
Veri�cation of the MDG Components Library

in HOL

Paul Curzon1, So��ene Tahar2, and Otmane A��t Mohamed3

1 School of Computing Science, Middlesex University, London, UK
p.curzon@mdx.ac.uk

2 ECE Department, Concordia University, Montreal, Canada.
tahar@ece.concordia.ca

3 IRO Department, University of Montreal, Canada.
ait@iro.umontreal.ca

Abstract. The MDG system is a decision diagram based veri�cation
tool, primarily designed for hardware veri�cation. It is based on Multiway
decision diagrams|an extension of the traditional ROBDD approach. In
this paper we describe the formal veri�cation of the component library of
the MDG system, using HOL. The hardware component library, whilst
relatively simple, has been a source of errors in an earlier developmental
version of the MDG system. Thus verifying these aspects is of real utility
towards the veri�cation of a decision digram based veri�cation system.
This work demonstrates how machine assisted proof can be of practical
utility when applied to a small focused problem.

1 Introduction

Veri�cation systems can themselves contain errors. In the worst case this could
result in a faulty application being certi�ed correct. Ideally veri�cation systems
should themselves be formally veri�ed: preferably using a veri�cation system
with a di�erent architecture. In general, this is not practical, as veri�cation sys-
tems are very large pieces of software. However, it can still be useful to verify
aspects of the system, even if a full veri�cation is not completed. In this paper
we investigate the veri�cation of the components library of a decision diagram
based veri�cation system using the HOL theorem prover [11]. The veri�cation
system under investigation is the MDG system [5]. This is a real hardware veri-
�cation system that has been used in the veri�cation of signi�cant hardware ex-
amples [2]. It consists of a simple wide-spectrum hardware description language
(MDG-HDL) in which both structural and behavioral hardware descriptions can
be written. These descriptions are converted to an internal decision diagram rep-
resentation, upon which the veri�cation is performed. A fundamental primitive
of the hardware description language is the table. In its simplest form this is just
a truth table representation of a relation between the values on variables. Used
with don't-care and default values, next state variables and variable entries it
becomes a powerful speci�cation construct that can be used to give behavioral
speci�cations of hardware as abstract state machines (ASM) [5].

Tables are also used internally in the MDG implementation. They provide
a simple and uniform means of implementing other primitive components. The
current implementation of the MDG system provides a library of basic compo-
nents in addition to the table with which hardware can be described. Examples
include
ip-
ops and logic gates. Many of these primitives are implemented in-
ternally as tables. We have veri�ed this library of components, proving that the
table versions implemented in the MDG system are equivalent to the desired
semantics of the components as speci�ed in higher-order logic.

The library is only a small part of the MDG system. However, it is critically
important that the components are correctly implemented. The MDG system
provides a range of veri�cation tools, including property checking, equivalence
checking and reachability analysis. Each of these make use of the library prim-
itives. For example, properties which abstractly can be thought of as temporal
logic formulae are written in (or translated to) the HDL and thus make use of
the library components.

One of the motivations for our work was an error in a table representation
of one component, the JK
ip-
op with enable. This error was discovered in
a developmental version of the system, found during the actual veri�cation of
a hardware design [12]. The system was erroneously indicating there was an
error in the design being veri�ed. The erroneous component had only recently
been added to the system speci�cally because it was needed for the veri�cation of
the hardware design [12] (only a JK
ip-
op variant without enable was available
within the library). This error was corrected in the system prior to our work. We
have demonstrated that the new version is correct and that the other components
implemented as tables are also correct. Furthermore, we have provided precise
formal speci�cations of each library component. Finally we have provided simple
parameterized HOL tactics which can be used to automatically verify future
additions to the library.

2 Related Work

There has been a variety of techniques used to ensure the correctness of ver-
i�cation systems. In the LCF approach [9], also used in the HOL system, an
abstract data type of theorem is used to ensure that only a core of functions
corresponding to the primitive inference rules and axioms of the logic can com-
promise the system. All derived rules call these primitives to create theorems.
Thus the validity of proved theorems is guaranteed by the type system of the
implementation language, provided the primitives are correct.

