A Verified Compiler for a
Structured Assembly Language

Paul Curzon

University of Cambridge
Computer Laboratory
New Museums Site
Pembroke Street
Cambridge
CB2 3QG
United Kingdom

In Proceedings of the 1991 International Workshop on the HOL Theorem
Proving System and its Applications,
M. Archer, J. Joyce, K. Levitt and P. Windley (Editors)
IEEE Computer Society Press, 1992

A Verified Compiler for a Structured Assembly Language

Paul Curzon
University of Cambridge,
Computer Laboratory

Abstract

We describe the wverification of a compiler for a
subset of the Vista language: a structured assembly
language for the Viper microprocessor. This proof
has been mechanically checked using the HOL system.
We consider how the compiler correctness theorem
could be used to deduce safety and liveness properties
of compiled code from theorems stating thal these
properties hold of the source code. We also show how
secure compilation can be achieved using automated
theorem proving techniques.

1 Introduction

In this paper, we describe the verification of a com-
piler for a subset of the Vista language[10]. Our mo-
tivation for verifying the compiler is to allow us to
infer properties about the code which is actually exe-
cuted from properties we prove about Vista programs.
Previous work on the formal verification of compilers
has largely considered the compiler correctness the-
orem itself to be the ultimate goal. Consequently,
little attention has been given to identifying the way
in which the correctness theorem will be used. We de-
scribe how our compiler correctness theorem could be
used to infer the safety and liveness of code produced
by our compiler from the safety and liveness of the
source code. We also consider how the compiler cor-
rectness theorem required is affected by the properties
we wish to infer. All the proofs described here have
been mechanically checked by the HOL system[5]. We
assume some familiarity with HOL and higher-order
logic, though a knowledge of first-order logic should
be sufficient to follow the main points of this paper.

Vista is a commercially available structured as-
sembly language designed for use with the Viper
microprocessor[4] at the Defence Reseach Agency

(Electronics division), formerly RSRE. Viper is a
32-bit computer, aspects of which have been formally
verified[2, 3]. The statements of Vista are Viper ma-
chine instructions together with structural commands
such as while loops. The ultimate aim of the project
is to build a verified implementation of the Vista lan-
guage for the Viper microprocessor. In the work com-
pleted so far, the target language for the compiler we
have considered is a simple flat assembly language,
Vip, for a Viper-like microprocessor. Vip is idealized
in that it assumes infinite word and memory sizes.
We have also only considered a subset of the Vista
language.

The semantics of the source and target languages
are defined in higher-order logic, as is the compiler.
The HOL system does not currently provide tools for
executing general higher-order logic definitions. De-
spite this we illustrate that the compiler can be “ex-
ecuted” securely using theorem proving techniques.

This work builds upon the work of Joyce to ver-
ify the correctness of a compiler for the Tamarack
microprocessor[8]. The source and target languages
considered by Joyce are different to those used here.
However, the structure of the proofs are similar and
both have been mechanically checked using the HOL
system. Joyce was largely concerned with linking the
compiler proof with a proof of correctness of the un-
derlying machine[7], rather than with proofs of higher
level programs as here. This difference in emphasis
prompted us to use a slightly different correctness
statement.

Stepney et al. have also considered the correctness
of a compiler for the Viper microprocessor[13]. They
were interested in demonstrating that the compiler
was correct by construction. The source language was
of a similar complexity to the subset of Vista con-
sidered here, though in addition supported procedure
calls and a simple model of I/O. However, their proof
work was informal and not machine checked. The

work was completed in a matter of days, but as they
remark “..a properly rigorous development of a com-
piler for a full language would take longer!”[13].

Substantial work on the compiler correctness prob-
lem has been performed at Computational Logic Inc.
A code generator from Micro-Gypsy to Piton has been
verified using the Boyer-Moore system[14]. An as-
sembler and linking loader for Piton has also been
verified[12]. These components are part of a sys-
tem stack verified down to the hardware level. The
Gypsy Verification Environment which implements
the Floyd-Hoare approach to verification is also avail-
able. However, using it has a serious disadvan-
tage. There is no assurance that the semantics of
Micro-Gypsy used by the Verification Environment
are the same as those used in the compiler proof. As
an alternative it is suggested that proofs be performed
using the operational semantics used in the compiler
verification. This unfortunately loses the advantages
of the Floyd-Hoare approach and the infra-structure
provided by the Gypsy Verification Environment. One
of the issues addressed in this paper is the linking of a
compiler proof to proofs of programs using program-
ming logics.

