
Middlesex University

School of Computing Science

Technical Report

ISSN 1462-0871

Comparing HOL, MDG and VIS:

A Case Study on the Veri�cation

of an ATM Switch Fabric

Paul Curzonz, So��ene Taharx and Jianping Lux

z School of Computing Science, Middlesex University, UK
x Dept of Electrical and Computer Engineering, Concordia University,Canada.

July 1999

CS-99-05

Research Administrator
School of Computing Science

Middlesex University
Bounds Green Road
London N11 2NQ

U.K.
Tel +44 181 362 6336
Fax +44 181 362 6411

Email s.alhassan@mdx.ac.uk
http://www.cs.mdx.ac.uk/

Abstract

There exist a wide range of hardware veri�cation tools, some based on interactive
theorem proving and other more automated tools based on decision diagrams. In
this paper, we compare three di�erent veri�cation systems covering the spectrum
of today's veri�cation technology. In particular, we consider HOL, MDG and VIS.
HOL is an interactive theorem proving system based on higher-order logic. VIS is
an automatic system based on ROBDDs and integrating veri�cation with simulation
and synthesis. The MDG system is an intermediate approach based on Multiway
Decision Graphs providing automation while accommodating abstract data sorts,
uninterpreted functions and rewriting. As the basis for our comparison we used all
three systems to independently model and verify a fabricated ATM communications
chip: the Fairisle 4�4 switch fabric.

An earlier version of this report appeared as: S. Tahar, P. Curzon, and J. Lu:
Three Approaches to Hardware Veri�cation: HOL, MDG and VIS Compared; In:
Gopalakrishnan, G. and Windley, P. (Eds.), Formal Methods in Computer-Aided

Design, Lecture Notes in Computer Science 1522, Springer Verlag, 1998, pp. 433-
450.

A comparison of HOL and MDG which this work extends is to appear in the
Nordic Journal of Computing.

i

ii

Contents

1 Introduction 1

2 Related Work 2

3 The Fairisle 4�4 Switch Fabric 3

4 The HOL Veri�cation of the Fabric 5

4.1 The HOL Theorem-Proving System 5
4.2 The Structural Speci�cations . 6
4.3 The Behavioural Speci�cations . 9
4.4 The Veri�cation Process . 11
4.5 Time Taken . 12
4.6 Errors . 15
4.7 Scalability . 15

5 The MDG Veri�cation of the Fabric 16

5.1 The MDG Veri�cation System . 16
5.2 The Structural Speci�cations . 18
5.3 The Behavioural Speci�cations . 19

5.3.1 ASM Behavioural Speci�cation 19
5.3.2 Speci�cation of Properties . 20

5.4 The Veri�cation Process . 21
5.4.1 Equivalence Checking . 21
5.4.2 Property Checking . 23

5.5 Time Taken . 23
5.6 Errors . 25
5.7 Scalability . 25

6 The VIS Veri�cation of the Fabric 25

6.1 The VIS Veri�cation System . 26
6.2 The Structural Speci�cations . 26
6.3 The Behavioural Speci�cations . 27
6.4 The Veri�cation Process . 28

6.4.1 Property Checking . 29
6.4.2 Equivalence Checking . 29

6.5 Time Taken . 30
6.6 Errors . 32
6.7 Scalability . 32

7 Conclusions 32

iii

List of Figures

1 The Fairisle ATM Switch . 3
2 The Routing Byte of a Fairisle ATM Cell 4
3 The Fairisle ATM Switch Fabric . 5
4 The DMUX4T2 multiplexer circuit 7
5 The Timing Diagram for the Acknowledgment Output 9
6 Time Taken to Verify the Fabric Modules using HOL 13
7 Time Taken to Verify Variations on the Fabric Design using HOL . . 14
8 ASM Behavioural Speci�cation . 20
9 The Environment State Machine of the Fairisle ATM 21
10 Behavioural FSM of the Fabric Timing Block 28

List of Tables

1 Experimental Results for the MDG Veri�cation 24
2 Experimental Results for the VIS Model Checking 31
3 Experimental Results for the VIS Equivalence Checking 31
4 Experimental Results for the VIS Equivalence Checking with Errors . 32
5 Summary of the Comparison . 35

Glossary

ASM Abstract State Machine
ATM Asynchronous Transfer Mode
BDD Binary Decision Diagram
BLIF-MV The Intermediate Language used by VIS
CTL Computation Tree Logic
DAG Directed Acyclic Graph
FSM Finite State Machine
HDL Hardware Description Language
HOL Higher-Order Logic (an Interactive Proof System)
ITE If-Then-Else Formulae
LCF Logic for Computable Functions (an Interactive Proof System)
MDG Multiway Decision Graph
PVS Prototype Veri�cation System (an Interactive Proof System)
ROBDD Reduced Order Binary Decision Diagram
RTL Register Transfer Level
SMV Symbolic Model Veri�er (an Automated Veri�cation System)
VIS Veri�cation Interacting with Synthesis

(an Automated Veri�cation System)

iv

1 Introduction

Formal hardware veri�cation techniques have established themselves as a comple-
mentary means to simulation for the validation of digital systems due to their po-
tential to give very strong results about the correctness of designs. Many aca-
demic and commercial veri�cation tools have emerged in recent years, which can
be broadly classi�ed into two contrasting formal veri�cation techniques: interactive
formal proof and automated decision graph based veri�cation. This paper compares
and contrasts such tools using an Asynchronous Transfer Mode (ATM) switch fabric
as a case study.

In the interactive proof approach, the circuit and its behavioural speci�cation are
represented in the logic of a general purpose theorem prover. The user interactively
constructs a formal proof to prove a theorem stating the correctness of the circuit.
Many di�erent proof systems with a variety of interaction approaches have been
used. In this paper we consider one such system: HOL [13], an LCF style proof
system based on higher-order logic.

In the automated decision diagram approach the circuit is represented as a state
machine. Techniques such as reachability analysis are used to automatically ver-
ify given properties of the circuit or verify machine equivalence. We consider the
MDG [5] and VIS [3] tools. The VIS tool is based on a multi-valued extension of
pure ROBDDs (Reduced Ordered Binary Decision Diagrams [2]). The MDG system
uses Multiway Decision Graphs [5] which subsume ROBDDs while accommodating
abstract sorts and uninterpreted function symbols.

As the basis of our comparison, we used HOL, MDG and VIS to independently
verify the Fairisle 4�4 switch fabric [18]1. This is a fabricated chip which forms
the heart of an ATM communication switch. The device, designed at the Univer-
sity of Cambridge, is used for real applications in the Cambridge Fairisle network.
It switches data cells from input ports to output ports within the ATM switch,
arbitrating clashes and sending acknowledgments. It was not designed for the veri-
�cation case study. Indeed, it was already fabricated and in use, carrying real user
data, prior to any formal veri�cation attempt.

We thus based the comparison study on a signi�cant, real hardware design. A
similar approach was also taken by Angelo et al. [1] when comparing HOL and the
Boyer-Moore theorem prover. An alternative approach is to look at a wide range of
small examples [17]. The latter helps ensure that conclusions apply to more than
just a single example. However, a danger is that issues relevant to real designs are
not raised. For example, a major concern for veri�cation technologies is whether
they scale to large designs. This is clearly of great interest to industry. If only small
examples are considered, the problem does not arise. The two approaches are clearly
complementary, and are both of importance.