A second approach experimented with in the HOL system by von Wright [13]
and Wong [14], was that of independent proof checking. In this approach, the
main veri�cation system produces a log of the primitive inference steps used in
a proof. This log can then be checked by an independent proof checker. Such a
checker has to include only implementations of the primitive rules. It can thus be
much simpler than a full theorem prover and is thus less likely to contain errors.
Such a proof checker has been implemented for the HOL system by Wong [14].

Due to its simplicity, verifying such a proof checker is also more tractable. Von
Wright demonstrated this by verifying the speci�cation of a proof checker for the
HOL system against a formal semantics of the HOL logic [13]. This speci�cation
was also used by Wong as the speci�cation for his implementation, thus increas-
ing the con�dence in its correctness. A problem with this approach, however, is
that the proof scripts generated are very large and the time taken to check a
real proof may be intractable.

Other work on the veri�cation of veri�cation systems includes that of Home-
ier and Martin [8] who used the HOL system to verify a veri�cation condition
generator for a simple programming language. Chou and Peled [4] similarly used
HOL to verify a partial-order reduction technique used to reduce the state-space
exploration performed by model checkers. The technique examined is used in the
SPIN system. This was a signi�cant proof e�ort, resulting in almost 7500 lines
of proof script and taking 10 weeks to complete.

3 MDG System

3.1 Multiway Decision Graphs

Multiway Decision Graphs (MDGs) have been proposed recently [5] as a solution
to the data width problem of ROBDD based veri�cation tools. The MDG tool
combines the advantages of representing a circuit at higher abstract levels as is
possible in a theorem prover, and of the automation o�ered by ROBDD based
tools. MDGs, a new class of decision graphs, comprises, but is much broader
than, the class of ROBDDs [1]. It is based on a subset of many-sorted �rst-
order logic, augmented with a distinction between abstract and concrete sorts.
Concrete sorts have enumerations which are sets of individual constants, while
abstract sorts do not. Variables of concrete sorts are used for representing control
signals, and variables of abstract sorts are used for representing datapath signals.
Data operations are represented by uninterpreted function symbols.

An MDG is a �nite, directed acyclic graph (DAG). An internal node of an
MDG can be a variable of a concrete sort with its edge labels the individual

constants in the enumeration of the sort. It can also be a variable of abstract
sort with its edges labeled by abstract terms of the same sort. Finally, it can be
a cross-term (whose function symbol is a cross-operator). An MDG may only
have one leaf node denoted as T, which means all paths in the MDG are true for-
mulae. Thus, MDGs essentially represent relations rather than functions. MDGs
incorporate variables of abstract type to denote data signals and uninterpreted
function symbols to denote data operations. MDGs can also represent sets of
states. They are thus much more compact than ROBDDs for designs containing
a datapath. Furthermore, sequential circuits can be veri�ed independently of the
width of the datapath.

MDGs are used as the underlying representation for a set of hardware veri�ca-
tion tools, providing both validity checking and veri�cation based on state-space
exploration. The MDG tools package the basic MDG operators and veri�cation
procedures [16]. The operators are disjunction, relational product (conjunction
followed by existential quanti�cation) and pruning-by-subsumption. The veri�ca-
tion procedures are combinational and sequential veri�cation. The combinational
veri�cation provides the equivalence checking of two combinational circuits. The
sequential veri�cation provides invariant checking and equivalence checking of
two state machines. The MDG operators and veri�cation procedures are imple-
mented in Quintus Prolog [16].

3.2 MDG-HDL

The MDG tools accept as hardware description a Prolog-style HDL, MDG-
HDL [16], which allows the use of abstract variables and uninterpreted func-
tion symbols. The MDG-HDL description is then compiled into the internal
MDG data structures. MDG-HDL supports structural descriptions, behavioral
descriptions, or a mixture of structural and behavioral descriptions. A structural
description is usually a netlist of components (prede�ned in MDG-HDL) con-
nected by signals. A behavioral description is given by a tabular representation
of the transition/output relation. The tabular constructor is similar to a truth
table but allows �rst-order terms in rows. It allows the description of high-level
constructs as ITE (If-Then-Else) formulas and CASE formulas.

