Matthew Purver 122 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

/ base case

s_punct ([1, []).

% replace _/. and recurse

s_punct ([_/’.” | T11, [& | T2]1) :-

s_punct (T1, T2).

% replace _/: and recurse
s_punct ([_/’:> | T1], [& | T2]) :-

s_punct (T1, T2).

% otherwise recurse doing nothing
s_punct ([H | T1], [H | T2]) :-
s_punct (T1, T2).

A A e
A% list_of_wps/1

% list_of_vps (+SentList)

V7

%% Description:

% Succeeds if SentList is a list of conjoined VPs (of
i% the form "... did X, did Y(,) and did Z"

%% Succeeds: 0-1

A% Side Effects: none

Y A i i
2 "did X ... and did Y"
list_of_vps (List) :-
append ([vg:_ | Taill], [_Conj/cc, vg:_ | Tail2], List),
\+ member (vg:_, Taill),
\+ member (vg:_, Tail2).
4 "did X ... , and did Y"
list_of_vps (List) :-
append ([vg:_ | Tailtl, [’,’/’,’, _Conj/cc, vg:_ | Tail2], List),
\+ member (vg:_, Taill),
\+ member (vg:_, Tail2).
Y "did X ... , (did Y ... , ...)"
list_of_vps (List) :-
append ([vg:_ | Tailt], [’,?/?,’ | Tail2], List),
\+ member (vg:_, Taill),
list_of_vps (Tail2).
A A e

%% insert_subj/3

4% insert_subj (+SubjNP, +RawSentList, ?SubjSentList)

A

%% Description:

i Inserts SubjNP before each VG in RawSentList, together
V44 with the sentence boundary marker &’

%% Succeeds: 1

%% Side Effects: none

Y e e bbbt

/ base case
insert_subj (_Subj, [1, []).

/% insert Subj before a VG and recurse
insert_subj (Subj, [vg:VG | Tailll, [&, Subj, vg:VG | Tail2]) :-
1

Matthew Purver 123 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

insert_subj (Subj, Taill, Tail2).

% otherwise recurse doing nothing
insert_subj (Subj, [Head | Taill], [Head | Tail2]) :-
insert_subj (Subj, Taill, Tail2).

A mmmmmmm e m e
4% count_sents /2

4% count_sents (+SentlList, ?N)

s

%% Description:

V4 N is the number of sub-sentences (separateed by °’&’)
VA in the complez sentence SentList

%% Succeeds: 1

4% Side Effects: none

Y e e b

7 base case
count_sents ([]1, 1).

% add 1 for each ’6’° and Tecurse

count_sents ([& | Taill, N) :-

1
L]
count_sents (Tail, M),

N is M + 1.

% otherwise recurse doing nothing
count_sents ([_Head | Taill], N) :-
count_sents (Tail, N).

Matthew Purver 124 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

B.3.4 Shallow Text Processing
parse.pl

e
%% parse.pl

Ve

%% Contains: top-level predicates for building parse trees

A== m e e e e e e

A== mm e e -
%% parse/2

%% parse (+RawSentList, ?CookedSentList)

A

%% Description:

VA CookedSentList is the shallow parse tree produced
V44 from RawSentList, ezcept that VG-PPs have not yet

VA been attached (as we want to wait until ezistential
VA verbs have been removed so that we don’t lose them).
V4 NGs have been replaced by e() index entities and

A anaphora has been resolved where possible.

%% Succeeds: 1%
%% Side Effects: none
Y e e kb

parse (RawSent , CookedSent) :-
syn_process (RawSent , SynSent),
sem_process (SynSent, SemSent),
attach_np_pps (SemSent , NPSent),
prep_anaphora,
find_anaphora (NPSent, ESent),
anaphora (ESent, CookedSent).

A== e e
%% syn_process /2

2% syn_process (+RawSentList, ?SynSentList)

A

%% Description:

VA SynSentList is the result of forming NPs, PPs and VGs
V4 within RawSentList

%% Succeeds: 1%

A% Side Effects: none

Y e e e bt

syn_process (RawSent , SynSent) :-
make_vgs (RawSent, VGSent),
attach_advs (VGSent, AdvSent),
move_advs (AdvSent , MoveSent),

(process_type (query) ->
combine_q_vgs (MoveSent, CombSent)
CombSent = MoveSent

),

np_compounds (CombSent, CompSent),

np_conjunctions (CompSent, NPSent),

make_ngs (NPSent, NGSent),
make_pps (NGSent , SynSent).

/4
%% sem_process /2
4% sem_process (+RawSentList, ?SemSentList)

V2

Matthew Purver 125 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

%% Description :
s SemSentList is the result of applying semantic
V4 feature info to NP/PP/VGs. NPs get number and

% semantic class list, PPs get semantic class list,
A VGs get voice and predicate name

%% Succeeds: 1
4% Side Effects: none
A st

sem_process (RawSent , SemSent) :-
np_num_sem (RawSent , NSent),
vg_semantics (NSent, SemSent).

sem.pl

%% Contains: predicates for attaching semantic info to
A parse titree structures

2% np_num_sem/2
%% np_num_sem (+RawSentList, ?SemSentList)

%% Description:

V4 SemSentList ¢s the result of applying NP/PP semantic
V4 class and number info to sentence RawSentList

A% np:[...] -> np:Num/Sem:[...]

A pp:[...] -> pp:Sem:[...]

%% Succeeds: 1%

4% Side Effects: none

% base case
np_num_sem ([J, []).

% recurse, assigning NP the semantic class

% and sing/plural number of its contents

np_num_sem ([np:List | Taill], [np:Num/Sem:List | Tail2]) :-
np_number (np:List, Num),
np_semantics (np:List, Sem),
1

np_num_sem (Taill, Tail2).

% recurse, recursing within NG and taking new semantic class and
% number from last subNP, but owerriding to plural <if it contains
% conjoined NPs

np_num_sem ([ng:Listl | Tailll], [ng:Num/Sem:List2 | Tail2]) :-
1
np_num_sem (Listl, List2),
np_number (ng:List2, Num),
np_semantics (ng:List2, Sem),
np_num_sem (Taill, Tail2).

% recurse, recursing within PP and finding new semantic class
np_num_sem ([pp:Listl | Taill], [pp:Sem:List2 | Tail2]) :-
1
B
np_num_sem (Listl, List2),
pp_semantics (List2, Sem),
¥4 List2 = [_Prep/prep, _Type:_Num/Sem:_List],
np_num_sem (Taill, Tail2).

% otherwise, recurse doing nothing

Matthew Purver 126 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

np_num_sem ([Head | Taill], [Head | Tail2]) :-
np_num_sem (Taill, Tail2).

%% np_semantics /2
%% np_semantics (+NP, ?SemList)

%% Description:

A SemList is the list of possible semantic classes of
V4 the head of the noun phrase NP.

X% Succeeds: 1%

%% Side Effects: none

% NG: take class from the head NP

np_semantics (ng:List, Sem) :-
np_head (ng:List, _Type:_Num/Sem:_NPList),
1.

% NP: look up class for the head noun
np_semantics (np:List, Sem) :-
np_head (np:List, LastWord/Type),
noun_semantics (LastWord/Type, Sem).

%% np_number /2
4% np_number (+NP, ?Numberdtom)

A% Description:

A% NumberAtom <s either ’s’ or ’p’. A NP is singular unless
VA it is a conjoined list or its head is plural.

4% Succeeds: 1
%% Side Effects: none

% NG: if it’s a list of conjoined NPs, it’s plural
np_number (ng:List, p) :-

list_of_nps_no_punct (List),
1

% NG: otherwise take number from the head
np_number (ng:List, Num) :-

np_head (ng:List, _Type:Num/_Sem:_NPList),

1
% NP: take number from the head
np_number (np:List, Num) :-

np_head (np:List, _Head/Type),

(Type = nns ->

Num = p

A A e

4% np_head/2

4% np_head (+NP, ?HeadNPOrNoun)

s

%% Description:

VA HeadNPOrNoun 4s the head of NP. For a complez NG,

V4 it will be the last NP. For a simple NP, it will be

A the last noun, or the last word if no nouns can be found.

Matthew Purver 127 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

A% Succeeds: 1
%% Side Effects: none

% make it work after semantics attached
np_head (Type:_Feat:List, Head) :-
np_head (Type:List, Head).

% head of a NG <¢s the last NP

np_head (ng:List, Type:Head) :-
end_member (Type :Head, List),
np_type (Type).

% head of a NP is the last noun
np_head (np:List, Head/Type) :-
end_member (Head/Type, List),
noun_type (Type),
!

% or if no mnouns, just the last word (e.g. adj)
np_head (np:List, Head) :-
last (List, Head).

% look up indezed entity & recurse
np_head (e(N), Head) :-

e(N, NP),

np_head (NP, Head).

A% noun_semantics/2
A% noun_semantics(+Noun, ?ClassList)

%% Description:

V4 ClassList is a list of possible semantic classes for
V4 the tagged noun Noun

A% Succeeds: 1

%% Side Effects: none

/ possessives: pos
noun_semantics (_Pos/pos, [pos]).

% numbers: allow tim, num
noun_semantics (_AnyNumber /cd, [tim, num]).

% pronouns: look up class Llist
noun_semantics (Word/pp, Sem) :-

pro(Word, Sem, _Number, _YN),
1

% noun: look up class list
noun_semantics (Word/Type, Sem) :-
noun_type (Type),
noun (Word, Sem),

1

% if not listed in lexzicon, assign ’zzz’
% this is important as we often get verb participles mistagged NN
noun_semantics (Word/Type, [xxx]) :-

noun_type (Type),

1

\+ noun(Word, _Sem).

noun_semantics (_Word/Type, [xxx]) :-

Matthew Purver 128 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

\+ noun_type (Type).

VA e e
%% pp_semantics /2

4% pp_semantics (+PP, ?(ClassList)

s

A% Description :

V4 ClassList %s a list of possible semantic classes for
Y4 PP, or just [zzz] if none defined

%% Succeeds: 1

4% Side Effects: none

A s

% if we can find class, return all possibilities
pp_semantics (PP, SemList) :-
findall (Sem, pp_sem(PP, Sem), SemList),

\+ SemList = [],
1.

% otherwise wundefined
pp_semantics (_PP, [xxx]).

Y
4% pp_sem/2

%% pp_sem([+Prep, +NP], ?Classdtom)

VA

%% Description:

A ClassAtom ¢s a possible semantic class for

A the PP consisting of tagged Prep and NP

X% Succeeds: 1

4% Side Effects: none

A e

% location: must have (concrete) obj or location NP
pp_sem ([Prep/prep, NP], loc) :-
prep(Prep, SemList),
member (loc, SemList),
np(NP),
(
sem(NP, loc);
sem(NP, obj)
).

/% time: must have number NP
pp_sem ([Prep/prep, NP], tim) :-
prep(Prep, SemlList),
member (tim, SemList),
np(NP),
sem(NP, num).

J possession: any NP

pp_sem ([Prep/prep, NP], pos) :-
prep(Prep, SemList),
member (pos, SemList),
np(NP).

% "inverse" possession: any NP

pp_sem ([Prep/prep, NP], sop) :-
prep(Prep, SemlList),
member (sop, SemList),
np(NP).

Matthew Purver 129

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

2% wvg_semantics /2
4% vg_semantics (+RawSentList, ?SemSentList)

%% Description:

A SemSentList is the result of applying woice & VG head
A (predicate) info to sentence RawSentList

%% Succeeds: 1%

4% Side Effects: none

/4 base case
vg_semantics ([1, [1).

% be+V/ubn -> passive V
vg_semantics ([vg:[v:List | T] | Taill], [vg:pas#Sem:[v:List | T] | Tail2]) :-
member (PassVerb, [be, become, get]),
nth(N, List, PassVerb/_),
nth(M, List, Sem/Type),
M > N,

member (Type, [vbd, (vbd/_), vbn, (vbn/_)]),
1

vg_semantics (Taill, Tail2).

% V/vubn at the end -> passive V

vg_semantics ([vg:[v:List | T] | Tailll, [vg:pas#Sem:[v:List | T] | Tail2]) :-
end_member (Sem/vbn, List),
vg_semantics (Taill, Tail2).

% V1l to V2 -> active V1 <f V1 is a want-type wverd
% (prevents "want to be"” -> be, allows "used to be" -> be)
vg_semantics ([vg:[v:List | T] | Tailll, [vg:act#Vi:[v:List | T] | Tail2]) :-
end_member (V2/vb, List),
end_member (V1/Type, List),
vb_type (Type),
hypo_verb(V1),
nth(N1, List, V1/Type),
nth(N2, List, V2/vb),
N2 > Ni,
N is N2 - 1,
nth(N, List, _/to),
1

vg_semantics (Taill, Tail2).

% otherwise any V at the end -> active V

vg_semantics ([vg:[v:List | T] | Taill], [vg:act#Sem:[v:List | T] | Tail2]) :-
end_member (Sem/Type, List),
vb_type (Type),
]

vg_semantics (Taill, Tail2).