The outline of the paper is as follows. In the next section we overview related
work. In Section 3 we give an overview of the hardware considered: the Fairisle 4�4
switch fabric. We describe its veri�cation using HOL, MDG and VIS in Sections 4,

1See URL http://www.cl.cam.ac.uk/Research/HVG/atmproof/ for more details of Fairisle, the
4�4 fabric design and the separate veri�cation projects.

1

5 and 6, respectively. For each, we overview the veri�cation approach and the
structural and behavioural speci�cation methods. We also discuss for each the time
taken, the error detection capabilities, and scalability issues. Finally, in Section 7
we draw conclusions comparing and contrasting di�erent aspects of HOL, MDG and
VIS.

2 Related Work

There has been a vast amount of work on formal hardware veri�cation. We sum-
marise here the work that is directly related to our study on verifying network
hardware components.

Herbert [15] used HOL to formally verify the ECL chip: a local area network
interface which formed part of the Cambridge Fast Ring. This is of roughly similar
complexity to the circuit we considered, though our HOL proof took less time,
demonstrating the increased maturity of the system.

Chen et al. at Fujitsu Digital Technology Ltd. [4] veri�ed an ATM circuit that
makes high-speed switching operations at 156 MHz and consists of about 111K
gates. When the circuit was manufactured it showed an abnormal behaviour under
certain circumstances. Using the SMV tool [22], the authors identi�ed the design
error by checking some properties expressed in Computational Tree Logic [22]. Due
to the restriction of the Boolean computation used by SMV and in order to avoid
a state space explosion, they had to abstract the data width of addresses from 8
bits to 1 bit, and the number of addresses in the Write Address FIFO from 168
to 5. Although the design error was diagnosed, there is no proof showing that the
abstracted circuit was itself correct. Later, Rajan et al. [25] used a combination of
simulation, theorem proving and model checking based on PVS [23] to validate a
high-level ATM switch model from Fujitsu Ltd. The authors used model checking
to verify some control components in the ATM model, and applied exhaustive sim-
ulation to verify some operational components. Theorem proving was then applied
to verify the whole ATM switch model. They discovered bugs in the high-level ATM
model which had been presumed correct by simulation. More recently, Planisamy
and Tahar [24] veri�ed using VIS model checking the Egress routing logic of an ATM
RCMP (Routing, Cell Counting, Monitoring and Policing) design from PMC Sierra,
Inc.

Schneider et al. [26] formally veri�ed the Fairisle 4�4 switch fabric using a veri-
�cation system based on the HOL theorem prover, MEPHISTO. They described the
structure of each of the modules used in the hardware design hierarchically down to
the gate level and provided their behavioural speci�cations using hardware formulas.
Although they automated the veri�cation of lower-level hardware modules which im-
plement the top-level block units, they did not accomplish the complete veri�cation
of the intended overall behaviour of the switch fabric against its implementation.

Other groups have also used the 4�4 fabric as a case study. Coupet-Grimal
and Jakubiec have used it in their work using the Coq proof system for hardware
veri�cation [16]. Garcez has also veri�ed some properties of the 4�4 fabric using

2

the HSIS model checking tool [10].
A variation of the 4�4 fabric can be used in the design of a larger 16�16 fabric,

by connecting 8 of the smaller designs in a delta network. Curzon has veri�ed
such a 16�16 fabric using HOL [8]. Voicu et al. [28] veri�ed using VIS model
checking an abstract version of the port controllers of the Fairisle ATM switch.
This latter veri�cation has been combined with that of the switch fabric to obtain
the veri�cation of the entire Fairisle ATM switch using VIS [21].

3 The Fairisle 4�4 Switch Fabric

We used the Fairisle switch fabric as the basis of our study. It is a good choice for
a comparison study such as this for several reasons. It is a real, fabricated design
which was not designed as a veri�cation case study. It therefore gives a real test of
the veri�cation systems. Hardware designed to be a veri�cation case study is likely
to be over simpli�ed and thus problems that would arise for a real design may be
missed. While not being a trivial design, it is simple enough for a veri�cation to be
performed in a reasonable amount of time. A signi�cant feature is that it combines
control hardware with a datapath. This combination causes problems for traditional
BDD based veri�cation systems. Furthermore, control information occurs actually
within the data. This prevents veri�cation of a version with a 1-bit reduced width
from being possible { a standard technique in decision diagram based veri�cation.

The Fairisle switch forms the heart of the Fairisle network. It consists of a se-
ries of port controllers connected to a central switch fabric. In this paper, we are
concerned with the veri�cation of the switch fabric which is the core of the Fairisle
ATM switch. The port controllers provide the interface between the transmission
lines and the switch fabric, and synchronize incoming and outgoing data cells, ap-
pending control information to the front of the cells in a routing byte.

0

1

2

3

transmission
lines

controllers
input port

dataIn0
ackOut0
dataIn1
ackOut1
dataIn2
ackOut2
dataIn3
ackOut3

ATM

Switch

Fabric

controllers
output port

0

1

2

3

transmission
lines

dataOut0
ackIn0

dataOut1
ackIn1

dataOut2
ackIn2

dataOut3
ackIn3

frameStart

Figure 1: The Fairisle ATM Switch

A cell consists of a �xed number of data bytes which arrive one at a time.
The fabric switches cells from the input ports to the output ports according to
the routing byte (header) which is stripped o� before the cell reaches the output
stage of the fabric. If di�erent port controllers inject cells destined for the same

3

output port controller (indicated by route bits in the routing byte) into the fabric
at the same time, only one will succeed|the others must retry later. The routing
byte also includes a priority bit (priority). It is used by the fabric during round-
robin arbitration giving preference to cells with the priority bit set. The fabric
sends a negative acknowledgment to the unsuccessful input ports, and passes the
acknowledgment from the requested output port to the successful one.

01234567

route priorityspare (unused) active

Figure 2: The Routing Byte of a Fairisle ATM Cell

The port controllers and switch fabric all use the same clock, hence bytes are
received synchronously on all links. They also use a higher-level cell frame clock|
the frame start signal, which ensures the port controllers inject data cells into the
fabric so routing bytes arrive together. The fabric does not know when this will
happen. Instead, it monitors the active bit of the routing bytes: when any goes high
the cells have arrived. If no input port raises the active bit throughout the frame
then the frame is inactive|no cells are processed; otherwise it is active.

The behaviour of the switch fabric is cyclic. In each cycle or frame, it waits for
cells to arrive, reads them in, processes them, sends successful ones to the appropri-
ate output ports, and sends acknowledgments. It then waits for the arrival of the
next round of cells.