A circuit description includes the de�nition of signals, components and the
circuit outputs. Signals are declared along with their sorts, e.g. signal(x;wordn),
where x is a signal of an abstract sort wordn. Components are declared by
the instantiation of the input/output ports of a prede�ned component module.
For example, a multiplexer with a control signal select of concrete sort having
[0; 1; 2; 3] as an enumeration, inputs: x0; x1; x2; x3 of an abstract sort �, and
output: y of the same abstract sort � is de�ned as:

component(mux1,mux(sel(select),

inputs([(0,x0),(1,x1),(2,x2),(3,x3)]),

output(y))

Besides circuit descriptions, a variety of information, such as sort and func-
tion type de�nitions, symbol ordering and invariant speci�cation, etc., have to
be provided in order to use the applications outlined above.

As part of the MDG software package, the user is provided with a large set of
prede�ned modules such as logic gates, multiplexers, registers, bus drivers, etc.
Besides the logic gates which use Boolean signals, all other components allow
signals with concrete as well as abstract types. Among prede�ned modules we
have a special module called a table. Tables can be used to describe a functional
block in the implementation, as well as in the speci�cation. A table is similar to
the truth table, but it allows �rst-order terms in the rows. A table is essentially
a series of lists, together with a single �nal default value. The �rst list contains

variables and cross-terms. The last element of the list must be a variable (either
concrete or abstract). The other variables in the list must be concrete variables.
The remaining lists consist of the sets of values that the corresponding variables
or cross-terms can take. The last element in the list of values could be a �rst-
order term. This represents an assignment to the output variable. The other
values must be either \don't cares" (represented by `*') or individual constants
in the enumeration of their corresponding variable sort. The last element in a
table is the default value. It is a term giving the value of the output variable when
a set of values arises that is not explicitly given in the table. Fig. 1 illustrates
di�erent representation of an and gate with two inputs x1; x2 and one output
y. Fig. 1(b) shows the MDG-HDL declaration of this gate using the primitive
component and. The behavior of this gate can be described as a table (Fig. 1(c))
which can be written in MDG-HDL as follows:

table([[x1,x2,y],[0,*,0],[1,0,0],[1,1,1]])

This table description is further internally translated into an MDG (decision
diagram) with the variable ordering x1 < x2 < y (Fig. 1(d)).

(input(x1,x2),and
output(y))).

and_gate,
component(

(b) MDG-HDL

Y Y

X2

X1

0

01

1

1 0

T T

(d) MDG

YX2X1

0
01

1 1
0

1

0*

(c) Table

X1

X2

Y

(a) Gate

Fig. 1. Di�erent representations of an and gate

A further example of the use of tables with abstract variables and functions
is given by the following example:

table([[c,leq(x,y),n y],[1,1,x]|y])

which de�nes the function

if (c = 1) and (leq(x; y) = 1) then n y = x else n y = y:

where c is a concrete boolean variable, x is an abstract input variable, y is
an abstract state variable, and n y represents its next state. leq represents a
function symbol that means \less-or-equal". The term y after symbol `j' in the
table description is used as the default value.

4 Formalizing the MDG Library in HOL

The �rst step in the veri�cation is to give formal speci�cations of the library
components to be veri�ed. This is a relatively simple task, since the components
are mainly logic gates and
ip-
ops. Traditional relational hardware semantics
in the style of Gordon [10] can by given. Signals are represented as functions
from time (a natural number) to the value at that time. The semantics of a
component is then a relation between the input signals and the output signals.
For example, the and gate would be speci�ed as:

AND x1 x2 y = 8(t:num). y t = (x1 t) ^ (x2 t)

Here y is the output signal and x1 and x2 are the input signals. Similar spec-
i�cations are given for each component in the library to be veri�ed, as well as for
tables. The de�nition for tables is more complex, requiring recursive de�nitions.