% otherwise recurse doing nothing
vg_semantics ([Head | Taill], [Head | Tail2]) :-
vg_semantics (Taill, Tail2).

4% sem/2
A% sem(+Phrase, ?SemAtom)

%% Description:

in SemAtom <s a possible semantic class for a NP/PP/whgq,
VA or predicate name for a VG

%% Succeeds: 1%

%% Side Effects: none

Matthew Purver 130 October 9, 2000

M.Phil. CSLP Project

Simplistic Question Answering

A
% for NP: member of semantic class list
sem(Type:_Num/SemList :_List, Sem) :-
np_type (Type),
member (Sem, SemList).
% for PP: member of semantic class list
sem(pp:SemList :_List, Sem) :-
member (Sem, SemList).
% for VG: predicate
sem(vg: _Voice#Sem:_List, Sem).
% for whq-word: member of semantic class
sem (WhWord, Sem) :-
whq (WhWord, SemList, _),
member (Sem, SemList).
% look up indezed entity & recurse
sem(e(N), Sem) :-
e(N, NP),
sem(NP, Sem).
A
4% mno_gender /2
4% no_gender (+SemClass, ?SemAtom)

A

%% Description:

VA SemAtom is the broad class of SemClass
VA i.e. per for per/_

A (or no change for anything else)

%% Succeeds: 1

4% Side Effects: none
T
no_gender (Class/_, Class) :-

1,
no_gender (Class, Class).

A% num/2

A% num(+Phrase,
%

A% Description:

2NumAtom)

A% NumAtom is ’s’ or ’p’ for a NP

%% Succeeds: 1

4% Side Effects: none

A== =TT T T s msmemomomomomooooooooooo o

% just return number feature
num (Type :Num/_SemList:_List,
np_type (Type).

Num) :-

% look up indezed entity & recurse
num(e(N), Num) :-

e(N, NP),

num(NP, Num).

R e LR LR LR P

A% feat/2

list

(gender removed)

Matthew Purver 131

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

%% feat (+Phrase, ?FeatCompound)

s

%% Description:

V4 FeatCompound s number & semantic class info for a NP,
VA (in form Num/SemList), or woice & predicate info for
VA a VG (in form Voice#Pred)

%% Succeeds: 1#

%% Side Effects: none

VA e

% for NP: Num/SemList
feat (Type:Feat:_List, Feat) :-
np_type (Type).

% for VG: Voice#Pred
feat (vg:Feat:_List, Feat).

% look up indezed entity & recurse
feat(e(N), Feat) :-

e(N, NP),

feat (NP, Feat).

Y e
%% type/2

4% type(+Phrase, ?Typedtom)

V23

4% Description :

A TypeAtom is phrase type marker for any phrase,

A e.g. "np" for a NP

4% Succeeds : 1%

4% Side Effects: none

A e e

% for any phrase: get type marker
type(Type:_, Type).

% look up indezed entity & recurse
type(e(N), Type) :-

e(N, NP),

type(NP, Type).

vg_syn.pl

A ittt bbb bbb bbb bbb bbb
A% vg_syn.pl

Y

4% Contains: predicates defining syntactic rules for

in building verb groups (VGs)

A === m e ——— oo

Y
4% make_vgs/2

4% make_vgs (+RawSentList, ?CookedSentList)

4

%% Description:

s CookedSentList is the result of forming VG-type

Y4 words (forcibly) into VGs

%% Succeeds: 1%

4% Side Effects: none

e ——NNN

/4 base case
make_vgs ([1, []).

Matthew Purver 132 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

% if we find a VG-type word, form biggest legal VG
make_vgs ([Head | Tailll, [vg:[v:Result] | Tail2]) :-
V4 vg_word (Head),

largest_vg([Head | Tailll, Result, Tail),

\+ illegal_vg(Result),

make_vgs (Tail, Tail2).

% otherwise, recurse doing nothing
make_vgs ([Head | Taill], [Head | Tail2]) :-
make_vgs (Taill, Tail2).

%% largest_vg/3
4% largest_vg (+RawList, ?VGList, ?RemainderList)

%% Description :

Y4 VGList is the list of all VG-type words at the head
%% of RawList, with RemainderList the tail left over.
%% Succeeds: 0-1

A% Side Effects: none

% for VG-type words: add to VGList and recurse
largest_vg ([Head | Tailll], [Head | VGTail], Rest) :-
vg_word (Head),
!

largest_vg (Taill, VGTail, Rest).

% for "there'": if in query, add to VGList and recurse
largest_vg ([there/ex | Taill], [there/ex | VGTail], Rest) :-
process_type (query),
1

largest_vg (Taill, VGTail, Rest).

% for "there'": if in answer, add to VGList and recurse if followed by
% "is": otherwise, might really be the location anaphor "there"
largest_vg ([there/ex | Tailll], [there/ex | VGTail], Rest) :-

process_type (answer),

Taill = [be/_ | _ 1,

1

largest_vg (Taill, VGTail, Rest).

% when we meet a non-VG-type word, initialise empty VGList
% and copy what’s left to RemainderList
largest_vg (Rest, [], Rest).

A% attach_advs /2

A% attach_advs (+RawList, ?CookedList)

A

%% Description :

V44 CookedList is the result of attaching (forcibly)

A all free adverbs (VGs consisting entirely of adverbs)
% to the nearest VG

%% Succeeds: 1

%% Side Effects: none

% if no free aduvs and something to attach them to, do nothing
attach_advs (In, In) :-
\+ (
member (vg:[v:List], In),

Matthew Purver 133 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

all_advs (List)
).

% if we find a free adv VG, attach to nearest VG and recurse
attach_advs (In, Out) :-

nth(N, In, vg:[v:List1], Rest),

all_advs (Listl),

nearest (N, vg:[v:List2], Rest, M),

]

subst_nth(M, vg:[v:List2,adv:List1], Rest, Mid),

attach_advs (Mid, Out).

% if we can’t find a nearest VG, attach to NP and recurse
attach_advs (In, QOut) :-

nth(N, In, vg:[v:List1], Rest),

all_advs (Listl),

nearest (N, np:List2, Rest, M),

1
append (Listl, List2, List),
subst_nth(M, np:List, Rest, Mid),
attach_advs (Mid, Out).

4% all_advs/1
4% all_advs (+List)

4% Description :

A Succeeds ¢f all members of List are of adverdb type.
in This was done using all_members, but can’t be <f we
VA need to accept /rbr, /rbs types

%% Succeeds: 0-1

4% Side Effects: none

/ base case
all_advs ([]).

% recurse, checking type

all_advs([_/Type | T]) :-
adv_type (Type),
all_advs(T).

A% move_adus /2
A% mowve_advs (+RawList, ?CookedList)

%% Description:

% CookedList 1is the result of separating (forcibly)

Y4 all adverbs within VGs from the V sub-group to a new
% ADV sub-group

%% Succeeds: 1

A% Side Effects: none

/ base case
move_advs ([1, []).

% for a VG: call move_all_advs /2 and recurse
move_advs ([vg:VGl | Tailll, [vg:VG2 | Tail2]) :-
move_all_advs (VG1, VG2),

move_advs (Taill, Tail2),
1

Matthew Purver 134

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

/ otherwise recurse, doing nothing
move_advs ([Head | Taill], [Head | Tail2]) :-
move_advs (Taill, Tail2).

A% move_all_advus /2

A% move_all_advs (+RawVGList, ?CookedVGList)

i

%% Description :

A CookedVGList 1is the result of moving (forcibly)
A all adverbs from within the V sub-group to a new
% ADV sub-group

%% Succeeds: 1

4% Side Effects: none

% if no advs within V group, do nothing
move_all_advs ([v:List | Tail], ([v:List | Tail]) :-
\+ (
member (_Adv/Type, List),
adv_type (Type)
).

% if adv found: <f no ADV group, create and move
move_all_advs ([v:List1], Result) :-

nth(_N, Listl, Adv/Type, List2),

adv_type (Type),

move_all_advs ([v:List2, adv:[Adv/Typell, Result).

% if adv found: <f ADV group ezists, append
move_all_advs ([v:Listl, adv:Mod], Result) :-
nth(_N, List1l, Adv/Type, List2),
adv_type (Type),
append (Mod, [Adv/Typel, Mod2),
move_all_advs ([v:List2, adv:Mod2], Result).

%% combine_q_vgs /2
4% combine_q_vgs (+RawSentList, ?CookedSentList)

%% Description:

A CookedSentList is the result of combining (forcibly)
V4 a "modal -type" VG with the main VG in a query

%% Succeeds: 1

%% Side Effects: none

% inverted query:
% "Where does X live?" -> "X [does,live] where?"
% "In which city does X live?"” -> "X [does,live] in which city?"
combine_q_vgs (Sentl, Sent2) :-

append (Prefix, [vg:[v:[Verb/Type] | T] | Tail], Sentl),

inverted_q_prefix (Prefix),

count_syn_vgs (Prefix, 0),

q_verb (Verb/Type),

count_syn_vgs (Tail, N),

N >= 1,

',
combine_vgs ([vg:[v:[Verb/Typel | T]1 | Taill, Result),
append (Result, Prefix, Sent2).

% mormal modal -type query:
% "Does X live inm London?" -> "X [does,live] in London?"

Matthew Purver 135

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

combine_q_vgs (Sentl, Sent2) :-
append (Prefix, [vg:[v:[Verb/Typel] | T] | Taill, Sentl),
count_syn_vgs (Prefix, 0),
q_verb (Verb/Type),
count_syn_vgs (Tail, N),
N >= 1,
!,
combine_vgs ([vg:[v:[Verb/Typel | T] | Taill, Result),
append (Prefix, Result, Sent2).

% otherwise do nothing:
Z "Who lives 1inm London?" -> "Who [live] in London?"
combine_q_vgs (Sent, Sent).

=== e e o ——————-- -
%% inverted_q_prefizc/1

4% inverted_q_prefizc(+List)

i

4% Description:

V4 Succeeds if List is the beginning of an inverted query
A i.e. begins with a whq-word or preposition+whq-word

%% Succeeds: 0-1
%% Side Effects: none
A it il

inverted_q_prefix ([WhWord | _T]) :-
whq (WhWord, _, _).

inverted_q_prefix ([np:[WhWord | _NP] | _T]) :-
whq (WhWord, _, _).

inverted_q_prefix ([_Prep/prep, WhWord | _T]) :-
whq (WhWord, _, _).

inverted_q_prefix ([_Prep/prep, np:[WhWord | _NP] | _T]) :-
whq (WhWord, _, _).

A== =TT ooooooooooooooooooo
2% q_verbd/1

4% q_verb (+TaggedWord)

Y

%% Description:

V4 Succeeds if TaggedWord is a "modal-type" query werbd
%% Succeeds: 0-1

%% Side Effects: none

2

% modals: e.g. "should X marry Y?2"
q_verb (_Verb/Type) :-
member (Type, [md, (md/_)]).

% be, do, have: e.g. "is X living with Y?", "does X even like Y?",
% "has X already married Z?"
q_verb (Verb/_Type) :-

member (Verb, [be, do, have]).

Y e

%% combine_vgs /2

4% combine_vgs (+RawSentList, ?CookedSentList)

V3

%% Description:

A% CookedSentList is the result of compounding (forcibly)

Matthew Purver 136 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

VA all VGs in RawSentList

4% Succeeds: 1

4% Side Effects: none
A e

% if no other VGs to combine with, do nothing: e.g. "is Snowdon in Wales?"
combine_vgs ([vg:VG | Taill, [vg:VG | Taill)
\+ member (vg:_, Tail).

% otherwise call combine_vgs/3

combine_vgs ([vg:VG | Taill], Tail2) :-
memberchk (vg:_, Taill),
combine_vgs (vg:VG, Taill, Tail2).

A e e
%% combine_vgs /3

4% combine_vgs (+QueryVG, +RawSentList, ?CookedSentList)
A

%% Description:

A CookedSentList 4is the result of adding (forcibly)

VA QueryVG to the VGs in RawSentList

%% Succeeds: 1

4% Side Effects: none

A e it iy

/ base case
combine_vgs (_, [1, []).
% if a list of conjoined VPs, give this Q-verb to each one
combine_vgs (QVG, [vg:VG1 | Taill], [vg:VG2 | Tail2]) :-
list_of_vps ([vg:VGl | Taill]),
!,
append_vgs (QVG, vg:VGl, vg:VG2),
combine_vgs (QVG, Taill, Tail2).

% otherwise give QVG to the first (only?) wverd
combine_vgs (QVG, [vg:VG1 | Taill, [vg:VG2 | Taill) :-
1

append_vgs (QVG, vg:VGl, vg:VG2).

% otherwise recurse until we find a VG
combine_vgs (QVG, [Head | Taill], [Head | Tail2]) :-
combine_vgs (QVG, Taill, Tail2).

