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Abstract. Spoken dialogue systems have to deal with imperfect
speech recognition. We describe how we address the resulting robust-
ness challenges both on the interpretation side (via combining com-
plementary parsing and classification techniques) and on the gener-
ation side (via robustness to ill-formed generation input, and use of
clarification questions). We describe empirical results obtained from
a user study involving 20 subjects.

1 Introduction
This paper explores techniques that address robustness challenges in
an implemented spoken dialogue system. As we will show, decisions
about robustness issues on the interpretation side impact the robust-
ness challenges faced by the generator.

The dialogue system uses an domain-independent architecture that
allows one to tailor it to different tasks. One of its tasks, the one we
are focussing on in this paper, is to collaboratively compose a search
query with the user in information seeking dialogues, for example
in restaurant selection tasks. In other words, logical forms are con-
structed interactively, not as a result of one-shot user queries.

In a very wide sense, our dialogue strategies themselves lead to
increased ‘robustness’ in terms of successful database queries (i.e.
queries with non-empty result sets): rather than just reporting that the
query returned no matches, our system actively relaxes constraints
and encourages the user to refine the query further if the result set is
large. However, in this paper we concentrate on the more low-level
details of how to process speech recognition (ASR) input and how to
robustly generate appropriate system responses.

In the next section, we give a system overview. We describe inter-
pretation and generation components in sections 3 and 4. In section 5
we discuss robustness issues and section 6 presents evaluation results
from a user study. This is followed by conclusions.

2 The dialogue system
The dialogue system [13] employs the following architecture: The
output of a speech recognizer (Nuance) is analyzed by a context-
independent natural language understanding (NLU) module; the out-
put of this module is then disambiguated and instantiated in context
by the dialogue manager (DM). The approach to dialogue manage-
ment follows [6, 7] in its use of a rich tree-based model of context,
together with a ‘plug-and-play’ multi-device architecture which al-
lows the underlying devices to specify their dialogue interfaces via

‘dialogue move scripts’. These scripts declaratively license the pos-
sible instantiations of dialogue moves and their integration into the
‘dialogue move tree’. In order to tailor the system to new domains,
only the scripts need to be adapted, not the underlying machinery
implemented in Java. The dialogue system is fully implemented and
has been used in restaurant selection and MP3 player tasks. There
are 41 task-independent, generic dialogue move rules, 52 restaurant
selection rules and 89 MP3 player rules.

Query constraints can be associated with dialogue moves if the
NLU output matches particular input patterns specified in the scripts.
For example, in the Restaurant domain, a request such as “I want
to find an inexpensive Japanese restaurant that takes reservations”
results in the semantic frame below:

(1) system:Category = restaurant:Restaurant
restaurant:PriceLevel = 0-10
restaurant:Cuisine = restaurant:japanese
restaurant:Reservations = yes

This frame is used to construct a database query. If the query
returns no results, various constraint modification strategies such
as constraint relaxation or removal can be employed. For example,
‘Japanese food’ can be relaxed to ‘Asian food’ since cuisine types
are hierarchically organized.

3 Interpretation
3.1 Combining complementary hypotheses
The approach to robust interpretation centres around the use of mul-
tiple independent interpretation methods, both shallow and deep,
and open- and closed-domain. The NLU module contains both a
broad-coverage statistical dependency parser and a domain-specific
slot/value-based semantic classifier. The semantic classifier operates
under a closed-world assumption and must be trained on in-domain
data; its slots correspond to the possible constraint types in the cur-
rent device’s database (e.g. price level and cuisine type, as shown
above), and the possible values correspond to the available values in
the relevant ontology. The classification method may depend on the
nature of the slot and its possible value space (the current implemen-
tation uses a maximum-entropy approach [14] for some, and simpler
pattern-matching methods for others), but is inherently robust to the
exact form of the input, and thus to unexpected surface forms and to
ASR errors relating to function words (e.g. (1a) below). However, it
has the disadvantage of being closed-domain, and is thus not robust



to misrecognized or unexpected (either truly out-of-domain, or just
unseen in training data) semantically potent words. In contrast, the
dependency parser (a version of [12]) has no knowledge of the ontol-
ogy, but produces Penn Treebank-style syntactic structures; it is thus
often less accurate, and is sensitive to surface form, but is relatively
robust to unexpected or misrecognized nouns or verbs, as in (1b):

(1) a. In-domain constraint, unexpected form:
“kind of uh kind of fill like Thai food”

b. Out-of-domain constraint, parsable form:
“I’m looking for a Montenegrin restaurant”

This has some similarities to [3]’s use of dual ASR, where a general
statistical language model version is used to detect words or phrases
which the main domain-grammar-based ASR and NLU cannot treat.
However, as their NLU is closed-world, that approach is essentially
limited to telling the user why input is rejected; whereas we can pass
both types of NLU output on to the DM, either for successful resolu-
tion (if in-domain but unseen) or generation of targeted clarification
or other helpful responses (e.g. via constraint relaxation).