4.1 MDG-Tables

A table can be thought of as taking 5 arguments. The �rst argument is a list
of the inputs, the second is the single output, the third is a list of table rows.
Each row is a list itself, giving one allocation of values to the inputs. The entries
in the list can be either actual values or a special don't-care marker. The latter
matches any value the input could hold. The fourth argument is a list of output
values. Each is the value on the output when the inputs have the values in the
corresponding row. The �nal argument is the default value, taken by the output
if the input values do not match any row.

Thus for example the and gate, speci�ed above could be represented by the
arguments:

([x1, x2], y, [[0,0],[0,1],[1,0],[1,1]], [0, 0, 0, 1], -)

The inputs are x1 and x2, the output is y, the possible values for the inputs are
(0; 0); (0; 1); (1; 0) and (1; 1). The corresponding values on the output are 0; 0; 0
and 1, respectively. Here no default value is needed as all cases are covered.

An alternative version, making use of the don't-care value (given by �), is

([x1, x2], y, [[0,*],[1,0],[1,1]], [0, 0, 1], -)

A more compact version still using the default value would be:

([x1, x2], y, [[1,1]], [1], 0)

If both inputs are 1 then so is the output, otherwise the output is 0. Similarly,
the MDG system's implementation of a JK
ip
op with enable is the table:

([e, j, k, q], nq,

[[0,*,*,0],

[0,*,*,1],

[1,1,0,0],

[1,1,0,1],

[1,0,1,0],

[1,0,1,1],

[1,0,0,0],

[1,0,0,1],

[1,1,1,0],

[1,1,1,1]],

[0,1,1,1,0,0,0,1,1,0], -)

Here, e is the enable signal, q represents the last output and nq the next output.
Our HOL speci�cations are based on the above representation. In fact the

implementation which is in Prolog, uses a slightly di�erent representation, taking
a single list of list argument and a further default value. The �rst version of the
and gate above actually appears in the implementation as the following (with
no default speci�ed).

[[x1, x2, y], [0,0,0],[0,1,0],[1,0,0],[1,1,1]]

Here, the inputs and output appear in a single list, with the latter distin-
guished by its position. In our description above and our HOL treatment we have
separated out the components for clarity of de�nition. It should be noted that
the above representation could not be used in our HOL treatment given below,
as the lists have di�erent types: values as opposed to traces of values (including
don't-care) over time. It is thus possible that we could have made transcription
mistakes from one form to the other. However, it would be relatively simple
to modify our table de�nition to use two arguments: a variable list and a row
list in the same order as in the MDG implementation. This would merely in-
volve adding a wrapper function to the TABLE de�nition, which extracted the
appropriate arguments.

4.2 Table Formalization in HOL

The �rst step in formalizing this de�nition is to de�ne a type for table values.
These can be either a normal value of arbitrary type or a don't-care value. This
is de�ned as a new HOL type, with associated destructor function to access the
value.

Table Val = TABLE VAL of 'a j DONT CARE

TableVal to Val (TABLE VAL (v:'a)) = v

We next de�ne the matching of input values to table values. A match occurs
if either the table value is don't-care, or the value on the input is identical to the
table value. This property must hold for each table entry. It is de�ned recursively
by a function table match.

(Table match inputs [](t:num) = T) ^

(Table match inputs (CONS v vs) t =

(((HD(inputs) t) = TableVal to Val (v:'a Table Val)) _
(v = DONT CARE)) ^

(Table match (TL inputs) vs t))

If there is a match on a given row, the output has the corresponding value.
Otherwise, we must check the next row. If there is no match, the output equals
the default value. This is de�ned recursively on the input list as the relation
table:

(table inps (out:num -> 'b) ([]:('a Table Val list) list) V out default t =

(out t = default t)) ^

(table inps out (CONS v vs) V out default t =

((Table match inps v t) =>

(out t = (HD V out)t) j
(table inps out vs (TL V out) default t)))

The above de�nitions refer to the time of interest, t. A given table will relate a
given input to a given output, if the table relation is true at all times:

TABLE inps (out:num -> 'b) (V outs:('a Table Val list) list) V out default =

8t. table inps out V outs V out default t

The above relation TABLE, thus de�nes the semantics of an MDG table. Using
the HOL notation the Table for the AND component would be speci�ed as:

AND TABLE x1 x2 y =

TABLE [(x1:num->bool);x2](y:num -> bool)

[[TABLE VAL F; TABLE VAL F];

[TABLE VAL F; TABLE VAL T];

[TABLE VAL T; TABLE VAL F];

[TABLE VAL T; TABLE VAL T]]

[FSIG;FSIG;FSIG;TSIG] TSIG

We use the HOL booleans F and T for 0 and 1, respectively. Note that the
values given in the input rows and default value are not values but signals: that
is, functions from time to a value. The constant signals for 0 and 1 are thus
represented by TSIG and FSIG which are just lifted versions of the constants.

FSIG = �(t:num). F

TSIG = �(t:num). T

The de�nition that we give is less
exible than the MDG system's tables
since all the input values are restricted to be of the same type, whereas in the
MDG system they can be of a variety of sorts. In the next subsection we present
a way to deal with this problem.

4.3 Application of the Table De�nition to Multisorts Inputs

In the above formalization of the MDG tables, it is assumed that the inputs of the
table are of the same type. This is true for most components (gates) of the MDG-
HDL library. In order to represent the MDG table of a more general component
with inputs of di�erent types in HOL, we need to extend our formalization to
accommodate a list of inputs (the �rst argument of the table de�nition) with
di�erent types. As an example we present the formalization of the state transition
diagram of the timing block of the Fairisle ATM switch fabric [6] in terms of
an MDG table in HOL. Fig. 2 shows the �nite state machine of the behavior of
this timing block, which consists of three symbolic states (Run,Wait,Route),
and has two inputs (frameStart and anyActive) and one output routeEnable.

els
e

frameStart = 0/routeEnable= 0

RUN WAIT

else

else

ROUTE

fra
mStar

t =
 0 &

 an
yActi

ve =
 1/

 ro
uteE

nab
le

= 1

frameStart = 1/routeEnable=0

Fig. 2. State transitions of the Fairisle switch fabric timing block

The MDG table of the next state function of this state machine is:

[[anyActive,frameStart,timing state,n timing state],

[*,1,run, wait],

[*,0,run, run],

[1,0,wait, route],

[*,0,route,run],

[*,1,route,wait]|wait]

While the inputs and the output are of boolean sort, timing state and n timing state

are of a concrete sort with the enumeration: Run, Wait, Route . We hence
need to create a common type for all the input variables as well as the state
variable timing state in order to use our de�nition of tables in HOL.

Let Timing type val be the states of our machine:

TIMING TYPE VAL = RUN | WAIT | ROUTE

The common type for all the input variables, Timing spec type, is de�ned as:

TIMING SPEC TYPE = TRANS of `a | STATE of TIMING TYPE VAL

Having these ingredients, we derive the HOL de�nition of the above table as:

TABLE [anyActive;frameStart;timing state](timing state o NEXT)

[[DONT CARE;TABLE VAL(TRANS T);TABLE VAL(STATE RUN)];

[DONT CARE;TABLE VAL(TRANS F);TABLE VAL(STATE RUN)];

[TABLE VAL(TRANS T);TABLE VAL(TRANS F);TABLE VAL(STATE WAIT)];

[DONT CARE;TABLE VAL(TRANS F);TABLE VAL(STATE ROUTE)];

[DONT CARE;TABLE VAL(TRANS T);TABLE VAL(STATE ROUTE)]]

[WAITSIG;RUNSIG;ROUTESIG;RUNSIG;WAITSIG] WAITSIG

where Runsig,Waitsig,Routesig, are lifted versions of the constants Run,
Wait and Route.