Y e bbbt
A% np_vg/1

A% np_vg (+VG)

s

%% Description:

% Succeeds if VG is the type of VG that belongs in a
4 NG (e.g. single-word "ing" verd)

4% Succeeds: 0-1

%% Side Effects: none

A e e e

% true for ing-VGs
np_vg(VG) :-
ing_vg (VG).

% true for to-VGs
np_vg(VG) :-
to_vg(VG).

Matthew Purver 137 October 9, 2000

M

.Phil. CSLP Project

Simplistic Question Answering

rx
V1
V7
V1
V1
i
V2
i
nr

%

ing_vg/1
ing_vg (+VG)

Description :

Succeeds if VG is a single-word "ing" VG
Succeeds : 0-1
Side Effects: none

true t¢f V sub-group contains one word tagged ’vbg’

ing_vg (vg:[v:[_/vbgl | _Tail]).

%

true ¢f V sub-group contains one word tagged ’vbg’ (complez)

ing_vg (vg:[v:[_/(vbg/_)] | _Taill).

4

if VG has sem features attached, remove & recurse

ing_vg(vg:_:VG) :-

3
V1
Y
i
VA
A
Y
V1
i

%

ing_vg (vg:VG).

to_vg/1
to_vg (+VG)

Description :

Succeeds if VG is "to" + a single-word infintive wverbd
Succeeds: 0-1
Side Effects: none

true if V sub-group <s "to wverd"”

to_vg(vg:[v:[_/to, _/vb]l | _Taill).

4

true if V sub-group is "to wverb" (complez tag)

to_vg(vg:[v:[_/to, _/(vb/_)] | _Taill]).

%

tf VG has sem features attached, remove & recurse

to_vg(vg:_:VG) :-

i
A
VA
Y
V2
V1
V1
i
rx

4

to_vg(vg:VG).

append_vgs /3
append_vgs (+VG1, +VG2, ?VG3)

Description :

VG3 is the result of appending VGl and VG2
Succeeds : 0-1
Side Effects: none

if VGs just contain V sub-groups, just append

append_vgs (vg:[v:V1], vg:[v:V2], vg:[v:V]) :-

%

append (V1, V2, V).

if one contains a ADV group, copy <t

append_vgs (vg:[v:V1, adv:M1], vg:[v:V2], vg:[v:V, adv:M1])

%

append_vgs (vg:[v:V1], vg:[v:V2, adv:M2], vg:[v:V, adv:M2])

append (V1, V2, V).
if one contains a ADV group, copy it

append (V1, V2, V).

M

atthew Purver 138

October 9, 2000

M.Phil. CSLP Project

Simplistic Question Answering

% if both contain ADV groups, append them
append_vgs (vg:[v:V1l, adv:M1], vg:[v:V2, adv:M2],
append (V1, V2, V),
append (M1, M2, M).

== oo

4% count_syn_vgs /2

4% count_syn_vgs (+SentList, 2N)
VA

%% Description:

vg:[v:V,

V4 N is the number of non-NG-type VGs in SentList

4% Succeeds: 0-1
%% Side Effects: none

== o

count_syn_vgs ([], 0).

count_syn_vgs ([vg:VG | Tail], N) :-
np_vg (vg:VG),
!,

count_syn_vgs (Tail, N).

count_syn_vgs ([vg:_ | Taill, N) :-
! 3

count_syn_vgs (Tail, M),
N is M + 1.

count_syn_vgs ([_Head | Taill], N) :-
count_syn_vgs (Tail, N)

== oo

2% count_verbs /2

A% count_verbs (+SentList, 2N)

V4

%% Description :

V4 N is the number of VGs in SentList
%% Succeeds: 0-1

%% Side Effects: none

== oo

/ base case
count_verbs ([]1, 0).

count_verbs ([vg:VG | Taill, N) :-
ing_vg (vg:VG),

count_verbs (Tail, N).

count_verbs ([vg:_ | Taill, N) :-
count_verbs (Tail, M),
N is M + 1.

count_verbs ([Head | Taill], N) :-
\+ Head = vg:_,
count_verbs (Tail, N).

ng_syn.pl

== oo

A% ng_syn.pl

VA

4% Contains: predicates defining syntactic rules
s building noun groups (NGs)

D e

adv:M]) :-

Matthew Purver 139

October 9, 2000

M.Phil. CSLP Project

Simplistic Question Answering

Afmmmmmmmmmmmmmmmmmmmmmmm oo

V1
V7
V1
V1
i
V2
i
i
Y

np_compounds /2
np_compounds (+RawSentList,

Description :
CookedSentList
(optionally) adjacent
(forcibly) possessives

Succeeds : 1%

Side Effects:

Al === mmmmmmmmmmsmemmmomoo e

/ base case
np_compounds ([],

1y,

% recurse, compounding

possesstives
np_compounds ([np:H1, np:[H2/pos] |

?CookedSentList)

ts the result of compounding
single-word NPs,
and how+adj phrases

and

into NP
Tailll],

[ng:[np:H1, np:[H2/pos]] | Tail2]) :-
1
np_compounds (Taill, Tail2).
% recurse, compounding how+adj/adv into NP
np_compounds ([how/wrb, NP | Tailll,
[ng:[how/wrb, NP] | Tail2]) :-
np(NP),
np_head (NP, _Adj/Type),
ad_type (Type),
1
np_compounds (Taill, Tail2).
% recurse, compounding NP+adj into NP
np_compounds ([NP1, NP2 | Tailll],
[ng:[NP1, NP2] | Tail2]) :-
np(NP1),
np(NP2),

np_head (NP2,
adj_type (Type),
% !,

np_compounds (Taill,

% recurse, compounding
np_compounds ([H1, H2 |
simple_np (H1),
simple_np (H2),
] !,

Tailll

_Adj/Type),

Tail2).

two adjacent simple (single-word) NPs

[ng:[H1, H2] | Tail2]) :-

np_compounds (Taill, Tail2).

% or recurse, doing nothing

np_compounds ([Head | Taill], [Head | Tail2]) :-
np_compounds (Taill, Tail2).

A==

VA
V1
Y
V1
i

np_conjunctions/2

Description :

A (optionally) lists
4% Succeeds: 1%
%% Side Effects: none

Bdmmm e

/ base case

np_conjunctions (+RawSentList,

?CookedSentList)

CookedSentList is the result of compounding
of conjoined NPs

Matthew Purver

140 October 9, 2000

M

.Phil. CSLP Project

Simplistic Question Answering

np_conjunctions ([], []).

% recurse, conjoining comma/conj separated

np_conjunctions (Sentence,

% or recurse,
np_conjunctions ([Head | Taill], [Head | Tail2])

rr
i
i
VA
i
V1
V1
V7
VA
3

%

list_of_similar_nps

!, not obligatory as may be e.g.

[ng:Prefix | Tail2])
reverse_append (Prefix, Taill, Sentence),

(Prefix),

np_conjunctions (Taill, Tail2).

doing nothing

np_conjunctions (Taill, Tail2).

make_ngs /2
make_ngs (+RawSentList ,

Description :

CookedSentList 1s the result of compounding

(forcibly) NP-type VGs
Succeeds : 1%
Side Effects: none

base case

make_ngs ([1, []).

?CookedSentList)

with NPs

% recurse, applying NG <- VG(ing) NP

make_ngs ([vg:VG, NP | Tailll],

/4 or recurse,

np_vg (vg:VG),
np(NP),
!

make_ngs (Taill, Tail2).

doing nothing

make_ngs ([Head | Taill], [Head | Tail2])
make_ngs (Taill, Tail2).

rr
V1
Y
i
VA
A
V1
V7
3

%

list_of_nps /1
list_of_nps (+SentList)

Description :

Succeeds if SentlList 4s a list of conjoined

Succeeds: 0-1
Side Effects: none

true for "NP1 etc"

list_of_nps ([NP1, Word])

%

np(NP1),
conj_word (Word).

true for "NP1, etc”

list_of_nps ([NP1, °,°/?,’,

%

np(NP1),
conj_word (Word).

true for "NP1 and NP2"

Word]) :-

list_of_nps ([NP1, _/cc, NP2]) :-

np(NP1),
np (NP2).

lists of NPs

conjoined VPs

[ng:[vg:VG, NP]

Matthew Purver

141

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

% true for "NP1, and NP2"

list_of_nps ([NP1, °,”/’,”, _/cc, NP2]) :-
np(NP1),
np(NP2).

% true for "NP1 [,*and*] (L)" if true for L
list_of_nps ([NP1 | Taill) :-
np(NP1),
append (ConjList, [NP2 | Tail2], Tail),
np(NP2),
all_conjs (ConjList),
list_of_nps ([NP2 | Tail2]).

%% conj_word/1
4% conj_word (?Word)

%% Description:

A Succeeds if Word is a NP/word often found in
A conjunctions

4% Succeeds : 1%

%% Side Effects: none

conj_word (np:[etc/fw]).
conj_word (np:[’etc.’/fw]).
conj_word (np:[both/np]).
conj_word(np:[’so_on’/np]l).

% if features attached, remove & check
conj_word(np:_:X) :-
conj_word(np:X).

% look up e()

conj_word(e(N)) :-
e(N, X),
conj_word(X).

%% all_conjs /1
%% all_conjs (+List)

%% Description :

A Succeeds if all members of List are conjunction
A tokens: %.e. commas or "and"s

4% Succeeds: 0-1
%% Side Effects: none

/ base case
all_conjs ([1).

% commas acceptable
all_conjs([?,’/’,> | T1) :-
all_conjs(T).

4 and so is "and"

all_conjs([_/cc | T1) :-
all_conjs(T).

3% list_of_similar_nps/1

Matthew Purver 142 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

A% list_of_similar_nps(+SentlList)

s

%% Description:

V4 Succeeds if SentList 4s a list of conjoined NPs

A% which all share semantic class. Just an interface

V4 to list_of_similar_nps/2

%% Succeeds: 0-1

%% Side Effects: none

Y e ittt

% call list_of_similar_nps/2

list_of_similar_nps (A) :-
list_of_nps(A),
similar_nps (A, _).

2% similar_nps /2
4% similar_nps (+SentList, ?SemAtom)

%% Description:

V4 Succeeds if all NPs in SentList
V4 share the semantic class SemAtom
%% Succeeds: 0-1

%% Side Effects: none

7 base case
similar_nps ([1, _).

/% mon-NPs or conj words don’t need to share sem
similar_nps ([Head | Tail], Sem) :-
(
\+ np(Head);
conj_word (Head)
),

similar_nps (Tail, Sem).

% other NPs must, (but [per]s don’t need to share gender
similar_nps ([NP | Tail], Sem) :-

np(NP),

np_semantics (NP, SemList),

member (Seml, SemList),

no_gender (Seml, Sem),

similar_nps (Tail, Sem).

A% list_of_nps_no_punct/1
A% list_of_nps_no_punct(+SentLlist)

%% Description:
A Succeeds if SentList is a list of conjoined NPs.

V4 Equivalent to list_of_nps/1 for use once punctation
V44 has been removed

%% Succeeds: 0-1
%% Side Effects: none

% true for "NP1 etc."
list_of_nps_no_punct ([NP1, NP2]) :-
np(NP1),
conj_word (NP2).

% true for "NP1 and NP2"

Matthew Purver 143 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

list_of_nps_no_punct ([NP1, _/cc, NP2]) :-
np(NP1),
np(NP2).

% true for "NP1 (L)" 4if true for L
list_of_nps_no_punct ([NP1 | Taill]) :-
np(NP1),
list_of_nps_no_punct (Tail).

% true for "NP1 (L)" 4if true for L
list_of_nps_no_punct ([NP1, _/cc | Taill]) :-
np(NP1),
list_of_nps_no_punct (Tail).

syn_defs.pl

B mm e e e
%% syn_defs.pl

2

%% Contains: definitions for syntactic rule predicates

D et

=== e e o ————————----
2% simple_np/1

A% simple_np (+NP)

V]

%% Description:

V4 Succeeds if NP is a single-word NP

%% Succeeds: 0-1

%% Side Effects: none

Y e

% single word NP (could be mistagged as NN/NNS)
simple_np (np:[_Word/Typel]) :-
noun_type (Type).

% look up indezed entity & recurse
simple_np(e(N)) :-

e(N, NP),

simple_np (NP).

e ,tiitpa
A% np/1

A% np(+NP)

i

X% Description :

A Succeeds 4if NP is a NP (i.e. has a NP-type marker)
4% Succeeds: 0-1

%% Side Effects: none

A e et

% mp:_ is a NP
np(np:_List).

% and so is ng:_
np(ng:_List).

% look up indezed entity & recurse
% (actually, only NPs get indezed at the moment, so don’t
/% need to recurse, but this is safer in case of changes)
np(e(N)) :-

e(N, NP),

np(NP).

Matthew Purver 144

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

%% np_type/1

%% np_type(+TypeMarkerAdtom)

4

%% Description:

A Succeeds if TypeMarkerdtom is of NP type

%% Succeeds: 0-1

%% Side Effects: none

VY

np_type (np).
np_type (ng).