Figure 3 shows a block diagram of the 4�4 switch fabric. It is composed of an
arbitration unit (timing, decode, priority �lter and arbiters), an acknowledgment
unit and a dataswitch unit. The timing block controls the timing of the arbitration
decision based on the frame start signal and the time the routing bytes arrive.
The decoder reads the routing bytes of the cells and decodes the port requests
and priorities. The priority �lter discards requests with low priority which are
competing with high priority requests. It then passes the resulting request situation
for each output port to the arbiters. The arbiters (in total four|one for each port)
make arbitration decisions for each output port and pass the result to the other
units with the grant signal. The arbiters indicate to the other units when a new
arbitration decision has been made using the output disable signals. The dataswitch
unit performs the switching of data from input port to output port according to the
latest arbitration decision. The acknowledgment unit passes acknowledgment signals
to the input ports. Negative acknowledgments are sent until a decision is made.

Each unit is repeatedly subdivided down to the logic gate level, providing a
hierarchy of modules. The design has a total of 441 basic components including 162
1-bit
ip
ops. It is built on a 4200 gate equivalent Xilinx programmable gate array.
The switching element can be clocked at 20 MHz and frame start pulses occur every
64 clock cycles.

4

8
8
8
8

1

1
1

1

1616

1
1
1
1

1

PR
IO

R
IT

Y
FI

L
T

E
R

ackIn0
ackIn1
ackIn2
ackIn3

dataOut1
dataOut0

dataOut2
dataOut3R

eg
is

te
rs

1
1
1
1

8
8
8
8

8
8
8
8

8
4

ackOut1
ackOut0

ackOut3
ackOut2

dataIn0
dataIn1
dataIn2
dataIn3 R

eg
is

te
rs

frameStart

4
4

4
4

2

32

TIMING

D
E

C
O

D
E

R

ou
tp

ut
D

is
ab

le
gr

an
t

A
R

B
IT

E
R

S

R
eg

is
te

rs
R

eg
is

te
rs

ACKNOWLEDGE

DATASWITCH

ARBITRATION

Figure 3: The Fairisle ATM Switch Fabric

4 The HOL Veri�cation of the Fabric

In the �rst study, the fabric was veri�ed using the HOL Theorem-Proving System.
Formal structural and behavioural speci�cations were written for each module in
the design, and a correctness theorem for each proved. These theorems were then
used to construct a single correctness theorem for the whole fabric design relating
its gate-level structural speci�cation to its high level behavioural speci�cation.

4.1 The HOL Theorem-Proving System

The HOL theorem proving system is an LCF-style [11] interactive theorem prover
for higher-order logic [13]. In our work the HOL90 implementation of HOL was
used. The original HOL system was intended as a tool for hardware veri�cation.
However, it is actually a general-purpose proof system that has subsequently been
used in a wide variety of application areas. It provides a range of proof commands
of varying sophistication, including rewriting tools and decision procedures. It is
also fully user-programmable, allowing user-de�ned, application-speci�c proof tools
to be developed. The basic interface to the system is a Standard ML interpreter.
Standard ML is both the implementation language of the system and the meta-
language in which proofs are written. Proofs are input to the system as calls to
Standard ML functions.

The system is very
exible and a variety of di�erent proof styles are supported.
The main styles, however, are forwards and backwards proof. In the former style, to
create new theorems, the user calls functions corresponding to axioms or inference
rules. The latter are applied to previously proved theorems. Further theorems are
created by applying other inference rules to the newly created theorems. Eventually,
in this way, the desired theorem is proved. In backwards proof, the user sets the

5

desired theorem as a goal. Tactics are then applied which break the goal into
simpler subgoals in such a way that if a corresponding inference rule was applied
to the subgoals, the theorem of the goal would be obtained. Tactics are repeatedly
applied to the subgoals until they can be trivially proved, at which point the original
goal can be made into a theorem. This is actually done by applying the inference
rules which correspond to the applied tactics in a forwards manner, automatically.
In practice, a mixture of these two styles is used, with forwards proof interspersed
within backwards proofs.

The system represents theorems by a Standard ML abstract type. The only
way a theorem can be created is by applying a small set of primitive inference rules
that correspond to the primitive rules of higher-order logic. More complex inference
rules and tactics must ultimately call a series of primitive rules to do the work. This
means that the user can have a great deal of con�dence in the results of the system.
User programming errors cannot cause a non-theorem to be erroneously proved.
That could only occur if there were errors in the few, relatively simple functions
corresponding to the primitive inference rules of the system.

4.2 The Structural Speci�cations

The structural speci�cation of a design describes its implementation: the compo-
nents it consists of and how they are wired together. The original designers of the
fabric used a relatively simple HDL, (Qudos HDL [9]), to give structural descriptions
of the hardware. This description was used to simulate the design prior to fabrica-
tion. The Xilinx netlist was also generated from this description. The descriptions
used in the veri�cation were hand-derived from the Qudos descriptions. An example
of a Qudos HDL speci�cation is given below:

DEF DMUX4T2(d[0..3],x:IN;dOut[0..1]:IO); xBar:IO;

BEGIN Clb:=XiCLBMAP5i20(d[0..1],x,d[2..3],dOut[0..1]);

InvX:= XiINV(x,xBar);

B[0]:= AO(d[0],xBar,d[1],x,dOut[0]);

B[1]:= AO(d[2],xBar,d[3],x,dOut[1]);

END;

This is the description of a multiplexer circuit (see Figure 4). It takes a 4 bit input
d and a 1 bit input x, producing a 2-bit output dOut. xBar is an internal signal.
The Clb statement is a dummy declaration providing information about the way
the component design should be mapped into a Xilinx gate array. The multiplexer
implementation consists of three components. XiINV is an inverter and the AO

components are AND-OR logic gates. Wiring between modules is indicated by the
use of common variable names. For example, xBar is an output of the inverter and
an input to the AO gates.

The descriptions needed to perform a veri�cation are similar to those used for
simulation. However, for veri�cation they must be written in a language with a
formally de�ned semantics, which can be reasoned about easily. In the HOL veri�-
cation, higher-order logic itself was used for this purpose. The formal speci�cations

6

AO

AO

dOut[0]

dOut[1]

xBar

d[0][0]

d[1][0]

d[1][1]

x

d[0][1]

Figure 4: The DMUX4T2 multiplexer circuit

were developed by manually translating the original description into higher-order
logic.

Hardware components are modeled in HOL using relations on the inputs and
outputs [14]. For example, XiINV(in,out) is used to represent an inverter with a
single input wire, in, and a single output wire, out. An input and output wire are
in the relation XiINV if at all times the output is a negated version of the input. The
wires themselves are represented by functions from time to the value on the wire at
that time. For an inverter, the values are represented by booleans. However, wires
can also hold more complex values such as words (e.g., a byte). The basic building
blocks used in the HOL speci�cations were the basic units of the simulator used by
the designers: logic gates (such as XiINV) and single bit registers.

Conjunction (^) is used to join multiple components. As in Qudos HDL, the
wiring is indicated by the use of the same variable as arguments to di�erent modules.
Individual bits of words are referenced using the SBIT operator. Thus, the following
represents a circuit consisting of an inverter and a single AO unit, with the output
of the former (xBar) being one of the inputs of the latter.

XiINV(x,xBar) ^
AO((y1,xBar, y2, x), dOut)

Internal wires can be hidden using the LOCAL quanti�er. This is actually just
an alternative name for the existential quanti�er. Thus, to internalize xBar in the
above we could write:

LOCAL xBar.