RUNSIG = �(t:num).(STATE:TIMING TYPE VAL -> bool TIMING SPEC) RUN

WAITSIG = �(t:num).(STATE:TIMING TYPE VAL -> bool TIMING SPEC) WAIT

ROUTESIG = �(t:num).(STATE:TIMING TYPE VAL -> bool TIMING SPEC) ROUTE

4.4 Formal Veri�cation of the Library Components

To verify a library component, we must prove that the semantics of the table used
in the MDG implementation is equivalent to the semantics of the component.
For example, for the and component we prove the theorem:

8x1 x2 y. AND x1 x2 y = AND TABLE x1 x2 y

This can be proved easily in HOL by �rst rewriting with the de�nitions
and then applying the recently added, e�cient tactic MESON TAC. This was
packaged into a simple tactic, Comb mdg tac, that was then used to prove all
combinational components in the library. For sequential components such as the
RS
ip-
op and JK
ip-
ops with and without enable, we use a di�erent tactic,
Seq mdg tac, based on rewriting and cases analysis, that we parameterize with
respect to the input variables.

5 Use of Results

5.1 MDG Components Library

The main result of this work is that we have veri�ed all components of the MDG
component library except a few that are not implemented in terms of tables.
This gives increased con�dence in the MDG system. The work was originally
motivated by an error found in a table in an early version of the system. This
error was introduced because a new component (a JK
ip-
op with enable)
was added to the system on the
y. It is likely that new components will be
added in the future. Tables provide a
exible and convenient way for this to
be done. However, as they consist of tables of 1's and 0's it is easy to make

mistakes. Our HOL theory and automatic proof tool, provide a simple, fast
and convenient method for such future additions to be formally veri�ed. As
for the library components, this consists of giving the formal speci�cation of
the component in HOL, writing the Table de�nition in HOL, setting the goal
and applying the tactic. The proof will of course only be automatic for simple
components of the level of complexity found in the existing library. Users of the
MDG system are liable to want to de�ne their own similar primitive components.
They can use the theory and proof tool in the same way. We have thus provided
a toolkit (albeit limited) for both users and developers of the MDG system.

5.2 HOL Tables Theory

A de�nition and associated theory of tables is a useful addition to HOL in its own
right, as tables provide a
exible means of giving de�nitions of logic functions.
The de�nition we used in our proofs is not suitable directly as a general de�nition,
as it has an explicit notion of time t built in: this was most convenient for our
application as we did wish to include a time component in our de�nitions. A
more general de�nition of a table would have thus unnecessarily complicated
the �nal de�nitions and proofs.

A more suitable de�nition for general use would be:

(Tab match inputs []= T) ^
(Tab match inputs (CONS v vs) =

((HD inputs = TableVal to Val (v:'a Table Val)) _
(v = DONT CARE)) ^ (Tab match (TL inputs) vs))

(TAB inps (out:'b) ([]:('a Table Val list) list) V out default =

(out = default)) ^
(TAB inps out (CONS v vs) V out default =

((Tab match inps v) =>

(out = (HD V out)) |

(TAB inps out vs (TL V out) default)))

5.3 Formal Veri�cation of the MDG System

Some of the library components such as the multiplexer are implemented directly
in terms of MDGs, rather than as a table that is then implemented as an MDG.
The other such components are the register (with and without a control input),
fork (equality of signals), transform (for uninterpreted functional blocks), and
drivers (essentially a guarded command). However, in theory all the components
could be implemented as tables. If this were done, those components could be
veri�ed in the same way as the ones we considered here. Then, the correctness of
the library would depend only on the correctness of the translation of the tables
into MDGs, rather than on the way a series of components were implemented as
MDGs. It is also worth noting that tables have a fairly simple translation into a
basic MDG.

MODULAR
MDG-HDL

FLATTENED
MDG-HDL

TABLES MDG

Proposed Source Languages

ACTL

VHDL / FSM

Fig. 3. Format translations within the MDG system

The above proofs correspond to the �rst step in a larger project to verify
a formal speci�cation of the MDG system [15]. The system can be considered
as a series of translators, translating between di�erent intermediate languages,
as shown in Fig. 3. One step in that process is the translation from the MDG-
HDL language to a subset of the language with only tables as components. This
table subset is then translated into MDGs in a series of further translation steps.
Currently structural, behavioral and property speci�cations are all given in this
low level language. However, translators from specialist higher level languages
are under development as shown in Fig. 3.