%% noun_type/1

A% noun_type (+TypeMarkerAtom)

s

%% Description:

A Succeeds if TypeMarkerAtom is of noun type

%% Succeeds: 0-1

4% Side Effects: none

VA e

noun_type (nn).
noun_type (nns).
noun_type (np).
noun_type (cd).

%% ad_type/1

2% ad_type (+TypeMarkerAtom)

i

%% Description :

VA Succeeds if TypeMarkerAtom is of adj or adv type
%% Succeeds: 0-1

4% Side Effects: none

ad_type (A) :-
adj_type (A).

ad_type (A) :-
adv_type (A).

4% adv_type/1

4% adv_type (+TypeMarkerdtom)

s

%% Description:

A Succeeds if TypeMarkerdtom is of adv type

4% Succeeds: 0-1

4% Side Effects: none

/2 e

adv_type(rb).

adv_type(rbr).
adv_type(rbs).

%% adj_type/1

Matthew Purver 145 October 9, 2000

M

.Phil. CSLP Project

Simplistic Question Answering

A
Y
i
Y
i
V1
nr

adj_type (+TypeMarkerdtom)

Description :

Succeeds if TypeMarkerAtom is of adj type
Succeeds : 0-1
Side Effects: none

adj_type(jj).
adj_type (jjr).
adj_type(jjs).

3
V1
V1
i
VA
i
Y
V1
V2

vb

vb_type/1
vb_type (+TypeMarkerAtom)

Description :

Succeeds if TypeMarkerAtom is of verb type
Succeeds: 0-1
Side Effects: none

_type (vb).

vb_type (vbz
vb_type (vbp

vb_type (vbn

)
).
vb_type (vbd).
)
)

vb_type (vbg

% for compound types caused by shallowproc wverb info,

%

convert to simple type & recurse

vb_type (V/_) :-

3
Y
V1
7
V1
V1
V2
i
A
V2

%

vb_type (V).

illegal_vg /1
illegal_vg (+WordList)

Description :
Succeeds if WordList cannot form a legal VG on its
own

Succeeds : 0-1

Side Effects: none

"to" on its own (probably mistagged prep)

illegal_vg ([_/tol).

%

"that" on 4its own (probably mistagged relative)

illegal_vg([_/compl).

]

empty list is not legal!

illegal_vg ([1).

3
V1
i
V2
i
A
Y
i

vg_word/1
vg_word (+TaggedWord)

Description :

Succeeds if TaggedWord can form part of a VG
Succeeds: 0-1
Side Effects: none

Matthew Purver 146

October 9, 2000

M.Phil. CSLP Project

Simplistic Question Answering

7 any wverb type
vg_word (_Word/Type) :-
vb_type (Type).

vg_word (_Word/Type) :-
adv_type (Type).

% modals, adverbs, "to" and "that"
vg_word (_/md).

vg_word (_/(md/_)).

vg_word (_/to).

vg_word (_/comp).

% ezistential "there
% this is now specified more subtlely in vg_syn.pl

% vg_word (there/ez).

pp-pl

== oo

%% pp.pl

Y

A% Contains: predicates for making & attaching
VA prepositional phrases (PPs)

== oo

R

4% make_pps/2

%% make_pps (+RawSentList, ?CookedSentList)
%

%% Description:

VA CookedSentList is the result of forming
VA (optionally) PPs from [prep, NPJ]

4% Succeeds: 1%

4% Side Effects: none

A

" Z ___

7 base case

make_pps ([1, [1).

/% recurse, checking within compound NPs
make_pps ([ng:Listl | Taill], [ng:List2 | Tail2])
1
)
make_pps (Listl, List2),
make_pps (Taill, Tail2).

% recurse, applying PP <- P NP
% and checking within compound NPs
make_pps ([Prep/prep, NP:Listl | Tailll,
[pp:[Prep/prep, NP:List2] | Tail2])
np(NP:Listl),
1
make_pps (Listl, List2),
make_pps (Taill, Tail2

% or recurse, doing nothing
make_pps ([Head | Taill], [Head | Tail2]) :-
make_pps (Taill, Tail2).

2% attach_np_pps /2
%% attach_np_pps (+RawSentList, ?CookedSentList)

Matthew Purver 147

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

A

%% Description:

A CookedSentList is the result of (usually optionally)
V4 attaching NP-type PPs to neighbouring WNPs

%% Succeeds: 1%

4% Side Effects: none

VA e

% base case
attach_np_pps ([1, [1).

% recurse, forcibly applying NP <- NP’s NP
attach_np_pps ([NP1, NP2 | Tailll],
[ng:Feat : [NP1, NP2] | Tail2]) :-
np(NP1),
np(NP2),
sem(NP1, pos),
feat (NP2, Feat),
1

attach_np_pps (Taill, Tail2).

% recurse, optionally applying (NP (P (NP PP))) <- (NP (P NP)) PP
% for non-VG-type PPs
attach_np_pps ([ng:F:[NP, pp:F1:[P1, NP1]], pp:PP2 | Taill], Tail2) :-
np(NP),
np(NP1),
feat (NP1, Feat),
\+ vg_pp(pp:PP2),
attach_np_pps ([ng:F:[NP, pp:F1:[P1, ng:Feat:[NP1, pp:PP2]]1] |
Tailll,
Tail2).

% recurse, optionally applying NP <- NP PP for non-VG-type PPs
attach_np_pps ([NP, pp:PP | Tailll,
Tail2) :-
np(NP),
feat (NP, Feat),
\+ vg_pp(pp:PP),
attach_np_pps ([ng:Feat:[NP, pp:PP] | Taill], Tail2).

J recurse, optionally applying (P NP) PP <- (P (NP PP))
% for non-VG-type PPs
attach_np_pps ([pp:Sem:[Prep/prep, NP], pp:PP | Tailll,
[pp:Sem:[Prep/prep,
ng:Feat :[NP, pp:PP]] | Tail2]) :-
np(NP),
feat (NP, Feat),
\+ vg_pp(pp:Sem:[Prep/prep, NP]),
\+ vg_pp(pp:PP),
attach_np_pps (Taill, Tail2).

% or recurse, doing nothing
attach_np_pps ([Head | Taill], [Head | Tail2]) :-
attach_np_pps (Taill, Tail2).

/A e
4% attach_vg_pps /2

4% attach_vg_pps (+RawSentList, ?CookedSentList)

A

%% Description:

N CookedSentList is the result of (forcibly)

VA attaching VG-type PPs to nearest VGs

%% Succeeds: 1%

Matthew Purver 148 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

% if we can find a VG-type PP, attach to nearest VG
4 and recurse
attach_vg_pps (In, Out) :-
nth(N, In, pp:PP, Rest),
vg_pp (pp:PP),
nearest (N, vg:Feat:VGList, Rest, M),
append (VGList, [pp:PP], VGList2),
subst_nth(M, vg:Feat:VGList2, Rest, Mid),
1

attach_vg_pps (Mid, Out).

% in queries only, do the same for whq-words
attach_vg_pps (In, Out) :-
process_type (query),
nth(N, In, WhWord, Rest),
whq (WhWord, _, _),
vg_whq (WhWord),
nearest (N, vg:Feat:VGList, Rest, M),
append (VGList, [WhWord], VGList2),
subst_nth(M, vg:Feat:VGList2, Rest, Mid),
1

attach_vg_pps (Mid, Out).

% in answers only, stop if no more VG-type PPs found
attach_vg_pps (In, In) :-
process_type (answer),
\+ (
member (pp:PP, In),
vg_pp(pp:PP),
member (vg:_, In)

).

in queries only, stop if no more VG-type PPs and no
more whq-words found
we really need something to prevent "how long" being moved here
% when it’s a length, not a duration
attach_vg_pps (In, In) :-
process_type (query),
\+ (
member (pp:PP, In),
vg_pp(pp:PP),
member (WhWord, Imn),
whq (WhWord, _, _),
vg_whq (WhWord),
member (vg:_, In)

3 S e

A A e
2% vg_pp/1

%% vg_pp (+PP)

VA

%% Description:

V4 Succeeds if PP has semantic class suitable for

A attaching to a VG

%% Succeeds: 0-1

4% Side Effects: none

Y A e

% when, how, why-type PPs
vg_pp(pp:PP) :-
sem(pp:PP, Sem),

Matthew Purver 149 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

member (Sem, [tim, man, rea]).

A
2% vg_whq/1

%% vg_whq(+WhWord)

7

A% Description :

A% Succeeds if WhWord has semantic class suitable for
Y4 attaching to a VG

%% Succeeds: 0-1

4% Side Effects: none

A== = m

% when, how, why
vg_whq (WhWord) :-
sem (WhWord, Sem),
member (Sem, [tim, man, rea]).

preparse.pl

A== m T TS oo oo

4% preparse.pl

V2

A% Contains: predicates for low-level sentence pre-processing

D e

F A e ittt
4% pre_process /2

4% pre_process (+RawSentList, ?CookedSentList)

V1

A% Description :

4 CookedSentList is the result of applying rewrite

YA rules, stemming and adjusting simple NP bracketing
4% Succeeds : 1%

%% Side Effects: none

A e

pre_process (RawSent , CookedSent) :-
pp_rewrite (RawSent , Sent0),
stem(SentQ, Sentl),
fix_adv_adj (Sentl, Sent2),
fix_ex_there (Sent2, Sent3),
remove_final_punct (Sent3, Sent4),
check_verb (Sent4, CookedSent).

A === e e
%% pp_reuwrite/2

2% pp_rewrite (+RawSentList, ?CookedSentList)

A%

%% Description :

VA CookedSentList i¢s the result of applying rewrite

2% rules to RawSentList

%% Succeeds: 1%

4% Side Effects: none
A e it iy

/ base case
pp_rewrite ([1, []).

% recurse, optionally applying rewrite rules
pp_rewrite (Sentl, Sent2) :-

rewrite (From, To),

append (From, Taill, Sentl),

Matthew Purver 150

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

append (To, Tail2, Sent2),
A !, 7% let’s make rewriting optional
pp_rewrite (Taill, Tail2).

% recurse, forcibly ezpanding abbreviations
pp_rewrite ([Head | Taill], Sent2) :-
abbrev (Head, Expand),
append (Expand, Tail2, Sent2),
1

pp_rewrite (Taill, Tail2).

% recurse, forcibly ezpanding abbreviations already (wrongly)
% ezpanded as possessives
pp_rewrite ([Head, np:[Pos/pos] | Tailll], Sent2) :-

abbrev ([Head, np:[Pos/pos]], Expand),

append (Expand, Tail2, Sent2),

1

pp_rewrite (Taill, Tail2).

% otherwise recurse, doing nothing
pp_rewrite ([Head | Taill], [Head | Tail2]) :-
pp_rewrite (Taill, Tail2).

4% rTemove_empties/2
4% remove_empties(+RawSentList, ?CookedSentList)

%% Description:

A% CookedSentList is the result of removing empty
V4 phrases (left by pp_remove/2) from RawSentList
V1 #*%% (BSOLETE *#*%

%% Succeeds: 1

%% Side Effects: none

7 base case
remove_empties ([1, []1).

% recurse, removing any empty phrases
remove_empties ([_Type:[] | Taill], Tail2) :-
1

remove_empties (Taill, Tail2).

% recurse, recursing within sub-phrases

remove_empties ([Type:Listl | Taill], [Type:List2 | Tail2]) :-
1
B}

remove_empties (Listl, List2),

remove_empties (Taill, Tail2).

% otherwise, recurse doing nothing
remove_empties ([Head | Taill], [Head | Tail2]) :-
remove_empties (Taill, Tail2).

A% fiz_adv_adj /2
4% fiz_adv_adj (+RawSentList, ?CookedSentList)

%% Description :

V2 CookedSentList is the result of incorporating
V4 adverbs which are modifying adjectives into the
VA appropriate NPs (shallowproc leaves them out)
%% Succeeds: 1

4% Side Effects: none

Matthew Purver 151 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

/ base case
fix_adv_adj ([1, []).

% recurse, forcibly combining NP Adv NP -> NP as long as
% second NP starts with an adjective
fix_adv_adj ([np:NP, Adv/rb, np:[Adj/Type | NPTail] | Tailll],
[np:BigNP | Tail2]) :-
adj_type (Type),
1
0
append (NP, [Adv/rb, Adj/Type | NPTaill, BigNP),
fix_adv_adj (Taill, Tail2).

% recurse, forcibly combining Adv NP -> NP as long as
% NP starts with an adjective
fix_adv_adj ([Adv/rb, np:[Adj/Type | NPTaill] | Tailll,
[np:[Adv/rb, Adj/Type | NPTail] | Tail2]) :-
adj_type (Type),

fix_adv_adj (Taill, Tail2).

% otherwise recurse doing nothing
fix_adv_adj ([Head | Taill], [Head | Tail2]) :-
fix_adv_adj (Taill, Tail2).