Much other work has appeared concerning the
compiler correctness problem. A good survey of this
work has been given by Joyce[8].

2 The source and target languages
2.1 Vista: its syntax and semantics

The source language we have considered is a subset
of Vista. Since Vista is an assembly language, the
general purpose registers are accesible and the basic
commands correspond directly to those available on
the underlying machine; here Vip. Vista also has
properties of a high level language. Variables may
be declared and used, and structured commands such
as while loops are provided.

Figure 1 gives the syntax of the programs in the
subset of Vista considered. A program consists of zero
or more variable declarations followed by a command.
Commands supported are skip, stop, register and
variable assignments, ALU operations, sequencing
and while loops. The conditions which may be used
in the test part of the while loop are comparisons
between a register and an expression, and direct tests
of the B register: a single bit register which holds
condition codes. Expressions may be named variables
or natural numbers. Three general purpose registers
are accesible: the A) X and Y registers.

The syntax is defined using the type definition

package provided with the HOL system[11]. The
parser support of the HOL system is used to parse the
concrete syntax shown in the figure into the abstract
syntax as defined by the type definition package. For
example, the concrete syntax

A =2

is parsed by the HOL system to the underlying ab-
stract syntax

ASSIGN A (NUM 2)

Throughout this paper I will use the concrete syntax
for convenience.

As only an informal semantics of Vista existed,
part of this work has involved the production of
the formal semantics. Though only a small subset
has been considered, the semantics contains some
interesting features. Conditions are problematic since
they side-effect a value into the B register. The actual
value placed in the register is not defined in the Vista
language, but is implementation dependent. The stop
command also causes complications. It can be used to
terminate the program at any point. The semantics
must handle such termination even at inner levels of
loops.

A denotational semantics was used. The semantics
of a program p is given as a relation, P[p], between
states. The relation is true if the program terminates
in the final state from the given initial state.

A Vista state may be one of three kinds. An
Error state indicates that the program was invalid.
This could, for example, be due to variables being
used without being declared. A Halt state indicates
that the program has terminated. This is used to
prevent further processing being performed once a
stop command has been executed. All commands
leave a halt state unmodified. This is how termination
before the textual end of the program is handled.
A Run state indicates that the program is executing
normally. It is an intermediate processing state. The
latter two kinds of state consist of a memory store
and register store, giving the values of memory and
registers, respectively. States are defined using the
type definition package:

VistaState = ERROR | HALT ms rs | RUN ms rs

Throughout this paper we use the variables q, q1 and
g2 to range over Vista states.

The purpose of the declarations in a program is to
build an environment. An environment relates names
in the program to the locations in memory store that
they will represent. The declarations are evaluated to
give an environment which is passed to the command.

<P> ::

<D> ::

<C> ::

 ::

<R> ::
<E> ::

<V> ::

Programs

PROGRAM name <D>; <C> FINISH |

PROGRAM name <C> FINISH

DATA <V> |
<D> ; <D>

SKIP |

STOP |

<R> := <E> |
<V> := <R> |

<R> := <R> op <E> |
<C> ; <C> |

WHILE p0 <C> 0D
B |

<R> comp <E>
AlX|Y

<V> | num

string

Declarations
variable declaration

Commands

register assignment
variable assignment
ALU operations

Conditions
test B register
comparisons
Registers

Expressions

Variables

Figure 1: The Syntax of the Vista subset

The semantics of a declaration is therefore a function
which maps an environment to an environment. The
initial environment is defined to be empty. As each
variable declaration is encountered, a new entry is
added.

The denotation of a command is given by a relation
taking an environment, an initial state and a final
state. It is true if executing the command in the
environment from the initial state results in the final
state. To illustrate the semantics of commands, we
will look at three simple commands: Skip, Stop and
Sequencing.

Consider the denotation of the Skip command. It
has no effect on the state, whatever the environment,
so the initial and final states should be identical.