The correctness of a translator between two languages can be stated in terms
of the semantics of the languages, as shown in Fig. 4. Essentially this states that
the translation should preserve the semantics of the source language. This is the
traditional form of compiler speci�cation correctness used in the veri�cation of
compilers [3]. The same approach can be used to specify and verify a hardware
veri�cation system such as MDG. For the translation to tables the correctness
theorem would have the form

8h. Sh(h) = St(T(h))

where h is a hardware description, Sh is the semantics of the source language,
St is the semantics of the table subset and T is a functional speci�cation of the
translation between the two. The proof of this theorem proceeds by structural
induction on the source language. It requires lemmas stating that the translation
of each kind of hardware component is correct. These lemmas are in fact the
theorems that we have proved above.

5.4 MDG-HOL Hybrid System

The current work is also of relevance to a further project: namely that of com-
bining the MDG and HOL systems, to give a hybrid hardware veri�cation tool.
The veri�cation of a 16 by 16 switch fabric, already veri�ed in the pure HOL
system [7] is being used as a case study in this project. If results from the
MDG system are to be imported into HOL, then the structural and behavioral
speci�cations used must have HOL equivalents. The hardware semantics used in
the work described here provides such a basis. Using the same semantics in the

hS (h) S (T(h))t

Semantics
of TablesMDG-HDL

Semantics of

=

h tS S

h T(h)T
MDG-HDL Tables

Fig. 4. Compilation correctness

veri�cation of a speci�cation of MDG and as the basis of the combination of the
veri�cation systems means that the translation correctness theorem provides a
justi�cation for the linkage. If di�erent semantic foundations were used in the
two approaches, there would be no guarantee of this.

As the two systems use di�erent speci�cation mechanisms, with the HOL
approach allowing more abstract descriptions, the user of such a hybrid sys-
tem would need to prove the correspondence of the HOL speci�cation and the
form needed for input to the MDG system. In such a proof, the MDG-HDL
speci�cation could be considered as a concrete implementation for which the
HOL speci�cation was the behavioral speci�cation. This is precisely what we
have done for the MDG primitives. The tables provide a concrete MDG-HDL
description, the hardware semantic functions a more intuitive HOL one. Having
proved the equivalence, further HOL proofs would use the latter rather than the
table description.

6 Summary and Conclusions

We have formally speci�ed the semantics of the MDG component library using
HOL. This includes a formalization of the Table construct that forms the heart
of the MDG wide-spectrum hardware description language. We then formally
described the table implementations of each of the hardware components that are
implemented in terms of tables in the MDG system. We veri�ed the correctness
of each table implementation against the formal speci�cation of the component.
This was done using two simple automated tactics in HOL, one for combinational
library components and one for sequential ones. These tactics were su�ciently

exible and powerful to verify all table-based components of the MDG library.

We have thus proved the correctness of one small but crucial part of the
MDG system, thus increasing the con�dence of users of MDG have of the system.
Whilst the table implementations we veri�ed are a relatively simple part of the
system, errors have previously been uncovered in such table de�nitions. Our
veri�cation is thus of practical utility.

We have demonstrated how a theorem prover can be of utility on real and
highly complex software, if a small and well-de�ned problem is tackled. Fur-
thermore, by verifying a decision diagram system using a veri�cation system
implemented on a di�erent paradigm, we have reduced the possibility that the
veri�cation is
awed due to an error in the veri�cation system used.

We have also given formal speci�cations of the library components, which
will help ensure users have an accurate understanding of those components and
so use them correctly. The automated HOL proof tool can be used by system de-
signers to ensure that new components added to the MDG system are correctly
implemented. Similarly users of MDG who need to de�ne their own basic com-
ponents in terms of tables can use the HOL proof tool to ensure the correctness
of those tables.