XiINV(x,xBar) ^
AO((y1,xBar, y2, x), dOut)

7

The following is a HOL version of the module de�nition, that corresponds directly
to the full Qudos de�nition of the above multiplexer example:

DMUX4T2((d,x),dOut) =

LOCAL xBar.

XiINV(x,xBar) ^
AO((SBIT 0 d,xBar,SBIT 1 d, x), SBIT 0 dOut) ^
AO((SBIT 2 d,xBar, SBIT 3 d, x), SBIT 1 dOut)

As can be seen from this example, Qudos structural descriptions can be mimicked
very closely in HOL up to surface syntax. However, the extra expressibility of HOL
was used to simplify and generalize the description. For example, in HOL words
of words are supported. Therefore, a signal carrying 4 bytes can be represented as
a word of 4 8-bit words, rather than as 4 separate signals or as one 32-bit signal.
Similarly, we can model the input, d, of the multiplexer as 2 words of 2 bits (its
natural structure). Its structural description then becomes:

DMUX4T2((d,x),dOut) =

LOCAL xBar.

XiINV(x,xBar) ^
AO((SBIT 0 (SBIT 0 d),xBar,SBIT 1 (SBIT 0 d), x), SBIT 0 dOut) ^
AO((SBIT 0 (SBIT 1 d),xBar,SBIT 1 (SBIT 1 d), x), SBIT 1 dOut)

With the structured version of d, the two occurrences of AO become the same
up to the inner indices. We can therefore improve on the above by using a single
occurrence of AO and the module duplication operator, FOR. It is just a bounded
universal quanti�er.

DMUX4T2((d,x),dOut) =

LOCAL xBar.

XiINV(x,xBar) ^
FOR i :: 0 TO 1 .

AO((SBIT 0 (SBIT i d),xBar,SBIT 1 (SBIT i d), x), SBIT i dOut)

In HOL, arithmetic can also be used to specify which bit of a word is connected
to an input or output of a component. For example, we can specify that for all i, the
2i-th bit of an output is connected to the i-th bit of a subcomponent. This, again,
meant that for the fabric we could avoid writing essentially identical pieces of code
several times, as was necessary in the Qudos speci�cations. When an additional
module, used in several places, is introduced, the veri�cation task is reduced. This
is because that module needs only be veri�ed once, rather than for every instance.

It should be stressed that while the descriptions of the implementation were mod-
i�ed in the ways outlined above, no simpli�cation was made to the implementation
itself to facilitate the veri�cation. The simpli�cations that were made were to the
surface description (such as grouping components into extra modules). The netlists
of the structural speci�cations used were intended to correspond to that actually
implemented. This was not checked. One way this could be done is to compare the
netlist descriptions derived from the two structural descriptions. However, we did
not have a tool to derive the netlist from a HOL description.

8

4.3 The Behavioural Speci�cations

The behavioural speci�cation against which the structural speci�cation was veri�ed
describes the actual, unsimpli�ed behaviour of the switch fabric. It is presented at a
similar level of abstraction to that used informally by the designers. It describes the
behaviour over a frame in terms of timing diagrams represented as interval operators.
Within the interval, the values output are functions of the values input and state at
earlier times.

A frame is speci�ed to be an interval of time in which:

� at the start of the interval, the frame start signal is high;

� at the end of the interval, the frame start signal is high;

� the frame start signal is low at all other times in the interval; and

� the end time (te) is later than the start time (ts).

A frame can then be either active or inactive. This is determined by an additional
signal active derived from information in the cell headers. It indicates the arrival
of a cell. An inactive frame is one in which this signal remains low throughout the
frame. In an active frame, it remains low until some speci�ed active time (th), at
which point it goes high. Its value for the remainder of the frame is then unspeci�ed.
This is shown in Figure 5. Other restrictions are placed on the precise time within
the frame when the active signal can occur. If it arises too close to the ends of the
frame, then the fabric does not function correctly. The environment of the fabric
must ensure that this does not occur. The precise behaviour in such situations
can be omitted from the speci�cations since it is erroneous. This is a di�erence
between the HOL and the MDG speci�cations. In the latter the behaviour in all
circumstances must always be speci�ed. This means the amount of speci�cation
work is less in this respect in HOL.

ts

th

th+3

te
ts th te

ackAframe

defines

as an active
frame

, ,frameStart

active

ackIn

ackOut

Figure 5: The Timing Diagram for the Acknowledgment Output

As an example of a behavioural speci�cation, consider the speci�cation for the
acknowledgment signal on a frame where cell headers arrive at time th. The predicate

9

AFRAME speci�es that we are dealing with intervals corresponding to such active
frames. The ackOut signal must be zeroed (speci�ed by ZEROW) until time th + 3.
Thereafter, its value at a given time is speci�ed by the function AckAframe. It
depends on the arbitration decision made. This in turn depends on the value of the
data injected into the fabric at time th (the header), the value of the last arbitration
decision, and the value of the acknowledgments coming in from the output ports at
the time in question. This functional behaviour is speci�ed by a function argument
to the interval operator, DURING. This speci�cation is illustrated diagrammatically
in Figure 5.

(AFRAME ts th te frameStart active) �
STABLE (ts + 1) (th + 3) ackOut (ZEROW ...) ^
DURING (th + 3) (te + 1) ackOut

(�t. AckAframe (d th) (last (th + 2)) (ackIn t))

In the above, last represents the state of the most recent arbitration decisions.
STABLE is an interval operator similar to DURING. It speci�es that the given signal
has some constant value over an interval.

Other clauses in the speci�cation describe the behaviour over an inactive frame
in which no cells arrive. A similar set of clauses are given for the behaviour of the
data output lines and the internal state, last. A feature of this style of speci�cation
is that the cell frame is very explicit in the description. This is a di�erence to the
state machine based speci�cation style used in MDG (described later).

In the HOL veri�cation, it is not su�cient to simply provide a behavioural speci-
�cation for the whole design. Each module is veri�ed independently, as described in
the next section. This means we must provide behavioural speci�cations for each of
the 43 distinct modules in the design. However, once done for a particular module,
this work does not need to be repeated if the module is reused.

The speci�cations of the more complex modules at the top of the design hierarchy
were similar to that given above. The simpler ones at the bottom of the hierarchy, for
which the frame structure was not applicable, were given point-time speci�cations
rather than interval ones. For example, the speci�cation of DMUX4T2 whose structural
speci�cation was given earlier is:

DMUX4T2 SPEC ((d, x), dOut) =

8t. dOut t = Mux (x t) (d t)

This states that at any time, t, the output, dOut, is a function of the inputs, x and
d, at that point in time. That function is speci�ed by Mux. It is de�ned in terms of
general operators on the basic datatypes: BV which turns a boolean into a natural
number and BITS which selects the indicated bit from each word within a word of
words.