C[SKIP] env gl q2 & (q2 = q1)

The STOP command is slightly more complex.
C[STOP] env g1 g2 def
(q2 =
(IsRun ql =
HALT (RsOf q1) (MsOf q1) |
ql))

If the initial state is a Run state, the register store
and memory store are extracted and a Halt state
formed. If the initial state is not a Run state, the STOP
instruction does not alter it. Again the environment
is not used since no memory accesses are made by the
command.
If two commands are sequenced, then the first
should be executed followed by the second.
Clcl; c2] env def
SemSeq (C[ci]env) (C[c2]env)

where

SemSeq seml sem2 ql g2 =

Jq. (seml ql q) A (sem2 q g2)

The first command must return some intermediate
state, q, from which the second command returns the
final state. Both commands use the same environment
as it is provided externally and not altered by the
commands themselves.

Conditions are problematic since they both return
the result of the test and place a new value in
the B register as a side-effect. This is handled by
splitting the denotation of each condition into two
parts. The result of the test is given by a function
on the initial state. The permissible state changes
are then described by a relation as for the semantics

of commands. For example, the semantics of the B
condition is described by a relation SemB between an
initial and final state, and a function SemBansB which
maps an initial state to the value of the test.

Matters are complicated further by the fact that
the value placed in the B register is not defined by
the semantics of Vista. In any given situation, the
value may be different for different implementations.
Despite this, the B register is accesible to the Vista
programmer. In particular, it can be directly tested
using the B condition. To deal with this an explicit
undefined value is introduced which is placed in the
B register during the test.

If the B register is tested after an undefined value
has been side-effected into it, different implementa-
tions of Vista could produce different results. Since
Vista was designed for use in safety-critical applica-
tions, we decided when defining the formal semantics
that it should be a program error to test the B reg-
ister after an undefined value had been placed there.
This is reflected in the semantics by returning an er-
ror state. The Vista programmer is given the proof
obligation of ensuring that this situation cannot arise
in a given program. This is more restrictive than ab-
solutely necessary. A program could test the B regis-
ter without its later behaviour being dependent on
the test. All implementations would therefore ex-
hibit the same behaviour on such a program. How-
ever, it is considered that such an anomaly should be
detected and removed from a program intended for
safety-critical applications.

2.2 Vip: its syntax and semantics

The target language for the compiler, Vip, is a flat
assembly language for a Viper-like microprocessor. We
compile to this intermediate assembly language rather
than directly to machine code for several reasons.
It allows us to split the proof requirements into
manageable and independent tasks. For example, in
the first pass of the compiler we do not consider finite
word and memory size. It also means the proofs
are reusable. We can use the proofs of the first
pass for different underlying machines. Similarly, if a
proof of correctness of the second pass of the compiler
were performed it could be reused for other source
languages. The above reasons have been previously
identified by Joyce[8]. Furthermore, an optimising
pass could be added to the compiler at the flat
assembly language level, and a proof of its correctness
combined with the proofs for all source and target
languages.

Seven assembler instructions are supported: Stop,
Jump, Conditional Jump, Load, Store, a generic ALU

<I> ::= Instructions
STP |

Jup <L> |

JNB <L> |

LOAD <R> <O> |
STORE <R> <W> |

ALU op <R> <R> <O> |

Stop the Processor

Jump to given address

Jump to given address if the B register is false
Load a register with the Operand value

Store the register value at the given address

Do an ALU operation between a source register and

operand, storing the result in a destination register

COMP comp <R> <O>

Compare a source register and operand, storing the

result in the B register

The address of the value

<O> ::= Operands
LITERAL num | A literal value
CONTENTS num
<W> ::= AT num Write Addresses
<R> ::= num Registers
<L> ::= num Labels

Figure 2: The Syntax of Vip

instruction and a generic comparison instruction. The
syntax of the language and its informal semantics are
given in Figure 2.

The formal semantics of Vip is given as an opera-
tional semantics in higher-order logic. A Vip state is
represented as a tuple holding the values of the mem-
ory and registers, (ram,p,a,x,y,b,stop). The ele-
ments of this tuple correspond to the memory, pro-
gram counter, accumulator, X register, Y register,
condition flag and stop register. The program is
stored in a separate read-only code store, which does
not form part of the state. Throughout this paper we
use variables v, v1 and v2 to range over Vip states.

The semantics of a Vip program is given by a
relation Vip.

Vip rep cs end vl v2 .

In.
(v2 = Vipn n rep cs vl) A
(CodeExecutesInNsteps rep n cs vl end)

It takes as arguments a representation function (which
provides the semantics of generic operators: this is
discussed in more detail in Section 2.3), a code store,
the address which marks the end of the program, and
initial and final states. The relation will be true if
the program can be executed from the initial state
in some finite number of cycles to reach the final
state. In addition, the program should either halt the
processor or jump beyond the end address for the first
time on the last cycle. This condition is expressed by

the relation CodeExecutesInNsteps. It is assumed
that the program resides in contiguous addresses in
the code store.