Finally, the work done forms the �rst step of a larger project to verify a formal
speci�cation of the MDG system. The theorems proved are the main lemmas that
would be needed in verifying one stage of such a formal speci�cation. Similarly,
the hardware semantics given for the components are an essential step in the
ongoing project to combine the HOL and MDG systems. By using the same
semantics for both these projects we open the way for linking the correctness
proof of MDG with hybrid proofs of hardware using the combined system. We
have also paved the way towards providing a toolkit that can be used by both
the users of the combined MDG system and developers of that system.

References

1. R. Bryant. Graph-based Algorithms for Boolean Function Manipulation. IEEE

Transactions on Computers, C-35(8):677{691, August 1986.
2. E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar and Z. Zhou. Automated

Veri�cation with Abstract State Machines Using Multiway Decision Graphs. In T.
Kropf, editor, Formal Hardware Veri�cation: Methods and Systems in Comparison,
Lecture Notes in Computer Science 1287, State-of-the-Art Survey, pages 79{113.
Springer Verlag, 1997.

3. L.M. Chirica and D.F. Martin. Toward Compiler Implementation Correctness
Proofs. ACM Transactions on Programming Languages and Systems, 8(2):185{
214, 1986.

4. C.-T. Chou and D. Peled. Formal Veri�cation of a Partial-Order Reduction Tech-
nique for Model Checking. In T. Margaria and B. Ste�en, editors, Tools and Algo-

rithms for the Construction and Analysis of Systems, Lecture Notes in Computer
Science, Volume 1055, pages 241{257. Springer-Verlag, 1996.

5. F. Corella, Z. Zhou, X. Song, M. Langevin and E. Cerny. Multiway Decision
Graphs for Automated Hardware Veri�cation. Formal Methods in System Design,
10(1):7{46, 1997.

6. P. Curzon. The Formal Veri�cation of the Fairisle ATM Switching Element: an
Overview. Technical Report no. 328, University of Cambridge, Computer Labora-
tory, March 1994.

7. P. Curzon and I.M. Leslie. A Case Study on Design for Provability. In Proc. of

the International Conference on Engineering of Complex Computer Systems, pages
59{62. IEEE Computer Society Press, November 1995.

8. P.V. Homeier and D.F. Martin. A Veri�ed Veri�cation Condition Generator. The
Computer Journal, 38(2):131{141, 1995

9. M.J.C. Gordon, R. Milner and C. Wadsworth. Edinburgh LCF: A Mechanical
Logic of Computation. Lecture Notes in Computer Science, Volume 78. Springer
Verlag, 1979.

10. M.J.C. Gordon. HOL: A Proof Generating System for Higher-order Logic. In
G. Birtwistle and P.A. Subrahmanyam, editors, VLSI Speci�cation, Veri�cation

and Synthesis, pages 73{128. Kluwer Academic Publishers, 1988.
11. M.J.C. Gordon and T.F. Melham. Introduction to HOL: A Theorem Proving En-

vironment for Higher-order Logic. Cambridge University Press, 1993.
12. S. Tahar, Z. Zhou, X. Song, E. Cerny and M. Langevin. Formal Veri�cation of

an ATM Switch Fabric using Multiway Decision Graphs. Proc. IEEE Sixth Great

Lakes Symposium on VLSI, Ames, Iowa, USA, pages 106{111. IEEE Computer
Society Press, March 1996.

13. J. von Wright. Representing Higher-Order Logic Proofs in HOL. The Computer

Journal, 38(2):171{179, 1995
14. W. Wong. Recording and Checking HOL Proofs. In E.T. Schubert, P.J. Windley,

and J. Alves-Foss, editors, Higher-Order Logic Theorem Proving and Its Applica-

tions, Lecture Notes in Computer Science, Volume 971, pages 353{368. Springer-
Verlag, 1995.

15. H. Xiong and P. Curzon. The Veri�cation of a Translator for MDG's Components
in HOL. To be presented at MUCORT'98, Computers and Engineering in the
Millennium, Middlesex University, April 1998.

16. Z. Zhou and N. Boulerice. MDG Tools (V1.0) User's Manual. University of Mon-
treal, Dept. D'IRO, 1996.