%% fiz_ez_there /2
4% fiz_exz_there (+RawSentList, ?CookedSentList)

%% Description:

Y4 CookedSentList is the result of removing the

A ezistential "there" from NPs (shallowproc puts it in)
%% Succeeds: 1

A% Side Effects: none

/4 base case
fix_ex_there ([1, []1).

% remove "there'" from its own NP
fix_ex_there ([np:[Ex/ex] | Taill], [Ex/ex | Tail2]) :-
]

fix_ex_there (Taill, Tail2).

% remove a head "there" from NP
fix_ex_there ([np:[Ex/ex | NPTail] | Tailll],
[Ex/ex, np:NPTail | Tail2]) :-
1

fix_ex_there (Taill, Tail2).

4 remove a trailing "there" from NP
g

fix_ex_there ([np:NPListl | Taill], [np:NPList2, Ex/ex | Tail2]

append (NPList2, [Ex/ex], NPListl),
1

fix_ex_there (Taill, Tail2).

Z and otherwise recurse
fix_ex_there ([Head | Taill], [Head | Tail2]) :-
fix_ex_there (Taill, Tail2).

Matthew Purver 152

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

4% rTemove_final_punct/2

4% remove_final_punct(+RawSentList, ?CookedSentList)

4

X% Description:

A CookedSentList is the result of removing a final

VA full stop, ? or ! from the end of RawSentList: 4t

YA doesn’t help us with parsing, and it gets in the way
% of inverting wh-questions

%% Succeeds: 1

X% Side Effects: none

remove_final_punct (RawSent , CookedSent) :-
append (CookedSent, [_/’.’], RawSent),
1

remove_final_punct (RawSent , RawSent).

4% check_verd /2
A% check_verb (+RawSentList, ?CookedSentList)

%% Description:

V4 CookedSentList i¢s the result of ensuring that at

A% least one werdb in the sentence has shallowproc-style
V4 subject information *%%* (BSOLETE ***

4% Succeeds : 1%

%% Side Effects: none

% if there’s a fully detailed verb on the top level, fine
check_verb (Sentence, Sentence) :-

member (_/(_/_), Sentence),
[

% if not, promote a non-detailed verb

check_verb (Sentence, Sentence2) :-
member (Verb/Type, Sentence),
atom_concat (’vb’, _, Type),

subst_first (Verb/Type, Sentence, Verb/(Type/l), Sentence2).

check_verb (Sentence, Sentence).

A% rewrite/2
A% rewrite(?FromList, ?ToList)

%% Description :

% Optional rewriting rules - both arguments are lists
A% of tagged words

4% Succeeds: 0-1

%% Side Effects: none

4 multi-word units

rewrite ([such/_, as/_], [’such_as’/prep]).

rewrite ([for/_, np:[example/_]], [’for_example’/prep]).
rewrite ([for/_, np:[instance/_]], [’for_instance’/prep]).
rewrite ([that/_, is/_], [’that._is’/prep]).

% for nulti-word dets, attach to following NPs
rewrite ([np:[a/_, lot/_], of/_, np:NP], [np:[’a_lot_of’/det | NPJ]).

Matthew Purver 153 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

rewrite ([np:[lots/_], of/_, np:NP], [np:[’lots_of’/det | NP]]).
rewrite ([np:[a/_, few/_], of/_, np:NP], [np:[’a_few_of’/det | NPJ]).
rewrite ([np:[few/_], of/_, np:NP], [np:[’few_of’/det | NP]]).
rewrite ([np:[one/_], of/_, np:NP], [np:[’one_of’/det | NP]]).
rewrite ([np:[each/_], of/_, np:NP], [np:[’each._of’/det | NPJ]]).
rewrite ([np:[some/_], of/_, np:NP], [np:[’some_of’/det | NP1]).

rewrite ([as/_, well/_, as/_], [’as_well_as’/cc]).
rewrite ([and/_, so/_, on/_], [and/cc, np:[’so._on’/npl]).
rewrite ([in/_, order/_, to/_], [’in_order._to’/to]).
rewrite ([in/_, np:[order/_], to/_], [’in_order_to’/to]).
rewrite ([so/_, that/_], [’so_that’/subconj]).

rewrite ([np:[the/det], like/prepl, [np:[the/det, like/nn]]).

rewrite ([np:[most/jjs], Adv/rb]l, [most/rbs, Adv/rb]l).
rewrite ([np:[more/jjrl, Adv/rb]l, [more/rbr, Adv/rbl).

% common mistaggings

Zrewrite([one/cd], [one/pp]).

Zrewrite([np:[one/cd]], [np:[one/pp]]).
rewrite ([sure/jjl, [sure/rb]).

rewrite ([np:[sure/jjl], [sure/rb]).

% remove whqg-words from own NPs (so they can’t get mized up
% in anaphora later)
rewrite ([np:[WhWord]], [WhWord]) :-

whq (WhWord, _, _).

A== oooooooooooooooooooo
4% abbrev/2

%% abbrev(?FromWordOrList, ?ToList)

V2

%% Description:

V4 ToList 4s a list of tagged words corresponding to the

VA expansion of FromWordOrList. This can be either a
V4 tagged single-word abbreviation or a tagged two-word
V4 abbreviation (second word "’s")

A% Succeeds: 0-1
%% Side Effects: none
A it by

Z "n’t" abbreviations (in 0TA’s GG class)
abbrev (Abbrev/Tag, [Verb/Tag, not/rb]) :-
atom_concat (Verb, ’n\’t’, Abbrev),
word (Abbrev, Details),
memberchk (’gg’, Details),
word (Verb, _).

% and ezceptions to this rule

abbrev (’ain\’t’/Tag, [is/Tag, not/rb]).
abbrev (’can\’t’/Tag, [can/Tag, not/rb]).
abbrev (’cannot’/Tag, [can/Tag, not/rb]).
abbrev (’shan\’t’/Tag, [shall/Tag, not/rb]).
abbrev (’won\’t’/Tag, [will/Tag, not/rb]).

% other abbreviations containing "’" (in 0TA’s GF class)
abbrev (Abbrev/Tag, [Word/Tag, Verb]) :-

atom_concat (Word, End, Abbrev),

atom_concat (’\’’, _, End),

v_abbrev (End, Verdb),

word (Abbrev, Details),

memberchk (’gf’, Details),

word (Word, _).

Matthew Purver 154 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

% "’s" abbreviations have been undone by tokenise, then tagged POS
% this actually gets "let’s" wrong, but I can’t see it being a problem
% when Word outside NP (e.g. where’s, here’s)
abbrev ([Word/Tag, np:[’\’s’/pos]], [Word/Tag, is/vbz]) :-
atom_concat (Word, ’\’s’, Cat),
word (Cat, Details),
(
memberchk (’gf’, Details);
memberchk (’gh’, Details)
),
word (Word, _).
% must do the same for wersions where it’s been inclued in an NP
% e.g he’s, it’s, there’s
abbrev (A, [np:[Word/Tagl, is/vbz]) :-
(
A = [np:[Word/Tagl, np:[’\’s’/pos]];
A np:[Word/Tag, ’\’s’/pos]

),

atom_concat (Word, ’\’s’, Cat),

word (Cat, Details),

(
memberchk (’gf’, Details);
memberchk (’gh’, Details)

),

word (Word, _).

A === == mmm e e e
A% v_abbrev/2

%% v_abdbrev (?FromAtom, ?ToWord)

V1

2% Description :

V4 ToWord is the tagged full-word ezpansion of the

V4 common untagged abbreviation for a verb FromAtom
%% Succeeds: 0-1

A% Side Effects: none

% cover all the 0OTA GF class exzamples ezcept "’twas" etc.
v_abbrev(’\’11’, will/md).

v_abbrev(’\’d’, would/md)

v_abbrev(’\’re’, are/vbp).

v_abbrev(’\’ve’, have/vb)

v_abbrev(’\’m’, am/vbp).

stem.pl

A% stem/2
A% stem(?Stem, ?Word)
A% stem(?StemList, ?WordList)

4% Description:

Ve Stem t¢s the (tagged) stem of (tagged) Word. Alternatively
A% StemList, WordList are the sentence/phrase equivalents

4% Succeeds : 1%

4% Side Effects: none

Matthew Purver 155 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

/ base case

stem([1, [1).

% recurse, stemming head

stem([Headl | Taill], [Head2 | Tail2]) :-
stem(Headl, Head2),
stem(Taill, Tail2).

% if tt’s a featured phrase, recurse inside
% (while these don’t exzist to begin with, we may want to
% call stem/2 backwards to return to surface form later)
stem(Type:Feat:Listl, Type:Feat:List2) :-

1

stem(Listl, List2).

% same for unfeatured phrase
stem(Type:Listl, Type:List2) :-
!

stem(Listl, List2).

Z verb: call verb_stem/3
stem(Verb/(Form/Details), Stem/(Form/Details)) :-
1

verb_stem(Verb, Form, Stem).

% verbs not given full _/(_/_) form
stem(Verb/Form, Stem/Form) :-
atom_concat (’vb’, _, Form),

verb_stem(Verb, Form, Stem).

% noun: +f plural, call noun_stem/2
stem(Noun/nns, Stem/nns) :-
',

noun_stem (Noun, Stem).

% moun: in case a plural’s been mistagged, use rules & correct tag
stem(Noun/nn, Stem/nns) :-
noun_stem (Noun, Stem),

\+ Noun = Stem,
1

% adjective: if comparative/superlative, call ad_stem/3
stem(Ad/Form, Stem/Form) :-

member (Form, [jjr, jjs, rbr, rbs]),

1

ad_stem (Ad, Form, Stem).

% if not a phrase, verb or plural noun, leave ¢t alone
stem(Word, Word) :-
\+ is_1list (Word).

A% verb_stem/3
4% verb_stem (?Word, ?Tag, ?Stem)

%% Description:

A% Stem t¢s the stem of Word according to PoS tag Tag.
V4 At least 2 of the arguments must be instantiated
%% Succeeds: 1%

4% Side Effects: none

Matthew Purver 156 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

% verb: <f already the VB form, leave it alone
verb_stem (Verb, vb, Verb) :-
1

% verb: if a modal, leave it alone
verb_stem(Verb, md, Verb) :-
]

% verb: if we can find it <n the irregular list
verb_stem(Verb, Form, Stem) :-
irreg_verb_stem (Verb, Form, Stem),
'. % if irreg_verb_stem/3 succeeds, don’t want later backtracking

% verb: i¢f not, use regular rules
verb_stem(Verb, Form, Stem) :-
reg_verb_stem (Verb, Form, Stem).

4% irreg_verb_stem/3
A% irreg_verb_stem(?WHord, ?Tag, ?Stem)

A% Description :

A% Stem is the stem of irregular wverb Word according
V2 to PoS tag Tag.

VA At least 2 of the arguments musit be instantiated
%% Succeeds: 1%

4% Side Effects: none

% just look up entry: werb (VB,VBP,VBZ,VBG,VBD,VBN).
irreg_verb_stem (Verb, vbp, Stem) :-
irreg_verb (Stem, Verb, _, _, _, _).

irreg_verb_stem (Verb, vbz, Stem) :-

irreg_verb (Stem, _, Verb, _, _, _).
irreg_verb_stem (Verb, vbg, Stem) :-

irreg_verb (Stem, _, _, Verb, _, _).
irreg_verb_stem (Verb, vbd, Stem) :-

irreg_verb(Stem, _, _, _, Verb, _).

irreg_verb_stem (Verb, vbn, Stem) :-
irreg_verb(Stem, _, _, _, _, Verb).

4% reg_verb_stem/3

2% reg_verb_stem (?Word, ?Tag, ?Stem)

s

%% Description :

V4 Stem ts the stem of regular werb Word according to
A PoS tag Tag.

A At least 2 of the arguments must be instantiated
%% Succeeds: 1%

%% Side Effects: none

% regular VBP should not need stemming
reg_verb_stem (Verb, vbp, Verb) :-
word (Verb, _TypeList).

Matthew Purver 157 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

/% otherwise check conjugation type and call reg_stem/3
reg_verb_stem (Verb, Form, Stem) :-

check_verb_type (Verb, FormType),

equiv_form(Form, FormType),

reg_stem(Verb, Form, Stem).

A% std_stem/3
4% std_stem(?Word, ?Tag, ?Stem)

%% Description:

% Stem 1s the stem of regular wverb Word according to
A PoS tag Tag, if the standard rules specified by

V4 ending /2 are followed.

YA At least 2 of the arguments must be instantiated
%% Succeeds: 0-1

A% Side Effects: none

% like type 0: just remove ending to give stem
std_stem(Verb, Form, Stem) :-

ending (Form, Ending),

atom_concat (Stem, Ending, Verb).

A% reg_stem/3
2% reg_stem(?Word, ?Tag, ?Stem)

4% Description:

A% Stem 1s the stem of regular wverb Word according to
Y4 PoS tag Tag, derived by following conjugation type
V4 rules from OTA dictionary.