Mux x d = BITS (BV x) d

10

4.4 The Veri�cation Process

The veri�cation of the 4�4 switch fabric used standard techniques for hardware
veri�cation using higher-order logic [12, 14]. It was structured hierarchically follow-
ing the module structure of the implementation. This hierarchical, modular nature
of the proof facilitated the management of the complexity of the proof. Both the
structural and behavioural speci�cations of each module were given as relations in
higher-order logic. This meant that a correctness statement could be stated using
logical implication for \implements". In general, the correctness statement thus had
the form:

` assumptions on environment �
(structure � behaviour)

i.e., under certain assumptions on the environment, the structural speci�cation im-
plements the behavioural speci�cation.

The internal state, which is an explicit argument to the behavioural speci�cation
but implicit in the structural description (within the registers), is represented by an
existentially quanti�ed variable. Inputs and outputs are represented by universally
quanti�ed variables. Thus, the overall correctness statement (with details of word
sizes omitted for the sake of exposition) has the form:

8ackIn ackOut dOut d frameStart.

ENVIRONMENT frameStart d �
FABRIC4B4 ((d,frameStart,ackIn), (dOut, ackOut)) �
9last.
FABRIC4B4 SPEC last ((d,frameStart,ackIn), (dOut, ackOut))

The correct operation of the fabric relies on an assumption about the environ-
ment. In particular, cells must not arrive at certain times within two clock cycles of
a frame start. The relation ENVIRONMENT, above, speci�es this condition in a general
way. This di�ers from the MDG veri�cation where a very speci�c condition is given
which corresponds to one particular way of satisfying the general condition.

A correctness theorem of the above form was proved for each module stating
that its implementation down to the logic gate level satis�ed the speci�cation. This
correctness theorem was proved by appealing to a correctness lemma about the
module itself and to the main correctness theorems for its sub-modules. The lemma,
in essence, asserts that the module is correct, assuming its sub-modules satisfy their
speci�cations. It can be proved independently of the other modules. It is identical
to the full correctness theorem except in one respect. An alternative structural
speci�cation for the module is used. It is de�ned in terms of the speci�cations

of the sub-modules rather than their implementations. The sub-modules are thus
treated as black boxes. Verifying the full design involves doing this for the top level
module. The bottom level of the hierarchy consists of logic gates and single-bit
registers. These are only speci�ed behaviourally: they are left as black boxes in the
correctness theorem.

11

The proof of the correctness lemma for each module was split into several parts.
These parts corresponded to the separate intervals for each output signal given
in the behavioural speci�cation of the module. The proof for each interval was
essentially inductive. A lemma was proved that the implementation satis�ed the
behaviour at the start of the interval. It was also proved that, within the interval,
if the behaviour was satis�ed at one time point, then it was also satis�ed at the
subsequent time point. From this it could be deduced that the implementation was
correct over the whole interval.

In conducting the overall proof, the veri�er needs a very clear understanding of
why the design is correct, since a proof is essentially a statement of this. Thus per-
forming a formal proof involves a deep investigation of the design. It also provides
a means to help achieve that understanding. Having to write formal speci�cations
for each module helps in this way. Having to formulate the reasons why the imple-
mentation has that behaviour gives much greater insight. In addition to uncovering
errors, this can serve to highlight anomalies in the design and suggest improvements,
simpli�cations or alternatives [7].

4.5 Time Taken

The module speci�cations (both behavioural and structural) were written prior to
any proof. This took between one and two person-months. No breakdown of this
time has been kept. Much of the time was spent in understanding the design.
The structural speci�cations were adapted directly from the Qudos HDL. The be-
havioural speci�cations were more di�cult. The speci�er had no previous knowledge
of the design. There was a good English overview of the intended function of the
switch fabric. This also outlined the function of the major components. While it gave
a good introduction, it was not su�cient to construct an unambiguous behavioural
speci�cation of all the modules. The behavioural speci�cations were instead con-
structed by analyzing the HDL. This was very time-consuming.

Approximately two person-months were spent performing the veri�cation. Of
this, one week was spent proving theorems of general use. Approximately 3 weeks
were spent verifying the upper modules of the arbitration unit, and a further week
was spent on the top two modules of the switch. 3{4 days were spent combining
the correctness theorems of the 43 modules to give a single correctness theorem for
the whole circuit. The remaining time of just over two weeks was spent proving the
correctness theorems for the 36 lower level units. This can be seen in Figure 6 which
shows the cumulative time in person-days (assuming an 8-hour day) taken to verify
the separate modules' lemmas. The proofs of the upper-level modules were generally
more time-consuming for several reasons: there were more intervals to consider; they
gave the behaviour of several outputs; and those behaviours were de�ned in terms
of more complex notions. They also contained more errors which severely hampered
progress. The veri�er had not previously performed a hardware veri�cation, though
was a competent HOL user. Apart from standard libraries, the work did not build
directly on previous theories.

It takes several hours of machine time on a Sparc 10 to completely rebuild the

12

CUMULATIVE TIME (PERSON-DAYS)
5 10 15 20 25 30

5

10

15

20

25

30

35

40

MODULES

VERIFIED

Figure 6: Time Taken to Verify the Fabric Modules using HOL

proofs from scratch by re-running the scripts in batch mode. Single theories repre-
senting individual modules generally take minutes to rebuild. A large proportion of
the time is actually spent restarting HOL and loading in appropriate parent theories
and libraries for each theory. In the initial development of the proof the machine
time is generally not critical, as the human time is so much greater. However, since
the proof process consists of a certain amount of replay of old proofs, a speed-up
would be desirable, for example, when mistakes are made in a proof.

If changes are made to the design, it is important that the new veri�cation can be
done quickly. Since proof is very time consuming this is especially important. This
problem is attacked in several ways in the HOL approach: the proofs can be made
generic; their modular nature means that only a�ected modules need to be reveri�ed;
and proofs of modules which have changed can often be replayed with only minor

13

changes. After the original veri�cation had been completed, several variations on
the design were also veri�ed. These included real, fabricated variations that formed
part of a 16�16 fabric. Although the 4�4 switch fabric took several months to
specify and verify, the modi�ed versions took only a matter of hours or days as can
be seen from Figure 7 [6]. Generic proofs were not used to as great an extent as was
possible in this study. This was because it was generally found simpler to reason
about speci�c values than general ones.

5

15

20

25

30

4

1

2

3

ORIGINAL

10

4x4 FABRIC
VARIOUS MODIFIED ELEMENTS

PERSON-DAYS

Figure 7: Time Taken to Verify Variations on the Fabric Design using HOL

One of the biggest disadvantages of the HOL system is that its learning curve
is very steep. Furthermore, interactive proof is generally a time-consuming activity
even for an expert. Much time is spent dealing with trivial details of a proof. Recent
advances in the system such as new simpli�ers and decision procedures may alleviate
these problems. However, more work is needed to bring the level of interaction with
the system closer to that of an informal proof.

14

4.6 Errors

No errors were discovered in the fabricated hardware. Errors that had inadvertently
been introduced in the structural speci�cations (and could just as easily have been
in the implementation) were discovered. The original versions of the behavioural
speci�cations of many modules contained errors.