The relation Vipn returns the final state after ex-
ecuting a program for a given number of cycles from
some initial state. A single cycle of the program con-
sists of checking that the processor has stopped and,
if not, fetching the instruction currently addressed by
the program counter, then decoding and executing it.
The semantics of each instruction is given by a state
transition function. For example that for the Jump
instruction is given below.

VipSemJmp label (ram,p,a,x,y,b,stop) def
(ram,label,a,x,y,b,stop)

It updates the program counter with the label given
as an operand.

2.3 Language schemas

In the previous discussion we glossed over the
precise details of the ALU and comparison operations
provided by the source and target languages. We
have in effect defined source and target language
schema, so that these details do not need to be
addressed. Using the methods suggested by Joyce[9],
the definitions are completely generic with respect to
the ALU operations and comparisons. For example,
a single generic command is given to cover all Vista

machine functions. Its syntax takes an ALU operation
argument, op.

R :=Rop E

The syntax of the corresponding Vip command has a
similar ALU operation argument.

ALU op R R O

In both cases the type of op is given by a type variable
*xaluop. Particular source and target languages are
obtained by instantiating this type variable with a
suitable type. For example, if we instantiated *aluop
to the type Alu given below we would have a source
and target language with Addition, And and Or
operations.

Alu = ADD | AND | OR

The semantics of these operations must be provided
separately by a representation function. It is a func-
tion from type *aluop to type (num->num->num)—the
type of ALU operations. In the above example, it
might map ADD to integer addition functions and AND
and OR to the appropriate bitwise functions.

This allows a single Vista semantic predicate and
a single Vip semantic function to be defined to cover
all ALU operations. They extract the semantics of
particular operations from the representation function
which is passed to them as an argument. This
means that we only need perform proofs once for the
ALU command rather than once for each available
operation. By giving the ALU command a variable
type, we can reuse the proof for a range of source and
target languages within the Vista/Vip family. This
reflects the fact that the correctness of the compiler
does not depend on the particular source operations
available. They are compiled directly to target ones
with identical semantics. The above discussion also
applies to the comparison operators which are treated
in a similar way.

3 The compiler

The compiler is defined in higher-order logic by
a function CompileProgram which translates Vista
programs to Vip assembly code. It returns one of
two kinds of value: either the compiled code or a
compile-time error. Compiled code is represented as
a list of generic instructions.

Code = COMPILE_ERROR |
CODE (((*compop,*aluop)Inst) list

A compile-time error can occur, for example, if
undeclared variables are used.

The compiler first creates a symbol table from
the declarations. This is similar to the environment
constructed by the semantics. It maps variable names
to locations in Vip memory where the variable’s value
will be stored. The symbol table is passed to the
command translator TransCom.

The simple non-structural commands such as stop
and machine functions translate to single Vip com-
mands; expressions and registers having been first
translated. For example, the translation of the ma-
chine functions is given by the following definition.

TransCom

(dest := src OP exp)) symbtab base ef

TransMchFunc
0oP
(TransReg src)
(TransReg dest)
(TransExp exp symbtab)

This is a generic translation function. It is used to
translate all machine functions. It extracts the opera-
tor from the source command and passes it along with
the translation of the registers and expression to the
function TransMchFunc defined below. Registers are
translated to the corresponding number. Expressions
are passed the symbol table, so that the memory lo-
cations corresponding to variables can be looked up.
The argument base is not used for the translation of
this command. It gives the address to which the code
will ultimately be loaded, and is used by structural
commands such as the while loop whose translation
includes jump instructions, which require actual ad-
dresses.

TransMchFunc OP s d e def

((e = ERROR) =>
COMPILE_ERROR |
LoadInst (ALU OP d s (ErrValOf e)))

If the translation of the expression is an error a
compile-time error results. Otherwise, the result is
extracted using ErrVal0f, and a Vip ALU command
formed. This is turned into compiled code using the
function LoadInst.

When translating structural commands sub-
commands are first translated and the results com-
bined. For example, the translation of the while loop
is given by the following definition.