VA At least 2 of the arguments must be instantiated
4% Succeeds : 1%

%% Side Effects: none

% type 1 VBZ: +es rather than +s

reg_stem(Verb, vbz, Stem) :-
std_stem(Verb, vbz, RawStem),
atom_concat (Stem, ’e’, RawStem),
check_verb_type (Stem, ’1°).

% type 2: stem-final e removed for all ezcept VBZ
reg_stem(Verb, Form, Stem) :-
\+ Form = vbz,
std_stem (Verb, Form, RawStem),
atom_concat (RawStem, ’e’, Stem),
check_verb_type (Stem, ’2’).

% type 3 VBZ: stem-final y replaced by ie
reg_stem(Verb, vbz, Stem) :-
std_stem(Verb, vbz, RawStem),
atom_concat (TmpStem, ’ie’, RawStem),
atom_concat (TmpStem, ’y’, Stem),
check_verb_type (Stem, °3’).

% type 3 VBD, VBP, VBN: stem-final y replaced by 1
reg_stem(Verb, Form, Stem) :-
member (Form, [vbd, vbp, vbn]),
std_stem(Verb, Form, RawStem),
atom_concat (TmpStem, ’i’, RawStem),
atom_concat (TmpStem, ’y’, Stem),

Matthew Purver 158 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

check_verb_type (Stem, ’3°).

% type 4: stem-final letter doubled for all exzcept VBZ
reg_stem(Verb, Form, Stem) :-
\+ Form = vbz,
std_stem(Verb, Form, RawStem),
sub_atom(RawStem, 0, _, 1, Stem),
check_verb_type (Stem, ’4°).

% if we haven’t matched the categories above, just remove ending
reg_stem(Verb, Form, Stem) :-

std_stem(Verb, Form, Stem),

check_verb_type (Stem, _Type).

A
%% check_type/3

A% check_type (?Word, ?CatType, ?ConjType)

VA

%% Description:

V4 CatType t¢s the word category type and ConjType the
A conjugation/inflectional type of word Word as defined
A% in the OTA dictionary

X% Succeeds: 1%

%% Side Effects: none

A e e

check_type (Word, CatType, ConjType) :-
word (Word, TypeList),
member (Type, TypelList),
atom_concat (CatType, ConjType, Type),
atom_length (CatType, 1).

=== oo m———-———----
%% check_verb_type/2

4% check_verb_type(?WHord, ?ConjType)

s

%% Description:

VA ConjType is the conjugation type of wverb Word

A as defined in the 0OTA dictionary

A% Succeeds: 1%

%% Side Effects: none

VA e b

check_verb_type (Word, ConjType) :-
check_type (Word, CatType, ConjType),
verb_cat (CatType).

=== e e oo m———————----
%% check_noun_type/2

A% check_noun_type(?Word, ?ConjType)

VA

%% Description:

V4 ConjType ¢s the inflection type of noun Word

VA as defined in the 0TA dictionary

%% Succeeds: 1%

%% Side Effects: none

A== mmmmm e mm -

check_noun_type (Word, ConjType) :-
check_type (Word, CatType, ConjType),
noun_cat (CatType).

Matthew Purver 159 October 9, 2000

M

.Phil. CSLP Project

Simplistic Question Answering

rx
V1
V7
V1
V1
i
Y
i
VA
rx

check_ad_type /2
check_ad_type (?WHord, ?ConjType)

Description :

ConjType 4s the inflection type of adjective/adverd

Word as defined +n the 0TA dictionary
Succeeds : 1%
Side Effects: none

check_ad_type (Word, ConjType) :-

V4
i
V1
V1
7
V1
V1
V2
i

equiv_form (vbz,
equiv_form (vbg,
equiv_form (vbd,
equiv_form (vbm,

Je

i
V74
i
Y
V1
7
V1
V1
rx

verb_cat(g
verb_cat(h
verb_cat (i
verb_cat (j

nr
Y
i
V74
A
V1
V7
Y
rr

noun_cat (k
noun_cat (1
noun_cat(m
noun_cat(n

check_type (Word, CatType, ConjType),

ad_cat (CatType).

equiv_form/2
equiv_form (?Tag, ?Atom)

Description :

Atom is the equivalent OTA code for PoS tag Tag

Succeeds : 1%
Side Effects: none

a0 o

quiv_form(wbp, e).

verb_cat /1
verb_cat (?Atom)

Description :

Atom is the OTA code for a wverb type
Succeeds : 1%
Side Effects: none

noun_cat /1
noun_cat (2Atom)

Description :

Atom is the OTA code for a noun type
Succeeds : 1%
Side Effects: none

N~

M

atthew Purver 160

October 9, 2000

M.Phil. CSLP Project

Simplistic Question Answering

A% ad_cat/1

A% ad_cat(?2A4tom)

i

%% Description:

A4 Atom 1is the
%% Succeeds: 1%

%% Side Effects:

== = o

ad_cat (o).
ad_cat (p).

%% ending/2

%% ending (?Tag,
A

%% Description:

A Atom 1is the
A% Succeeds : 1%

%% Side Effects:

% verb endings
ending (vbz, ’s’

0TA code for a adjective/adverdb type

?Atom)

regular ending for the PoS tag Tag

== m o

).

ending (vbg, ’ing’).

ending (vbd, ’ed’).
ending (vbn, ’ed’).
ending (vbp, ’ed’).

% adjective/adverb endings

ending (
ending (

i,
iis,

‘r’).
’st?).

ending (rbr, ’r’

ending (rbs, ’st’

s

4% noun_stem/2

).
).

A% nmoun_stem (?Noun, ?Stem)

i
%% Description:
V7 Stem 1is the

singular of the plural noun Noun

VA according to OTA dictionary <info

%% Succeeds: 1%
4% Side Effects:

== oo

% type 6: +s
noun_stem (Noun,

none

Stem) :-

atom_concat (Stem, ’s’, Noun),
check_noun_type (Stem, ’6°).

% type 7: +es
noun_stem (Noun,

Stem) :-

atom_concat (Stem, ’es’, Noun),
check_noun_type (Stem, ’7°).

7 type 8: +y -> +ies - forwards version

noun_stem (Noun,

Stem) :-

var (Stem),
atom_concat (TmpStem, ’ies’, Noun),
atom_concat (TmpStem, ’y’, Stem),

Matthew Purver

161

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

check_noun_type (Stem, ’8°).

% type 8: +y -> +ies - backwards version
noun_stem (Noun, Stem) :-
var (Noun),
atom_concat (TmpStem, ’y’, Stem),
atom_concat (TmpStem, ’ies’, Noun),
check_noun_type (Stem, ’8°).

% type 9: no change
noun_stem (Noun, Noun) :-
check_noun_type (Noun, ’9’).

% irregular type I: try various possibilities - forwards
noun_stem (Noun, Stem) :-
var (Stem),
plur_suffix (Sing, Plur),
atom_concat (TmpStem, Plur, Noun),
atom_concat (TmpStem, Sing, Stem),
check_noun_type (Stem, ’i’).

% irregular type I: try wvarious possibilities - backwards
noun_stem (Noun, Stem) :-
var (Noun),
plur_suffix (Sing, Plur),
atom_concat (TmpStem, Sing, Stem),
atom_concat (TmpStem, Plur, Noun),
check_noun_type (Stem, ’i’).

% otherwise look up in irregular dictionary
noun_stem (Noun, Stem) :-
irreg_noun (Stem, Noun).

A% plur_suffiz /2
A% plur_suffiz (?Sing, ?Plur)

%% Description:

A Sing 1s the singular equivalent ending of the plural
V4 Plur - these are some regular types NOT described

s in the OTA dictionary

%% Succeeds: 1%

%% Side Effects: none

plur_suffix (Sing, Plur) :-
nth(N, [’'men’, ’ves’, ’a’ , ’i’ , ’ae’, ’es’, ’eaux’,
’ices’, ’ices’, ’ves’, ’a’ , ’i’, ’ice’ ,
’eet’, ’eeth’, ’children’], Plur),
nth(N, [’man’, ’f’ , um’, ’us’, ’a’ , ’is’, ’eau’ ,
rix? , ‘ex’ , 'fe’ , ’on’, ’0’, ’ouse’,
’oot’, ’ooth’, ’child’], Sing).

A% ad_stem/2
A% ad_stem(?4d, ?Stem)

%% Description:

% Stem is the standard form of the comparative/superlative
A% adjective/adverbd Ad according to 0TA dictionary info

4% Succeeds : 1%

A% Side Effects: none

Matthew Purver 162 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

% type B: +r, +st

ad_stem (Ad, Form, Stem) :-
std_stem(Ad, Form, Stem),
check_ad_type (Stem, ’b’).

% type C: +er, +est - forwards

ad_stem (Ad, Form, Stem) :-
var (Stem),
std_stem(Ad, Form, TmpStem),
atom_concat (Stem, ’e’, TmpStem),
check_ad_type (Stem, ’c’).

% type C: +er, +est - backwards
ad_stem (Ad, Form, Stem) :-
var (Ad),

check_ad_type (Stem, ’c’),
atom_concat (Stem, ’e’, TmpStem),
std_stem(Ad, Form, TmpStem).

% type D: +y -> +ier, +iest - forwards

ad_stem (Ad, Form, Stem) :-
var (Stem),
std_stem(Ad, Form, TmpSteml),
atom_concat (TmpStem2, ’ie’, TmpSteml),
atom_concat (TmpStem2, ’y’, Stem),
check_ad_type (Stem, ’d’).

% type D: +y -> +ier, +iest - backwards
ad_stem (Ad, Form, Stem) :-
var (Ad),

check_ad_type (Stem, ’d’),

atom_concat (TmpStem2, ’y’, Stem),
atom_concat (TmpStem2, ’ie’, TmpSteml),
std_stem(Ad, Form, TmpSteml).

% irregular comparatives

ad_stem (Ad, Form, Stem) :-
atom_concat (_, ’r’, Form),
irreg_ad (Stem, Ad, _).

% irregular superlatives
ad_stem (Ad, Form, Stem) :-
atom_concat (_, ’s’, Form),

irreg_ad (Stem, _, Ad).

io.pl

4% Contains: predicates for shallow processor interface

4% call_tagger /2
2% call_tagger (+String, -Stream)

%% Description:

VA Calls ezternal tagger and opens stream to read
V4 the result. String can be either a filename containing
V44 a sentence, or the sentence itself

%% Succeeds: 1
%% Side Effects: none

Matthew Purver 163 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

% calls ./shallowproc and pipes to Stream

call_tagger (String, Stream) :-
build_command_string (String, Command),
popen (Command, read, Stream).

4% build_command_string/2
A% build_command_string (+String, ?CommandString)

%% Description:

A Creates CommandString to call shallowproc, piping
A% String 4in (if it’s a filename) or with String

V4 as a command-line argument (if it’s a sentence)
%% Succeeds: 0-1

2% Side Effects: none

% if argl is a filename, pipe into shallouwproc
build_command_string (FileName, Command) :-
file_exists (FileName),
1

atom_concat (’./shallowproc .sh.<’, FileName, Command

/4 otherwise assume it’s a sentence
build_command_string (Text, Command) :-
atom_concat (’./shallowproc.sh."’, Text, Tmp),
atom_concat (Tmp, ’"’, Command).

4% get_sentence /2
%% get_sentence (+FileName, ?SentList)

%% Description :

V44 Opens file FileName and reads in the tagged sentence
V4 into the Prolog list SentList

%% Succeeds: 0-1

%% Side Effects: none

get_sentence (FileName, Sentence) :-
open(FileName, ’read’, Stream),
read_sentence (Stream, Sentence),
close (Stream),

A% read_sentence /2
A% read_sentence (+FileName, ?SentList)

%% Description:

VA Opens file FileName and reads in the tagged sentence
A into the Prolog list SentList

%% Succeeds: 0-1

%% Side Effects: none

% base case: stop at end of file
read_sentence (Stream, []) :-
at_end_of_stream (Stream).

% base case: stop at end of bracketed phrase
read_sentence (Stream, []) :-

Matthew Purver 164

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

peek_code (Stream, Code),
rbracket (Code),
get_next_word (Stream, _).

% if start of bracketed phrase, get type,
% recurse on phrase and then recurse on rest of sentence
read_sentence (Stream, [Type:List | Taill]) :-
peek_code (Stream, Code),
lbracket (Code),
get_next_word (Stream, Tmp),
check_for_type (Tmp, Type),
read_sentence (Stream, List),
read_sentence (Stream, Tail).

% if a word, get it, and the tag, and recurse
read_sentence (Stream, [Word/Tag | Tail]) :-
get_next_word (Stream, Word),
get_next_word (Stream, RawTag),
convert_verb_tag (RawTag, Tag),

read_sentence (Stream, Tail).

%% check_for_type/2
A% check_for_type(+String, ?Typedtom)

%% Description :

VA If we’re using shallowproc’s more advanced features,
YA find the CNP or NP marker - otherwise assume NP

%% Succeeds: 0-1

A% Side Effects: none

% just (7 -> NP
check_for_type (’(’, np).