A strong indication of the source of detected errors was obtained. Because each
module was veri�ed independently, the source of an error was immediately narrowed
down to being in the current module, or in the speci�cation of one of its submod-
ules. Furthermore, because performing the proof involves understanding why the
design is correct, the exact location of the error was normally obvious from the way
the proof failed. For example, in one of the dataswitch modules, two wires were
inadvertently swapped. This was discovered because the subgoal ([T, F] = [F,

T]) was generated in the proof attempt. One side of this equality originated from
the behavioural speci�cation and one from the structural speci�cation. It was clear
from the context of the subgoal in the proof attempt that two wires were crossed.
It was also clear which signals were involved. It was not immediately clear which
speci�cation (structural or behavioural) was wrong.

A further example of an error that was discovered concerned the time the grant
signal was read by the dataswitch. It was speci�ed that the two bits of the grant
signal from each arbiter were read on a single cycle. However, the implementation
read them on consecutive cycles. This resulted in a subgoal of the form grant t =

grant (t+ 1). No information was available in the goal to allow this to be proven,
suggesting an error. On this occasion it was in the speci�cation.

Occasionally, false alarms occurred: an unprovable goal was obtained, suggesting
an error. However, on closer inspection it was found that the problem was that
information had been lost in the course of the proof. For example, if an assumption,
t1 < t2, is converted to t1 � t2 during the proof, the information that the two times
are not equal is lost. Such a false alarm could lead to an unnecessary change in the
implementation being made.

Many trivial typing errors were caught at an early stage by type-checking. How-
ever, many other trivial mistakes were made over the size of words and signals. For
example, words of size 4 by 2 were inadvertently speci�ed as 2 by 4 words. These
errors were found during the proof process. It would have been much better if they
had been picked up earlier. This would have been possible if dependent typing had
been available [16].

4.7 Scalability

In theory, the HOL proof approach is scalable to large designs. Because the approach
is modular and hierarchical, increasing the size of the design does not necessarily
increase the complexity of the proof. However, in practice the modules higher in the
hierarchy generally take longer to verify. This is demonstrated by the fact that two
of the upper most modules took approximately half of the total veri�cation time {
a matter of weeks. However, it should be noted that the very top module which

15

simply added various delays to various inputs and outputs of the main module, only
took a day to verify. It is, thus, not universally so.

The extra time arises in part because there are more cases to consider. The
situation is made worse if the interfaces between modules are left containing a large
amount of low-level detail. For example, in the proof of the switch fabric, low-level
modules required assumptions to be made about their inputs. These assumptions
had to be dealt with in the proofs of higher-level modules adding extra proof work
manipulating and discharging them. If the proof is to be tractable for large designs,
it is important that the interfaces between modules are as clean as possible. The
interfaces of the Fairisle fabric could have been much simpler. We demonstrated
this by redesigning the fabric with cleaner interfaces. The new design was also
veri�ed [8]. The scalability of the approach beyond the level of the 4�4 fabric is
also demonstrated by the fact that a 16�16 delta fabric built from 4�4 elements
has also been veri�ed [8]

5 The MDG Veri�cation of the Fabric

In the second study, the same circuit was veri�ed with the MDG System using a deci-
sion graph approach. Gate and register-transfer level (RTL) structural speci�cations
of the whole fabric were written and veri�ed to be equivalent. A generic version of
the RTL speci�cation was then veri�ed against a high-level behavioural description
of the full fabric. Safety properties were also speci�ed and veri�ed against the other
descriptions.

5.1 The MDG Veri�cation System

The MDG System is based on a new class of decision diagrams called multiway

decision graphs (MDGs). MDGs are used to represent sets of states as well as the
transition and output relations [5, 29]. Based on a technique called abstract implicit
enumeration, hardware veri�cation tools have been developed which perform com-
binational circuit veri�cation, property checking and equivalence checking of two
sequential machines [5].

The formal system underlying MDGs is many-sorted �rst-order logic augmented
with a distinction between abstract and concrete sorts. Concrete sorts have enu-
merations, while abstract sorts do not. A data value can be represented by a single
variable of abstract sort, rather than by concrete boolean variables. A data opera-
tion can be represented by an uninterpreted function symbol. A multiway decision
graph (MDG) is a �nite directed acyclic graph (DAG) where the leaf nodes are la-
belled by formulas, the internal nodes are labelled by terms, and the edges issuing
from an internal node are labelled by terms of the same sort. MDGs essentially
represent relations rather than functions.

MDGs must be reduced and ordered in a similar way to Bryant's ROBDDs [2].
The MDG system is based on a carefully chosen set of well-de�ned conditions which
turn MDGs into canonical representations that can be manipulated by e�cient algo-

16

rithms. Algorithms for disjunction, relational product (combination of conjunction
and existential quanti�cation), pruning by subsumption (for testing of set inclusion)
and reachability analysis (using abstract implicit enumeration [5]) have been devel-
oped. In addition, a rewriting ability (unconditional and conditional) is provided.
It extends the scope of these applications and can also be used to shrink the MDG
size. MDGs permit the description of the output and next state relations of a state
machine in a similar way to the way ROBDDs do for FSMs. The model is called an
abstract state machine (ASM), since it may represent an unbounded class of FSMs,
depending on the interpretation of the abstract sorts and operators. For circuits
with large datapaths, MDGs are thus much more compact than ROBDDs. As the
veri�cation is independent of the width of the datapath, the range of circuits that
can be veri�ed is greatly increased.

Like ROBDDs, the MDGs require a �xed node ordering. The variable ordering
plays an important role as it determines the canonical attribute of the graphs and
the size of the graphs which greatly a�ects its e�ciency [2]. In contrast to VIS
which provides heuristics for several node ordering techniques including dynamic
ordering, the node ordering in MDG currently has to be given by the user explicitly.
Unlike ROBDDs where all variables are boolean, every variable used in the MDGs
must be assigned an appropriate sort, and type de�nitions must be provided for all
functions. Rewrite rules may need to be provided to partially interpret the other-
wise uninterpreted function symbols. Because of the use of uninterpreted functions,
reachability analysis on MDGs may not terminate in some cases when circuits in-
clude some speci�c cyclic behaviour [5]. We did not encounter this problem in the
current study.

The MDG tools provide a set of veri�cation applications, including combinational
veri�cation (equivalence checking of input{output relations for two combinational
circuits using the canonicity of MDGs), invariant checking (checking if a certain
invariant holds in all the reachable states of a sequential machine), sequential veri�-
cation (checking behavioural equivalence of two sequential machines by performing
reachability analysis on their product machine), and model checking (checking of
�rst-order linear time temporal logic properties based on reachability analysis of
MDGs [29]).

When an invariant is not satis�ed during the veri�cation process, a counter-
example is provided to help with identifying the source of the error. A counter-
example consists of a list of assumptions, inputs and state values at each clock
cycle, and gives a trace for the erroneous output.

The MDG operators and veri�cation procedures are packaged as MDG tools
implemented in Prolog [30]. These MDG tools have been used for the veri�cation
of a set of known (combinational and sequential) benchmark circuits including the
veri�cation of two simple, non-pipelined microprocessors against their instruction-
set architectures [5]. In this paper, we investigate the veri�cation of a real circuit{the
Fairisle ATM switch fabric. This circuit is an order of magnitude larger than any
other circuit veri�ed using MDGs.