TransCom
(WHILE b DO c 0D)) symbtab base =

TransWhile

(TransBcom b symbtab)

(TransCom c symbtab

(base + (SizeOfB b)))
base
(Size0f (WHILE b DO c 0OD))

The condition and body are first translated. The
base address of the command will be the base address
of the while loop plus the size of the code for the
condition. The function TransWhile is defined below.
It is also passed the size of the translated code so that
it can calculate the loop exit. The size is computed
recursively, using the function Size0f.

TransWhile bcode ccode base size iﬁ
(Combine bcode
(Combine (LoadInst (JNB (base + size)))
(Combine ccode
(LoadInst (JMP base)))))

The compiled code of the while loop consists of the
code for the condition followed by a conditional jump
out of the loop. This is followed by the command for
the body, and a jump back to the start of the loop.

3.1 Compilation by theorem proving

The purpose of verifying the compiler is to increase
our confidence that the compiled code ultimately
executed has the same semantics as the source code.
This will not be achieved unless we can use the
verified compiler to perform the compilation. No
tools are provided by the HOL system for executing
higher-order logic definitions (though some work has
been performed on executing subsets of the logic using
ML[1]). It might therefore seem that our verified
compiler is of no use. The same effect as executing
the compiler can however be achieved using theorem
proving techniques. Given a Vista program p and
a base address, base, to which the code is to be
compiled, we have derived a rule (a conversion) which
returns a theorem of the form

- CompileProgram p base = compiled code

where compiled code is the compiled version of pro-
gram p and is generated as part of the theorem prov-
ing process. An example of such a theorem is given in
Figure 3.

The conversion performs this proof completely auto-
matically. This is done by taking the compiler defini-
tion, specialising it with the source program and base

address values, and rewriting with the definitions of
the compiler.

We thus prove a theorem that the generated com-
piled code is the result of performing the compilation
as given by the definition of the compiler. By veri-
fying the compiler, we also prove that this definition
preserves the meaning of the program. The compiled
code given in the theorem can therefore be considered
secure in the sense that it will have the same semantics
as the source program.

Unfortunately, this method of compilation is very
slow. It would only be practical to use it when pro-
ducing the final production version of the code. This
would ensure that the final code had the same se-
mantics as the source code. A faster, though insecure
compiler could be used during program development.
All tests should be re-executed using the production
version of the code to ensure that any increased assur-
ance in the correctness of the code gained by carrying
out the tests during development is not lost.

4 Safety and liveness

To determine a suitable form for the compiler
correctness statement we must examine the way it
will be used. In particular we need to consider
the correctness properties we would like to prove
about source programs and consequently infer about
the code produced by the compiler. The properties
normally associated with program correctness are
safety and liveness. Safety is partial correctness.
If a state satisfies some precondition, and is taken
by the semantics to some final state, then a given
postcondition will hold of the final state. This will
always be true for programs which do not terminate
(i.e., in which there is no final state which satisfies the
semantics).

Safe P semantics @ def
Vql q2.
P q1 A semantics ql 92 D Q g2

Liveness is total correctness. If the precondition
holds, there will be a final state satisfying both the
postcondition and semantics (i.e., the program will
terminate and in a state satisfying the postcondition).

. . def
Live P semantics Q =

Vql.

P q1 D dq2. (semantics ql g2 A Q g2)

For some semantics, safety can follow from liveness.
This is so when for each initial state there is a unique
final state satisfying the semantics. A semantics of
this form is termed deterministic.

F CompileProgram(
PROGRAM wombat

A :=0; X :

0;

WHILE X < 5 DO
A:=A+2; X :=X+1

0D;
STOP

FINISH) 0 =

CODE

[LOAD 0 (LITERAL 0);
LOAD 1 (LITERAL 0);
COMP < 1 (LITERAL 5);

JNB 7;

ALU + 0 0 (LITERAL 2);
ALU + 1 1 (LITERAL 1);

JMP 2;

STOP]

Figure 3: An Example of a Compilation Theorem

Deterministic semantics .
Vql q2 q3.
(semantics ql q2) A
(semantics ql q3) D
(@2 = g3)

The semantics of the Vista subset given is determin-
istic. To prove the correctness of a Vista program we
therefore need only prove that it is live.