% otherwise get type

check_for_type (Tmp, Type) :-
atom_concat (’(’, Type, Tmp),
\+ Type = ’’°.

%% convert_verb_tag/2
4% convert_verb_tag(+String, ?CompoundTag)

%% Description:

VA If we’re using shallowproc’s more advanced features,
V4 convert e.g. "VBZ*Verb-1-NormalSubj" -> (wbz/1)

%% Succeeds: 1

4% Side Effects: none

% if not a complez wverb tag, do nothing
convert_verb_tag (NonVerbTag, NonVerbTag) :-

\+ sub_atom(NonVerbTag, _, _, _,
% if it <s, pull out the subject pos <info
convert_verb_tag (Raw, Tag/Subj) :-

name (Raw, RawCodes),

asterisk (Star),

append (TagCodes, [Star | _], RawCodes),

name (Tag, TagCodes),

minus (Minus),

append (_, [Minus, SubjCode, Minus | _], RawCodes),

Matthew Purver 165 October 9, 2000

M.Phil. CSLP Project

Simplistic Question Answering

name (Subj, [SubjCodel]).

A

%% get_nezt_word /2

4% get_nezt_word (+Stream, ?Word)

s

%% Description :

A Gets the next word Word from Stream
A% Succeeds: 0-1

%% Side Effects: none

== oo e

get_next_word (Stream, Word) :-
get_next_word_code (Stream, Code),
name (Word, Code).

e

2% get_nezt_word_code/2

4% get_next_word_code(+Stream, ?WordCodeList)
7

%% Description:

A Gets the next word’s ASCII representation
V2 WordCodeList from Stream

%% Succeeds: 0-1

A% Side Effects: none

== oo e

% base case: stop if space
get_next_word_code (Stream, []) :-
peek_code (Stream, Code),
space (Code),
get_code (Stream, Code).

% base case: stop if newline
get_next_word_code (Stream, []) :-
peek_code (Stream, Code),
newline (Code),
get_code (Stream, Code).

% base case: stop <f CR/LF ("bracket" uses this)
get_next_word_code (Stream, []) :-

peek_code (Stream, Codel),

carriage (Codel),

get_code (Stream, Codel),

peek_code (Stream, Code2),

newline (Code2),

get_code (Stream, Code2).

% otherwise get lower-case ASCII char & recurse
get_next_word_code (Stream, [Code | Word]) :-
get_lower_code (Stream, Code),

get_next_word_code (Stream, Word).

R

4
4% get_lower_code/2

4% get_lower_code(+Stream, ?Code)

4

%% Description:

4 Code is the lower-case version of the nezt
V4 ASCII representation from Stream

%% Succeeds: 0-1

4% Side Effects: none

char’s

Matthew Purver 166

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

get_lower_code (Stream, Code) :-
get_code (Stream, RawCode),
lower (Code, RawCode).

A mm e e e e
A% lower/2

A% lower (+Code, ?LowerCode)

A

%% Description:

i% LowerCode 1is the lower-case version of the ASCII code
A Code

%% Succeeds: 0-1

4% Side Effects: none

A== mmmmmmmmm e -

% if “t’s not lower-case alphabetic, do nothing
lower (L, L) :-

L > 90;

L < 65.

% if <t 4s, add 32
lower (Lower, Upper) :-

Upper < 91,

Upper > 64,

Lower is Upper + 32.
b
4% List of ASCII codes for wuseful characters
A== =S s ————————-----
space (32).

carriage (13).
newline (10).
questmark (63).
exclmark (33).
fullstop (46).
comma (44).
semicolon (59).
colon(58).
lbracket (40).
rbracket (41).
asterisk (42).
minus (45).

Matthew Purver 167 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

B.3.5 Miscellaneous
debug.pl

e
%% debug.pl

i

A% Contains: predicates for toggling debug info display
A== mmmm e

:- dynamic no_debug/1.

%% debug_on/0

%% Description :

Y4 Turns debug display on

%% Succeeds: 1

%% Side Effects: retracts all no_debug/l1 clauses

debug_on :-

retractall (no_debug(_)).

VA A e
2% debug_off/0

V7

%% Description:

V4 Turns debug display off

%% Succeeds: 1

%% Side Effects: asserts a general no_debug/l1 clause

== e —mm—m -

debug_off :-
assert (no_debug(_)).

% turn debugging off as default
:- debug_off.

=== e e ———————————-- -
X% no_debug/1

%% no_debug (?PredName)

4

%% Description :

4 If true, the display predicate display_ (PredName)
s will have no effect

4% Succeeds: 0-1

%% Side Effects: none

% no_debug (trace).
% no_debug (struct).
% no_debug (answer).
% no_debug (simple).

display.pl

A== == oo ————————-—-----

4% display.pl

V2

4% Contains: predicates for displaying results & debug info
A== = e ——om———o———----

Matthew Purver 168 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

%% display_simple/2
4% display_simple(+TextAtom, +ThingToDisplay)

%% Description:

VA Displays simple (no phrase markers/tags) version
V4 of anything, with TeztAtom displayed first as info.
%% Succeeds: 1

%% Side Effects: none

% if no_debug set, do nothing
display_simple (_, _) :-
no_debug (simple),
1

% call strip_markers /2 and print result
display_simple (Text, A) :-
strip_markers (A, Al),
Indent = 10,
format (""n"p:"*|"p", [Text, Indent, Al1l]),
1

% ensure always succeeds
display_simple (_, _) :-
print (’display_simple _problem’).

%% display_result/4
4% display_result(+Message, +Filename, +Ans, +Highlight)

%% Description:

V44 Displays filenames and associated answers
A% Succeeds: 1

%% Side Effects: none

display_result (Message, File, A, H) :-

strip_markers (A, Al),

strip_markers (H, H1),

Indentl = 2,

Indent2 = 13,

Indent3 = 25,

format (""n"*|“p:"x|"p~x|“p~n~*|"p",
[Indentl , Message, Indent2, File,
Indent3, Al, Indent3, H1]).

% ensure always succeeds
display_result (_, _, _, _) :-
print (>display_result _problem’).

%% display_answer/0

s

%% Description:

% Displays current answer and text for highlighting
4% Succeeds: 1

%% Side Effects: none

% if no_debug set, do nothing
display_answer :-

Matthew Purver 169 October 9, 2000

M.Phil. CSLP Project

Simplistic Question Answering

no_debug (answer),
1

% otherwise display
display_answer :-
current_answer (A),
strip_markers (A, Al),
Indent = 2,
format ("“nAnswer :"n"*|"p~n", [Indent, Al]
current_answer_list (H),
strip_markers (H, H1),
format ("“nHighlight :"n"*|~“p~n", [Indent,

% ensure always succeeds
display_answer :-
print (’display_answer _problem’).

%% display_match /3
4% display_match (+A, +B, +RuleNumber)

%% Description:

VA Displays debug <information about one matching
4% Succeeds: 1

%% Side Effects: none

% display
display_match (A, B, Rule) :-
strip_markers (A, A2),
strip_markers (B, B2),
Indent = 2,
format (""n~*| " p_matches ."p_(by_rule_"p)",
[Indent, A2, B2, Rulel]),

% ensure always succeeds
display_match (_, _, _) :-
print (’display_match _problem’).

%% display_trace /2
4% display_trace (+Message, +TracelList)

%% Description:

V4 Displays debug information about a whole list
A matching rules

%% Succeeds: 1

4% Side Effects: none

% if no_debug set, do nothing
display_trace(_, _) :-

no_debug (trace),
1.

% otherwise display message and call display_trace
display_trace (Text, Trace) :-

nl, nl, print(Text),

display_trace (Trace).

% ensure always succeeds
display_trace (_, _) :-

),

H1]).

rule

of

/1

Matthew Purver 170

October 9, 2000

M

.Phil. CSLP Project

Simplistic Question Answering

V2
V1
V1
i
V2
i
i
Y
i
V2

%

print (’display_trace _problem’).

display_trace /1
display_trace (+Tracelist)

Description :
Displays debug <nformation about a whole list of
matching rules

Succeeds : 1

Side Effects: none

base case

display_trace ([]) :-
',

% recurse, calling display_match /3
display_trace ([[A, B, Rule] | Taill) :-

%

display_trace (

nr
Y
i
i
V2
i
A
VA
rr

%

display_match (A, B, Rule),
display_trace (Tail),
1

ensure always succeeds
-) -
print (’display_trace _problem’).

display_struct/1
display_struct (+Struct)

Description :

Nicely displays a sentence, structure or phrase
Succeeds : 1
Side Effects: none

if no_debug set, do mnothing

display_struct (_) :-

4

no_debug (struct),
.

call display_struct/2 with initial indent of zero

display_struct (S) :-

%

nl,
display_struct (S, 2),
1

ensure always succeeds

display_struct (_) :-

4
Y
i
V1
i
V2
i
7
rr

print (’display_struct .problem’).

display_struct/2
display_struct(+Struct, +Indent)

Description :

Nicely displays a sentence, siructure or phrase
Succeeds : 1
Side Effects: none

Matthew Purver 171

October 9, 2000

M.Phil. CSLP Project

Simplistic Question Answering

remove marker & treat as list
Tab) :-

Tab).

/ structure:
display_struct (s:S,
display_struct (S,

% base case

display_struct ([1, _Tab).

% recurse, displaying whole structures nicely

display_struct ([s:S | Taill], Tab) :-
display_struct (S, Tab),

display_struct (Tail, Tab).
% recurse, printing VGs whole
display_struct ([vg:VG | Taill, Tab) :-
((Tab = 2) => print(’*_.°); tab(Tab)),
print (vg:VG),
nl,
display_struct (Tail, Tab).

/ recurse,
display_struct ([Type:Sem:List|Taill],
member (Type, [ng, ppl),

displaying NGs and PPs nicely
Tab) :-

((Tab = 2) -> print(’*.°); tab(Tab)),
print (Type:Sem),

print (’:’),

nl,

NewTab is Tab + 2,

display_struct (List, NewTab),
display_struct (Tail, Tab).

else out whole
Tab) :-
YL)5

% recurse, printing anything
display_struct ([Head|Taill],
((Tab = 2) -> print(
print (Head),
nl,
display_struct (Tail, Tab).
% ensure always succeeds
display_struct (_, _) :-
print (’>display_struct _problem’).

lists.pl

%% lists.pl
A
%% Contains :

miscellaneous list tools

%% strip_markers /2

4% strip_markers (+SentList, ?CleanSentList)
%% Description:

A CleanSentList
Y4 markers,
A SentList
A% Succeeds: 0-1
%% Side Effects:

% remove type markers from structure
% (if featured, we’ll recurse here anyway)
strip_markers (_Type:Listl, List2) :-

1

tab(Tab)),

is the result of removing all phrase
semantic features and PoS tags from

or (unfeatured) phrase

Matthew Purver 172

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

strip_markers (Listl, List2).

% remove tags from words

strip_markers (Word/_Type, Word):-
1

% leave words alone
strip_markers (Word, Word) :-

\+ is_list (Word),
1.

7 base case
strip_markers ([J, []).

/4 recurse, on both head and tail
strip_markers ([Headl | Taill], [Head2 | Tail2]) :-
strip_markers (Headl, Head2),

strip_markers (Taill, Tail2),
1.

% if all else fails, return as s
strip_markers (A, A).

%% strip_punct /2
4% strip_punct (+SentList, ?CleanSentlList)

%% Description:

A CleanSentList ¢s the result of removing all
VA punctuation marks from SentList

%% Succeeds: 0-1
%% Side Effects: none

/ base case
strip_punct ([1, [1).

% recurse, removing a punctuation char
strip_punct ([_P1/P2 | Taill], Tail2) :-
punct (P2),
1

strip_punct (Taill, Tail2).

% recurse, checking within phrases (with semantic features)

strip_punct ([Type :Feat:Listl | Taill], [Type:Feat:List2 | Tail2]) :-
1
0

strip_punct (Listl, List2),
strip_punct (Taill, Tail2).

% recurse, checking within phrases (without features)

% or structures

strip_punct ([Type:Listl | Taill], [Type:List2 | Tail2]) :-
',

strip_punct (Listl, List2),

strip_punct (Taill, Tail2).

% recurse, leaving anything else alone
strip_punct ([Head | Taill], [Head | Tail2]) :-
strip_punct (Taill, Tail2).

%% punct/1
%% punct (?PunctChar)

Matthew Purver 173 October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

V3

%% Description :

A Succeeds if PunctChar is a possible punctuation-

% type PoS tag

%% Succeeds: 1%

4% Side Effects: none

A== m = m e e e e e -

% .1? get . tag
punct (’.7).

% ;:- get : tag
punct (’:’).

%, gets , tag
punct (’,’).

X% subst_first /4
A% subst_first (?4, +Listl, +B, ?List2)

%% Description:

V4 List2 is the result of replacing the first instance
VA of A in Listl with B. Like substitute/4 but only

VA changes the first instance, and fails if no <nstance
VA ecists

A% Succeeds: 0-1
%% Side Effects: none

4 subst A with B
subst_first (A, [A | Taill, B, [B | Taill]).