Our dialogue management strategy allows active devices, and their
active nodes in the dialogue move tree (possible antecedent moves
in context) to produce move hypotheses from either type of NLU
output alone, or from combinations of the two.1 Each hypothesis is
given an overall score, based on the confidence assigned by the par-
ticular NLU agent as well as a combination of pragmatic contextual
factors such as the number of phrases which can be resolved as plau-
sible constraints (see [2] for similar inclusion of pragmatic factors,
although within a closed-world ASR/NLU approach).

3.2 Combined confidence scoring
The overall score used to choose the most likely move hypothesis
in context is also used to drive confirmation/clarification strategies.
The highest-scoring alternative can only be accepted without ques-
tion if its score exceeds a given threshold; below this, confirmation
or clarification is required, but the exact behaviour is driven by two
further thresholds. In the upper range, the move is accepted but im-
plicitly confirmed in the next system move; in the middle range, an
explicit confirmation question is asked; and in the lowest range an
non-understanding message is generated, although this may include
a topic-specific help suggestion if a confident-enough semantic slot
value is present. We therefore have a similar strategy to [8], but in-
corporate more levels of information to give a more useful measure
of confidence: a high ASR confidence can still lead to clarification
if the only semantic interpretation is highly implausible; and con-
versely, high contextual plausibility can lead to acceptance even with
low ASR confidence (although perhaps with implicit confirmation).

We are currently investigating the use of the scores at individual
levels (ASR, NLU or context) to drive clarification strategies and de-
termine the best question to ask in a particular situation (one which
is most likely to produce information at the level in which the system
has least confidence); together with the use of relative move hypoth-
esis scores as well as absolute ones.

3.3 Hypothesis & confirmation
Importantly, our rich representation of context means that we can
maintain a representation of the best hypothesis (and its connection
1 For example, a script may define a particular move type as being a pos-

sible hypothesis if the parser output matches a particular (possibly under-
specified) syntactic form, while the semantic classifier assigns a reasonably
confident value to a given slot.

to context) while asking a related confirmation or clarification ques-
tion. Given our tree-based representation, the hypothesised node is
not attached to the tree itself, but held embedded within a confirma-
tion node. This allows an ensuing answer to this question to have a
full range of effects: a positive confirmation causes the hypothesised
node to be attached to its antecedent and have its normal effects; a
negative answer can prevent its attachment; and importantly, answers
providing new or contradictory information can have their constraints
integrated into the hypothesis. This allows sequences such as “Are
you looking for a Thai restaurant? / No, a Chinese one”, or “Are you
looking for a Thai restaurant? / Yes, one that takes credit cards.”

4 Natural Language Generation (NLG)
Sentences s1-s4 in table 1 show the main dialogue strategies for pre-
senting the results of database queries. If the number of items re-
turned for the database query is large, the system suggests further
(unused) constraints (sentence s4). The task of the generator is to
produce these verbalizations given dialogue strategy, constraints and
further discourse context.

Overgeneration and ranking approaches to NLG have become in-
creasingly popular [5, 11]. We apply them to dialogue processing
and perform mild overgeneration of candidate moves, followed by
ranking. The highest-ranked candidate is selected for output.

4.1 Chart generation
We follow the bottom-up chart generation approach [4] for produc-
tion systems described in [10]. The rule-based core of the generator is
a set of productions. Productions map individual database constraints
to phrases such as “open for lunch”, “within 3 miles” and “a formal
dress code”, and recursively combine them into NPs. This includes
the use of coordination to produce “restaurants with a 5-star rating
and a formal dress code”, for example. The NPs are integrated into
sentence templates, several of which can be combined to form an
output candidate turn.

The selection of which sentence template to use is determined
by the dialogue move scripts. Typically, a move-realizing produc-
tion produces several alternative sentences. On the other hand, the
NP generation rules realize constraints regardless of the specific dia-
logue move at hand. This allows us to also use them for clarification
questions; all that is required is a new set of sentence templates, for
example “Are you looking for [NP]” for the middle range of the con-
fidence score (see section 3.2) and “I’m sorry but I did not understand
what you mean by [String]” for the lower range. Note that in the lat-
ter case we need to repeat the input string since we do not have a
detailed analysis. However, a confident-enough semantic slot value
allows us to generate a possible help suggestion “If you’re looking
for a particular kind of food, try saying something like ‘I want In-
dian food’.” (Also note that the upper range of the confidence score
is reflected by examples s1-s4 in table 1).