17

5.2 The Structural Speci�cations

We described the actual hardware implementation of the switch fabric at two levels of
abstraction. We gave a description of the original Qudos gate-level implementation
and a more abstract Register transfer Level (RTL) description which holds for an
arbitrary word width.

As with the HOL study, we translated the Qudos HDL gate-level description into
a suitable HDL description, here a Prolog-style HDL, called MDG-HDL. As in the
HOL study, extra modularity was added over the Qudos descriptions, while leaving
the underlying implementation unchanged. A structural description is usually a
(hierarchical) network of components (modules) connected by signals. The MDG-
HDL comes with a large library of prede�ned, commonly used, basic components
(such as logic gates, multiplexers, registers, bus drivers, ROMs, etc.) Multiplexers
and registers can be modeled at the Boolean or the abstract level using abstract
terms as inputs and outputs.

As an example, the following is the MDG-HDL description of the DMUX4T2 mod-
ule given in Section 4.2:

module(DMUX4T2
port(inputs((d0; bool); (d1; bool); (d2; bool); (d3; bool)); (x; bool));

outputs((dOut0; bool); (dOut1; bool)));
structure(

signals(xBar; bool);
component(InvX; NOT(input(x);output(xBar)));
component(AO 0; AO(input(d0; xBar; d1; x);output(dOut0)));
component(AO 1; AO(input(d2; xBar; d3; x);output(dOut1))))):

Here, the components NOT and AO are basic components provided by the MDG-HDL
library. Note also that the data sorts of the interface and internal signals must always
be speci�ed. MDG does not provide a replication facility equivalent to FOR nor an
ability to structure words, so this description cannot be simpli�ed (abstracted) as
in HOL.

Besides the gate-level description, we also provided a more abstract (RTL) de-
scription of the implementation which holds for arbitrary word width. Here, the
data-in and data-out lines are modeled using an abstract sort wordn. The active,
priority and route �elds are accessed through corresponding cross-operators (func-
tions). In addition to the generic words and functions, the RTL speci�cation also
abstracts the behaviour of the dataswitch unit by modeling it using abstract data
multiplexers instead of logic gates. We thus obtain a simpler implementation model
of the dataswitch which re
ects the switching behaviour in a more natural way and is
implemented with fewer components and signals. For example, a set of four DMUX4T2
modules is modeled using a single multiplexer component. For more details about
the abstraction techniques used, refer to [27].

18

5.3 The Behavioural Speci�cations

MDG-HDL is also used for behavioural descriptions. A behavioural description is
given by high-level constructs as ITE (If-Then-Else) formulas, CASE formulas or
tabular representations. The tabular constructor is similar to a truth table but
allows �rst-order terms in rows. It can be used to de�ne arbitrary logic relations.
In the MDG study, we gave the behavioural speci�cation of the switch fabric in two
di�erent forms: (1) as a complete high-level behavioural state machine and (2) as
a set of properties which re
ect the essential behaviour of the switch fabric as it is
used in its environment.

5.3.1 ASM Behavioural Speci�cation

Starting from timing-diagrams describing the expected behaviour of the switch fab-
ric, we derived a complete high-level behavioural speci�cation in the form of an
abstract state machine (ASM). This speci�cation was developed independently of
the actual hardware design and includes no restrictions with respect to the frame
size, cell length and word width. It assumes that the environment maintains certain
timing constraints on the arrival of the frame start signal and headers, however.
This ASM reproduces the exact behaviour of the switch fabric during the initial-
ization phase, the arrival of a frame start, the arrival of the routing bytes, and the
end of the frame. The generation of the acknowledgment and data output signals is
described by case analysis on the result of the round-robin arbitration. This is done
in MDG-HDL using ITE and tabular constructs.

A schematic representation of the ASM speci�cation of the 4�4 switch fabric is
shown in Figure 8. The symbols t0, ts, th and te in the �gure represent the initial
time, the time of arrival of the frame start signal, the time of arrival of the routing
bytes and the time of the end of a frame, respectively. There are 14 conceptual
states. States 0, 1 and 2 along the time axis t0 describe the initial behaviour of the
switch fabric. States 2, 3, 4 and 5 along the time axis ts describe the behaviour
of the switch on the arrival of a frame start signal. States 6 to 13 along the time
axis th describe the behaviour of the switch fabric after the arrival of the headers.
Waiting loops in states 2, 5 and 10 are illustrated in the �gure by the non-zero
natural numbers i, j and k, respectively. Figure 8 also includes many meta-symbols
used to keep the presentation of the diagram simple. For instance, the symbols s
and h denote a frame start and the arrival of a routing byte (header), respectively,
and the symbol \�" denotes negation. The symbols a, d and r inside a conceptual
state represent the computation of the acknowledgment output, the data output
and the round-robin arbitration, respectively. The absence of an acknowledgment
or a data symbol means that no computation takes place and the default value is
output. The operations are de�ned by separate state machines.

To formally describe this ASM using MDGs, we �rst introduced some basic sorts,
constants and functions (cross-operators), e.g. a concrete sort port = f0; ::; 3g, an
abstract sort wordn, a constant zero of sort wordn and a cross-operator rou of type
[wordn! port] representing the route �eld in a header. Further, the generation of
the acknowledgment and data output signals is described by case analysis on the

19

11
d

12
d

13

et st +2>

et t h+2>

t h st +2>
st 0t +1>

t h t h+1 t h+2 t h+3 t h+4 t h+5+k
0t 0t +1 0t +2+i

st +3+jst +2st +1st

s,~h
210 ~s ~s 7 8 9 10

r a a a,d
~s ~s ~s ~s

~s,~h

~s,~h

~s,~h
s,~h s,~h s,~h

~s,~h

6~s,h~s,~h3 ~s,~h4

s,~h

5

~s

~s

Figure 8: ASM Behavioural Speci�cation

result of the round-robin arbitration. This is done in MDG-HDL using if-then-else
constructs. For example, the acknowledgment output is described by four formulas
determining the value of ackOuti, i 2 f0; ::; 3g:

if ((co0 = 1) and (ip0 = i)) then (ackOuti = ackIn0)
ef ((co1 = 1) and (ip1 = i)) then (ackOuti = ackIn1)
ef ((co2 = 1) and (ip2 = i)) then (ackOuti = ackIn2)
ef ((co3 = 1) and (ip3 = i)) then (ackOuti = ackIn3)

else (ackOuti = 0)

Here coi (i 2 f0; ::; 3g), of sort bool, and ipi (i 2 f0; ::; 3g), of sort port, are state
variables generated by the round-robin computation which correspond to the output
disable and grant signals, respectively (Figure 3).