% otherwise recurse until we find A - no [] case!
subst_first (A, [C | Taill], B, [C | Tail2]) :-
\+ A =¢C,

subst_first (A, Taill, B, Tail2).

%% tree_member /2
4% tree_member (24, ?List)

%% Description :

V4 Succeeds if A is a member of List, or a member of
A something in the tree of List

%% Succeeds: 1%

%% Side Effects: none

% true <f it’s a member of a list
tree_member (A, B) :-
member (A, B).

% true if it’s a tree_member of a member of a list
tree_member (A, B) :-
member (C, B),
tree_member (A, C).
% true <f it’s a tree_member of a phrase or structure
tree_member (A, _Type:List) :-
tree_member (A, List).

Matthew Purver 174

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

A% tree_select /3
A% tree_select (?A4, +Listl, ?List2)

%% Description:

V4 List2 is the result of removing an instance of 4
Y4 from within the tree of Listl

%% Succeeds: 0-1

4% Side Effects: none

% remove a member of a list
tree_select (X, [X | T], T).

% remove from a struct or (unfeatured) phrase within a list
tree_select (X, [Type:Listl | T], [Type:List2 | T]) :-
tree_select (X, Listl, List2).

% remove from a (featured) phrase within a list
tree_select (X, [Type:Feat:Listl | T], [Type:Feat:List2 | T]) :-
tree_select (X, Listl, List2).

% or recurse to find another instance

tree_select (X, [H | T1], [H | T2]) :-
tree_select (X, T1, T2).

4% phrase_select /3
4% phrase_select (?4, +Phrasel, ?Phrase2)

%% Description :

Y4 Phrase2 is the result of remowving an instance of 4

% from within the tree of Phrasel. If this turns out

in to be a phrase with only one member, the outer phrase
A envelope is removed

A% Succeeds: 0-1
%% Side Effects: none

% call tree_select/3 and just return a single element
phrase_select (X, _T1:_F1l:Listl, T2:L2) :-
tree_select (X, List1, [T2:L2]).

% otherwise just call tree_select/3 on list
phrase_select (X, Type:Feat:Listl, Type:Feat:List2) :-
tree_select (X, Listl, List2),
\+ List2 = [_].

X% tree_subst /4
A% tree_subst (?A, +Listl, ?B, ?List2)

4% Description:

V4 List2 ¢s the result of replacing all instances
% of A within the tree of Listl with B. Like
VA substitute /4 but deals with instances at all tree levels

%% Succeeds: 0-1
4% Side Effects: none

% look within a structure or (unfeatured) phase
% (if featured, we’ll recurse here anyway)
tree_subst (A, Type:ListA, B, Type:ListB) :-

Matthew Purver 175 October 9, 2000

M.Phil. CSLP Project

Simplistic Question Answering

tree_subst (A, ListA, B, ListB).
/ base case
tree_subst (_A, [], _B, [I1).
% remove A and recurse
tree_subst (A, [A | LA], B, [B | LB]) :-

tree_subst (A, LA, B, LB).

% recurse within a structure or (unfeatured) phrase and recurse

% (if featured, we’ll recurse on the top clause anyway)
tree_subst (A, [Type:ListA | LA], B, [Type:ListB | LB]) :-
1
s
tree_subst (A, ListA, B, ListB),
tree_subst (A, LA, B, LB).

/7 otherwise recurse
tree_subst (A, [C |
tree_subst (A,

doing nothing
LAl, B, [C | LB]) :-
LA, B, LB).

%% flatten_np/2
4% flatten_np (+RawNP, ?CookedlNP)

%% Description:

A CookedNP 1is the result of flattening the structure
A% of RawNP (content of sub-NPs are put on top level -
VA PPs unaffected). Interface to flatten_nps/2

%% Succeeds: 1
%% Side Effects:

/% remove phrase marker & features, call flatten_nps/2
flatten_np (ng:Feat:List, ng:Feat:FlatList) :-
flatten_nps (List, FlatList).

%% flatten_nps/2
%% flatten_nps (+RawNPList, ?CookedNPList)

%% Description :

V4 CookedNPList 4is the result of flattening the structure
s of RawlNPList (content of sub-NPs are put on top level -
s PPs unaffected)

%% Succeeds: 1
%% Side Effects:

7 base case
flatten_nps ([1, []).

% recurse on both head & tail, then append result
flatten_nps ([Head | Taill], Result) :-
flatten_nps (Head, FlatHead),
flatten_nps (Taill, FlatTail),
append (FlatHead, FlatTail, Result).
% simple NP is already flat - just take list
flatten_nps (np:_:List, List).

% complez NP needs to be flattened

Matthew Purver 176

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

flatten_nps (ng:_:List, FlatList) :-
flatten_nps (List, FlatList).

% any word, PP etc gets returned as list (so it can be appended)
flatten_nps (X, [X]) :-

\+ is_list (X),

\+ np(X).

A% end_member /2
A% end_member (?A, ?List)

%% Description:

V4 Just like member/2, succeeds <f A %is a member of List.
in However, if A is uninstantiated, it finds the members

VA in the opposite order: RH end first
4% Succeeds : 1%
4% Side Effects: none

end_member (A, List) :-
reverse (List, RList),
member (A, RList).

A% all_members /2
A% all_members (24, ?List)

4% Description:

VA Succeeds if A can be instantiated to match all
Y4 members of List. A ¢s copted at each recursion level
VA so does not become instantiated :

4 all_members (_/z, [a/z, b/z, c/z]) will succeed
A% Succeeds: 1%
4% Side Effects: none

/ base case
all_members (_A, []1).
% recurse, checking head matches (without instantiating)
all_members (A, [B | Taill]) :-

copy_term(A, B),

all_members (A, Tail).

%% nearest/4
A% nearest (+N, ?A, +List, ?Pos)

%% Description:

V4 Pos is the nearest position in List to N which
VA can be instantiated to A. A becomes instantiated if

4 not already.

VA nearest (3, vwg:VG, [vg:[a], =, y, vg:[b]], Pos)
A% -> Pos = 4, VG = [b]

%% Succeeds: 1%

%% Side Effects: none

nearest (N, A, List, Pos) :-
findall (M, nth(M, List, A), PosList),
diff(N, PosList, RemList),

Matthew Purver 177 October 9, 2000

M.Phil. CSLP Project

Simplistic Question Answering

min_list (RemList , Min),
nth(Tmp, RemList, Min),
nth(Tmp, PosList, Pos),
nth(Pos, List, A). / to instantiate A4

VA A e
44 diff/3

A% diff(+N, +Listl, ?List2)

VA

%% Description:

A List2 is the absolute walue of the result of

V4 subtracting N from each member of Listl

%% Succeeds: 0-1

%% Side Effects: none

VA e

/7 base case
diff (_Xx, [1, [1).

% recurse subtracting X

diff (X, [Head | Taill], [Diff | Tail2]) :-
Tmp is Head - X,
abs (Tmp, Diff),
diff (X, Taill, Tail2).

A b e e e TP
%% abs/2

2% abs (+N, ?X)

%

%% Description:

VA X is the absolute walue of N

%% Succeeds: 0-1

4% Side Effects: none

A mmmm

% if X positive, leave alone
abs(X, X) :-
X >= 0.

% if mnegative, return positive equivalent
abs(X, Y) :-

X <0,

Y is 0 - X.

VA A
%% subst_nth/4

A% subst_nth (+N, ?X, +Listl, ?List2)

s

%% Description:

Y4 List2 ¢s the result of replacing the Nth member of
4% Listl with X

4% Succeeds: 0-1

4% Side Effects: none

Y A

% reverse and call subst_nth_r/j

subst_nth(N, X, In, Out) :-
reverse (In, RevIn),
subst_nth_r (N, X, RevIn, RevOut),
reverse (RevOut, Out).

Matthew Purver 178

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

Y A R R R R R
A% subst_nth_r /4

A% subst_nth_r (+N, ?X, +Listl, ?List2)

s

%% Description:

V4 List2 ¢s the result of replacing the Nth member

A (counting from RH end!) of Listl with X. Does the
V4 work for subst_nth/4

%% Succeeds: 0-1

X% Side Effects: none

Y A itk bbbl bt

% if not there yet, keep recursing

subst_nth_r (N, X, [Head | Taill], [Head | Tail2]) :-
length (Taill, T),
T >= N,
subst_nth_r (N, X, Taill, Tail2).

% if tail is N-1 long, make the substitution
subst_nth_r (N, X, [_Head | Taill], [X | Taill]) :-
length (Tail, T),
T is N - 1.

Y e et

%% append//

%% append(?Listl, ?List2, ?List3, ?List123)

s

4% Description:

V4 List123 ¢s the result of appending Listl, List2, List3
V4 (like append/3).

%% Succeeds: 0-1

4% Side Effects: none

Y A ittt bl bbbl bt

% if ABC instantiated, use it first
append (A, B, C, ABC) :-
nonvar (ABC),
append (Tmp, C, ABC),
append (A, B, Tmp).

% if ABC uninstantiated, use %t last
append (A, B, C, ABC) :-

var (ABC),

append (A, B, Tmp),

append (Tmp, C, ABC).

b
4% reverse_append/3

4% reverse_append(-Listl, -List2, +List3)

s

%% Description:

V4 Just like append/3 but will start with Listl = List3,
V4 List2 = [] and then fill List2, rather than the

A other way around

%% Succeeds: 1%

4% Side Effects: none

A e it iy
reverse_append (A, B, AB) :-

var (A),

var(B),

is_list (AB),
reverse (AB, BA),

Matthew Purver 179

October 9, 2000

M.Phil. CSLP Project Simplistic Question Answering

append (RB, RA, BA),
reverse (RB, B),
reverse (RA, A).

A A e
4% check_slash /2

A% check_slash (+Stringl, ?String2)

i

%% Description :

A String2 is Stringl with a ’/’ directory separator
VA appended if it didn’t already have one

%% Succeeds : 0-1

4% Side Effects: none
Ve

check_slash(S, S8) :-

atom_concat (_, ’/’, S),
1.

check_slash(S1, S2) :-
atom_concat (S1, ’/’, 82).

prolog.pl

A= m e e e e
%% prolog.pl

2

%% Contains: replacements for built-in predicates that
i are not available in older SICStus wversions

D et

A e

4% atom_concat /3

A% atom_concat (?Atoml, ?Atom2, ?Atom3)

%

%% Description:

% Atom3 is the result of concatenating Atoml and Atom2.
VA Either Atom3 or both Atoml, Atom2 must be instantiated
A% Succeeds : 0-1

%% Side Effects: none

A e i bkt bl b

% if AB uninstantiated
atom_concat (A, B, AB) :-
atom(A),
atom(B),
name (A, ACodes),
name (B, BCodes),
append (ACodes, BCodes, ABCodes),
name (AB, ABCodes).

% if AB instantiated
atom_concat (A, B, AB) :-
atom(AB),
name (AB, ABCodes),
append (ACodes, BCodes, ABCodes),
name (A, ACodes),
name (B, BCodes).

A== m = m o m oo
%% peek_code/2

%% peek_code (+Stream, ?Code)

A%

Matthew Purver 180 October 9, 2000

M.Phil. CSLP Project

Simplistic Question Answering

%% Description :

VA Interface for the renamed peek_char/2
%% Succeeds: 0-1

%% Side Effects: none

= mmm o mmmmomeoeooooooooooooooooo-

peek_code (Stream, Code) :-
peek_char (Stream, Code).

A== mmmmm o smomoeeoooooooooooooooooooo-

%% get_code/2

%% get_code(+Stream, ?Code)

A

%% Description:

in Interface for the renamed get0/2
%% Succeeds: 0-1

A% Side Effects: none

B mmm e mmmmmemeeoooooooooooooooo-

get_code (Stream, Code) :-
get0(Stream, Code).

e b L

4% sub_atom/5

A% sub_atom(+Atoml, ?Before, ?Length, ?After,

VA
%% Description:

2Atom2)

A% Atom2 is a sub-atom of Atoml, with length Length.

A Before is number of chars before Atomz2,
V4 number of chars after. Atoml must be

%% Succeeds: 0%
%% Side Effects: none

= mmmm e mmmmoeeeoooooooooooooooooo-

sub_atom(A1, B, L, A, A2) :-
atom(A1l),
name (A1, Al1Codes),

append (BCodes, A2Codes, ACodes, AlCodes

length (BCodes, B),
length (A2Codes, L),
length (ACodes, A),
name (A2, A2Codes).

A== mmmmmmm o moooeeeooooooooooooooooooooo-

%% atom_length /2

4% atom_length (+Atom, ?Length)

V1

%% Description :

A Length is the length in chars of Atom
%% Succeeds: 0-1

A% Side Effects: none

Bfmmm e ssmmseseeeoooeooooooooo

atom_length (A, L) :-
atom(A),
name (A, ACodes),
length (ACodes, L).

After <s
instantiated

),

Matthew Purver 181

October 9, 2000