We currently use 102 productions overall in the restaurant and
MP3 domains, 38 of them to generate NPs that realize 19 possible
input constraints (in both domains).

4.2 Ranking: alignment & variation
Alignment Alignment is a key to successful natural language di-

alogue [1]. We perform alignment of system utterances with user ut-
terances by computing an ngram-based overlap score. For example,
a user utterance “I want to find a Chinese restaurant” is presented by



|result| example realization fexp

s1 0 I’m sorry but I found no restaurants on Mayfield Road that serve Mediterranean food . 0
s2 small: There are 2 cheap Thai restaurants in Lincoln in my database : Thai Mee Choke and 61

> 0, < t1 Noodle House .
s3 medium: I found 9 restaurants with a two star rating and a formal dress code that are open 212

>= t1, < t2 for dinner and serve French food . Here are the first ones :
s4 large: I found 258 restaurants on Page Mill Road, for example Maya Restaurant , 300

>= t2 Green Frog and Pho Hoa Restaurant . Would you like to try searching by cuisine ?
s5 (any) I found 18 items . 2

Table 1. System responses for database queries with different result set sizes. s5 is a default responses produced by a template.

the bag-of-words {‘I’, ‘want’, ‘to’, ‘find’, ...} and the bag-of-bigrams
{‘I want’, ‘want to’, ‘to find’, ...}. Words are lemmatized and proper
nouns of example items removed from the utterances. We compute
the overlap with system utterances represented in the same way and
combine the unigram and bigram match scores.

Variation We also use a variation score to ‘cycle’ over sentence-
level paraphrases. Alternative candidates for realizing a certain input
move are given a unique alternation (‘alt’) number in increasing or-
der. For example, for the simple move continuation query we
may assign the following alt values: “Do you want more?” (alt=1),
“Do you want me to continue?” (alt=2), and “Shall I continue?”
(alt=3). The system cycles over these alternatives in turn. Once we
reach alt=3, it starts over from alt=1. The actual alt ‘score’ is in-
versely related to recency and normalized to [0...1].

Score combination The final candidate score is a linear combina-
tion of alignment and variation scores:

scorefinal = λ1 · alignuni,bi +(1 − λ1) · variation (1)

alignuni,bi = λ2 · alignuni +(1 − λ2) · alignbi (2)

where λ1, λ2 ∈ {0...1}. A high value of λ1 places more emphasis
on alignment, a low value yields candidates that are more different
from previously chosen ones. In our experience, alignment should be
given a higher weight than variation, and, within alignment, bigrams
should be weighted higher than unigrams, i.e. λ1 > 0.5 and λ2 <
0.5. Deriving weights empirically from corpus data is an avenue for
future research.

5 Robustness issues
Robustness challenges for interpretation modules are generally ac-
knowledged. Generation is often seen as a downstream activity in
dialogue processing (which assumes that the user utterance is the
starting point of processing), and thus not often considered as a fo-
cal point when considering system robustness. However, we find that
speech recognition errors filter through to the generator, and that fur-
ther errors – themselves possibly triggered by speech recognition er-
rors – may occur before generation and be passed on. In our practical
experience (see section 6) we find the following sources of errors:

1. Inaccurate parsing and semantic classification. The parser may
produce a structure which looks like a query with a cuisine-name
argument (leading to creation of a database constraint based on
that argument), although the words forming that argument are
nothing to do with cuisine type.

2. Misrecognized or out-of-domain words. This may lead to unex-
pected constraints, sometimes intended by the user and sometimes
not, e.g. “Montenegrin restaurant” in example (1b).

3. The generation grammar may be incomplete, i.e. the grammar
may not be able to generate turns that express all input constraints.

4. The generation input may be incomplete, omitting crucial infor-
mation needed to construct complete sentences. For example, the
category of the retrieved database items – such as ‘restaurant’ or
‘brewpub’ – may be missing. In that case, the grammar cannot
generate a head noun to which it can attach realizations of other
constraints (e.g. a prepositional phrase “on Bower Street”).

It seems that the first and second problems, which we may call ‘er-
roneous constraints’, can only be solved partially, by asking appro-
priate clarification questions and/or informing the user of the queries
performed. This requires clarification/confirmation to be driven by
some pragmatic information (see section 3.2), and generation to
be robust to out-of-domain expressions (4.1). In some cases, DM-
internal modules can apply additional sanity checks to block erro-
neous constraints. For example, the database may know that a certain
number is an impossible price range for a restaurant. This in turn may
lead to ‘incomplete’ generation output. Thus, we generally cannot re-
quire candidates to be complete, i.e. to express all constraints. As a
consequence, we regard all generated sentences as candidates and
factor completeness into the selection/ranking process [9] (this also
addresses issue 3 above). Combined with the robustness of bottom-
up processing known from parsing, this allows the generator to gen-
erate maximally complete output.