It is ultimately the Vip code produced by the com-
piler which will be executed. The purpose of the com-
piler correctness theorem is to allow us to deduce the
correctness of the compiled code from the correctness
of the Vista program. We would like to use the correct-
ness statement to derive an inference rule which makes
this deduction automatically. Informally, it should
have the following form, where vista is the semantics
of the vista program, and vip the semantics of the
compiled version:

F Correct vista

F Correct vip

Since the semantics of Vip is also deterministic, the
notion of correctness we need in the above is liveness.
Safety for the compiled program will then follow.

For a Vista program, the definition of liveness is as
given above. For the compiled code it is more compli-
cated, since we wish to use the same precondition and
postcondition as for the Vista program. These will be
defined in terms of Vista states rather than Vip ones.
If the relation =~ relates non-error Vip states to the
corresponding Vista state then the liveness definition
will need the form shown below.

VipLive P vip Q =
Vvl qi.
Pql A (v1 = ql) D
Jv2 gq2. vip vl v2 A
(v2 ~ q2) A
Q q2

In reality the definition is more complex, since it
must take account of error states and the loading of
compiled code. Rather than pass the semantics of
the code we pass a triple consisting of the code, base
address and code size.

VipLive P (code,base,size) Q def
Vvl ql.

P ql A

((v1 = q1) V (q1 = ERROR)) A
(CodeLoaded

base (base + size) code cs) A

(Ploaded rep vl base) D
dv2 q2.

Q92 A
((Vip rep cs (base + size) vl v2 A
(v2 & q2)) V (q2 = ERROR))

The code produced by the compiler code must be
loaded to a suitable location in the code store of
Vip. The program counter must also initially hold this
location. These conditions are given by the predicates
CodeLoaded and Ploaded, respectively.

Once we have the correctness inference rule de-
scribed above, from theorems giving the correctness of
Vista programs we can infer equivalent results about

the compiled code. Suppose a liveness theorem of the
form

F Vistalive P (P[p]) Q

had been proven, where P and @ are the precondition
and postcondition, respectively, of program p with
semantics P[p], and we had also proved that the
program compiles successfully. We could use the
derived inference rules to deduce the liveness of the
compiled code.

F VipLive
P
(CompileProgram p base, base, SizeOf p)

Q

Using the techniques suggested by Gordon[6] future
work could involve deriving a programming logic from
the semantics of Vista based on the definition of
liveness. This would enable the proofs of correctness
of Vista programs to be performed using Hoare style
proof. Since the programming logic would use the
same semantics as that for the compiler correctness
proof, there would be no loss of security.

5 The compiler correctness statement

Several different forms of compiler correctness the-
orem could be proved. If we were only interested in
the safety of programs, a suitable correctness theorem
would have the form:

compiled code semantics D
source program semantics

This is not sufficient when considering liveness prop-
erties, which requires the form:

source program semantics D
compiled code semantics

If we are interested in both safety and liveness we
would prove an equality:

compiled code semantics =
source program semantics

This turns out to be stronger than is required for
deterministic target languages, however. As discussed
above, safety then follows from liveness. We therefore
need only prove a correctness theorem of the second
form to obtain both the results we desire.

A more detailed version of the correctness theorem
we use is given below:

Vql q2 vi.
vista q1 92 A (vl = q1) D
Iv2. vip vl v2 A (v2 = q2)

The semantics of the Vista program is given by vista
and that of the compiled code by vip. The relation
~ once more relates Vip states to the corresponding
Vista state. This correctness theorem states that if
the semantics of a Vista program is such that if an
initial state q1 results in a final state q2, where q1
corresponds to a Vip state v1, and the compiled code
is executed for a sufficient number of cycles, a Vip
state v2 will result which corresponds to g2.

For the same reasons as with the definition of
liveness, the actual compiler correctness statement
used, shown below is more complicated still.

CompilerCorrectness code base size =
Vql q2 vl cs.
(CodeLoaded base (base + size) code cs) A
(Ploaded rep vl base) A
vista ql 92 A
(vi = q1) V (q1 = ERROR) D
(q2 = ERROR) V
Jv2. Vip rep cs (base + size) vl v2 A
(v2 = q2)

A formal proof of a correctness theorem of this form
has been constructed using the HOL system for the
code produced by our compiler.

F Vp base.
CompilerCorrectness
(CompileProgram p base)
base
(SizeOf p)

The proof proceeds by structural induction over the
Vista commands.