We address issue 4 above by using rules that add additional cate-
gory constraints as defaults in case these are missing. From the ex-
isting constraints we can infer that we are dealing with the restaurant
domain rather than the MP3 domain. However, we will not be able
to make fine-grained distinctions such as asserting ‘brewpub’ rather
than ‘restaurant’, for example.

As a further technique to increase robustness, we use a simple tem-
plate generator as a fall-back if NLG fails (see s5 in table 1).

Considering the fact that the domain ontology and database
schema are known in advance, it is tempting to make a closed world
assumption in the generator (which could also help system develop-
ment and testing). However, this seems too restrictive: assume, for
example, that the user has asked for Montenegrin food, which is an
unknown cuisine type, and that the statistical parser combined with
the parse-matching patterns in the DM has labeled this correctly.
The content optimization module will remove this constraint since
there is no Montenegrin restaurant in the database. If we now want to
generate “I did not find any restaurants that serve Montenegrin food
...”, we do need to be able to use generation input that uses unseen



attribute-value pairs. The price one has to pay for this increased ro-
bustness and flexibility is, of course, potentially bad output if NLU
mislabels input words. More precisely, we find that if any one of the
interpretation modules makes an open-world assumption, the gener-
ator has to do as well, at least as long as we want to verbalize the
output of that module.

6 User study

Each of 20 subjects in a restaurant selection task was given 9 sce-
nario descriptions involving 3 constraints (see [13]). Subjects were
instructed to use their own words to find a fitting restaurant. The
back-end database contained 2500 restaurants containing the 13 at-
tributes/constraints for each restaurant, for example cuisine type, city
and street names, service, rating, price, open hours, dress code etc.

Overall, 180 tasks were performed involving 1144 user turns and
1818 system turns; task completion rate was 94%. Two factors con-
tributing to the higher number of system turns are a) some system
turns are counted as two turns if they contained several dialogue
moves, and b) restaurants in longer enumerations of result items are
counted as individual turns. On average, user utterances are signifi-
cantly shorter than system utterances (4.9 words, standard deviation
σ = 3.82 vs 15.4 words, σ = 13.53). This is a result of the longer ‘con-
straint summaries’ produced by the generator. These descriptions of
what the system understood and what actions it performed based in
its understanding are crucial for providing suitable feedback to the
user. The high standard deviation of the system utterances can be
explained by the listing of individual result items.

On the interpretation side, semantic accuracy (query constraints
correctly produced) gave an f-score of 82.2%. Approximately 38%
of utterances could only be treated by the parser, and 25% only by
the classifier.2 Post-processing of a subset of system logs shows that
the use of combined scoring for best interpretation gives a reduction
in error of 30-45% over using parser or classifier alone (perhaps un-
surprisingly), but more interestingly an error reduction of 10-15%
over a strategy of using both but making the choice on NLU n-best
list position alone.

The generator asserted missing constraints to incomplete gener-
ation input in 30 cases out of 579 inputs that were comprised of
database constraints (in contrast to realizing other dialogue moves).
The last column of table 1 shows the usage frequencies of the basic
dialogue strategies which depend on the sizes of result sets returned
from the database. There are only two cases in which the system had
to fall back to the default template generator. Furthermore, we find
that (almost) all generation output is complete. Thus, while the relax-
ation of the completeness requirement is very useful for system de-
velopment, the grammar is capable of expressing the constraints and
constraint combinations used in the application domain. However, in
more open and less well-defined domains, we expect a relaxed com-
pleteness requirement to play a greater rôle.

7 Conclusions

Robustness challenges, in particular due to speech recognition errors,
require a set of techniques that address the problem at different levels.
As this paper has shown, no single technique seems to be able to
‘solve’ all of these. In our implemented system, the used techniques
are, at different stages of dialogue processing:

2 Note that many parser-only moves were those which the classifier was not
designed to handle, e.g. yes/no answers.

Interpretation: We find that combining complementary NLU
techniques can give better performance than using either one alone.
We also allow confidence factors at multiple levels of interpretation
(including context) to assist in improving choice of hypothesis, and
in driving clarification and confirmation strategies.

Generation: Most work on generation for practical dialogue sys-
tems makes use of generation components that work toward a sin-
gle output (often simple template-based generation). We find that
language generation faces robustness challenges similar to those of
interpretation, and that similar techniques can be applied: ranking
of alternatives, bottom-up chart-based processing, and relaxation of
completeness constraints (corresponding to partial parsing). This can
be combined with sanity checks of the input to the generator (e.g.
ranges of numerical values), and insertion of defaults for missing in-
put semantics. We find that the choices made in the interpretation
modules affect language generation, for example whether or not a
closed-world assumption can be made.
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