6 Conclusions and further work

In summary, we have used the HOL theorem prov-
ing system to prove a generic compiler correctness the-
orem for a compiler for a subset of the Vista language.
We have illustrated the usefulness of this theorem by
deriving an inference rule which deduces safety and
liveness properties of compiled code from properties
of the source code. We have also shown how theorem
proving may be used to perform compilation. This
helps ensure that the compiled code used is that for
which the correctness results were obtained.

The target language for the compiler was a simpli-
fied assembly language. Work is in progress to redo

the proof for a realistic assembly language, Visa, for
the Viper microprocessor. This proof will be for a
larger subset of Vista which includes input and out-
put commands, and will also use a generic word type,
rather than the number type used in the proof pre-
sented. A proof of correctness of a translator from
Visa to Viper machine code will then be performed.
We also intend to define a programming logic for Vista
as described. This would allow proofs of correctness
of Viper machine code to be inferred from Hoare style
proofs of correctness of Vista programs.

Acknowledgements

Mike Gordon helped me to understand the differing
needs of safety and liveness in addition to giving
me much general advice and support. I am grateful
to Jeff Joyce and Clive Pygott for their help and
encouragement. John Kershaw helped iron out the
details of the semantics of Vista. Tom Melham
prompted me to think more closely about the form the
compiler correctness statement should take. Gavin
Bierman made many useful comments about an early
draft of this paper. I would also like to thank everyone
in the Hardware Verification Group at Cambridge, for
the many stimulating meetings and discussions.

This work has been funded by MoD research
agreement AT2029/205.

References

[1] Albert John Camilleri. Executing behavioural
definitions in higher order logic. Technical Re-
port 140, PhD Thesis, University of Cambridge,
Computer Laboratory, February 1988.

[2] Avra Cohn. A proof of correctness of the Viper
microprocessor: The first level. In G. Birtwistle
and P. A. Subrahmanyam, editors, VLSI Speci-
fication, Verification and Synthesis, pages 1-91.
Kluwer Academic Publishers, 1988.

[3] Avra Cohn. Correctness properties of the Viper
block model: The second level. In G. Birtwistle
and P. A. Subrahmanyam, editors, Current
Trends in Hardware Verification and Automated
Theorem Proving, pages 27-72. Springer-Verlag,
1989.

[4] W. J. Cullyer. Implementing safety critical sys-
tems: The Viper Microprocessor. In G. Birtwistle
and P. A. Subrahmanyam, editors, VLSI Speci-
fication, Verification and Synthesis, pages 1-25.
Kluwer Academic Publishers, 1988.

[5] Michael J. C. Gordon. HOL: A proof generating
system for higher order logic. In G. Birtwistle
and P. A. Subrahmanyam, editors, VLSI Specifi-
cation, Verification and Synthesis, pages 73—128.
Kluwer Academic Publishers, 1988.

[6] Michael J. C. Gordon. Mechanizing programming
logics in higher order logic. In G. Birtwistle and
P. A. Subrahmanyam, editors, Current Trends in
Hardware Verification and Automated Theorem
Proving, pages 387-439. Springer-Verlag, 1989.

[7] Jeffrey J. Joyce. Totally verified systems: Link-
ing verified software to verified hardware. In
M. Leeser and G. Brown, editors, Specification,
Verification and Synthesis: Mathematical As-
pects. Springer-Verlag, 1989.

[8] Jeffrey J. Joyce. A verified compiler for a
verified microprocessor. Technical Report 167,
University of Cambridge, Computer Laboratory,
March 1989.

[9] Jeffrey J. Joyce. Generic specification of digital
hardware. Technical Report 90-27, The Univer-
sity of British Columbia, Department of Com-
puter Science, September 1990.

[10] J. Kershaw. Vista user’s guide. Technical
Report 401-86, The Royal Signals and Radar
Establishment, 1986.

[11] Thomas F. Melham. Automating recursive
type definitions in higher order logic. In
G. Birtwistle and P. A. Subrahmanyam, edi-
tors, Current Trends in Hardware Verification
and Automated Theorem Proving, pages 341-386.
Springer-Verlag, 1989.

[12] J. Strother Moore. A mechanically verified
language implementation. Journal of Automated
Reasoning, 5:461-492, 1989.

[13] Susan Stepney, Dave Whitley, David Cooper, and
Colin Grant. A demonstrably correct compiler.
Formal Aspects of Computing, 3:58-101, 1991.

[14] William D. Young. A mechanically verified code
generator. Journal of Automated Reasoning,
5:493-519, 1989.