5.3.2 Speci�cation of Properties

Although the above ASM speci�cation describes the complete behaviour of the
switch fabric, we also provided a set of properties which re
ect the essential be-
haviour of the switch fabric, e.g., for checking of correct priority computation, circuit
reset or data routing. These were used in an early stage of the project to validate
the fabric speci�cation and implementation. If we consider the behaviour of the
fabric when operating in the intended real Fairisle switch environment, its cyclic
behaviour can be simulated as an environment state machine having 68 states as
shown in Figure 9. It can be checked that this state machine is an instance of the
general timing state machine (Figure 8) with cell length of 53 and frame size of
64. The machine generates the frame start signal, frame start , the headers, h, and
the data, d, in the states as indicated in Figure 9. Normally, d is a fresh abstract
variable representing data in the cell; and h can be instantiated according to the
property to be veri�ed. This diagram allowed us to map the time points t0, ts, th
and te to speci�c states, e.g. ts to states 3 or 66; th to state 12; and te to state 66.

Based on this environment state machine, we described the properties as invari-
ants which should hold in all reachable states of the speci�cation model. In the

20

...1 2 3 6 12 13 17 64 65 66 6867
d d d fsfs h d

Figure 9: The Environment State Machine of the Fairisle ATM

following, we give an example property, P , which checks for correct routing to port
0. More precisely:

P : From th + 5 to te + 2, if input port 0 chooses output port 0 with the priority
bit set in the header and no other input port has its priority bit set, then
the value on dataOut0 will be equal to the value of dataIn0 four clock cycles
earlier.

Let s be a state variable of the environment state machine of a concrete sort
having the enumeration [1..68]. P is expressed in MDG-HDL using an ITE construct
as:

P : if (s 2 f17; ::; 68g) and priority[0::3] = [1; 0; 0; 0] and route[0] = 0
then dataOut[0] = dataIn0[0]

where priority[0::3] indicates the priority bits for all input ports, route[0] represents
the routing bits for input port 0 and dataIn0[0] is the data input on port 0 delayed
by 4 clock cycles. Further examples of properties are described in [27].

5.4 The Veri�cation Process

Using a hierarchical approach, we �rst veri�ed the original gate-level implemen-
tation of the switch fabric against the RTL implementation. We then veri�ed the
RTL implementation against the behavioural speci�cation given as an abstract state
machine (ASM). We thus obtained complete veri�cation from high-level behaviour
down to the gate level. In an early stage of the project, we also veri�ed some speci�c
properties that re
ect the behaviour of the fabric in its real operating environment
as described above.

5.4.1 Equivalence Checking

The correctness of equivalent behaviour between the original Qudos gate-level imple-
mentation and the abstract (RTL) hardware model is established if the two machines
produce the same data outputs for all input sequences. This, however, cannot be
done for an arbitrary word size n since the gate-level description is not generic.
We hence instantiate the data signals of the abstract model to be 8 bits wide.
This can be realized within the MDG environment using uninterpreted functions
which encode and decode abstract data to boolean data and vice-versa [27]. For
instance, decoding is realized using 8 uninterpreted functions biti (i: 0..7) of type
[wordn! bool], which extract the ith bit of an n-bit data word. We hence decode

21

the 4 n-bit data lines to a 32-bit bundle. Encoding, on the other hand, is done us-
ing one uninterpreted function concat8 of type [(bool� � � � � bool) ! wordn] which
concatenates any 8 boolean signals to a single word and thus encodes a bundle of 32
boolean data signals to 4 signals of sort wordn. In addition, we used a few rewriting
rules to map 8-bit constants of concrete sort to generic ones of abstract sort. Using
the sequential equivalence checking facility of the MDG tools, we veri�ed that the
abstract machine is equivalent to the original gate-level one for a word size equal to
8, i.e.

Gate-level structure � RTL(8) structure (1)

where RTL(8) means the 8-bit version (instance) of the n-bit RTL implementation.
Here we mean equivalence in the sense described for MDG sequential veri�cation in
Section 5.1. Note that since the data abstraction a�ects only the dataswitch unit,
the veri�cation reduced to the equivalence of the dataswitch blocks at the two levels.

Based on implicit reachability analysis, we checked the equivalence of the be-
havioural ASM speci�cation against the RTL hardware model when both are seen
as abstract state machines. That is, we ensured that the two machines produce
the same observable behaviour by feeding them with the same inputs and checking
that an invariant stating the equivalence of their outputs holds in every state us-
ing reachability analysis of the product machine [5]. For this product machine, an
MDG representing a set of total states encodes a relation between 39 concrete and
36 abstract state variables [27]. The relation may depend on data values, encoded
using cross-terms, however. In ROBDDs, 8 boolean variables would be needed for
each abstract variable of the MDGs (i.e., 288 boolean variables for data). In MDGs,
the encoding is done using abstract data, yet isomorphic graph sharing is exploited
as in ROBDDs. Decisions on values of abstract data are represented by cross-terms
which also compose nodes in the MDGs. Although cross-terms add complexity to
the graph structure in general, the overhead is much smaller than the explosion
induced from encoding data in binary form. Using abstract reachability analysis,
the veri�cation succeeded for an arbitrary word width, n, and any frame size and
cell length that respect the environment assumptions of the speci�cation, i.e.

assumptions on environment �
(RTL(n) structure � ASM(n) behaviour) (2)

RTL(8) is an instance of RTL(n). The two descriptions provide exactly the same
semantics. They di�er only in the syntactic use of the abstract data sort wordn
instead of the concrete sort word8. The same reasoning is true for a behaviour
ASM(8) which is an 8-bit instance of the behaviour ASM(n). From the n-bit generic
result in (2), we hence deduce through instantiation:

assumptions on environment �
(RTL(8) structure � ASM(8) behaviour) (3)

By combining the two veri�cation steps (1) and (3), we hierarchically obtain a
complete veri�cation of the switch fabric from a high-level behaviour down to the
gate-level implementation, i.e.

22

assumptions on environment �
Gate-level structure � ASM(8) behaviour (4)

In summary, thanks to the management of the proof in two steps and to the
independence of the second veri�cation step from the datapath width, we have been
able to avoid a state explosion induced by data. Note, however, that we have not
formally shown, using the MDG tools, the meta-rewriting for theorem (4) nor the
instantiation in theorem (3). The experimental results on a SPARC station 10 are
recapitulated below in Table 1, including the CPU time, memory usage and the
number of MDG nodes generated.

5.4.2 Property Checking

Prior to the full veri�cation, we also checked both behavioural and RTL structural
speci�cations against several speci�c safety properties of the switch. This is useful
as it gives a quick con�dence check at low cost. To verify the properties (invariants),
we compose the fabric with both the environment state machine described above
and an additional delay circuit used to remember the input values that are to be
compared with the outputs. This allows us to state the properties in terms of the
equality between input and output signals. Combining these machines, we obtain
the required platform for checking if the invariant properties hold in all reachable
states of the speci�cation [27]. Experimental results for the veri�cation of four
example properties are shown in Table 1 (where the previously described property
P is labelled P3). Although the properties we veri�ed do not represent the complete
behaviour of the switch fabric, we were able to detect several injected design errors
in the structural description.

5.5 Time Taken

The user time required for the speci�cation and veri�cation is hard to determine
since it included the improvement of the MDG package, writing documentation, etc.
The �gures given here are therefore estimates. The translation of the Qudos design
description to the MDG-HDL gate-level structural model was straightforward and
took about one person-week. The description of the RTL structural speci�cation
including modeling required about one person-week. The time spent for understand-
ing the expected behaviour and writing the behavioural speci�cation was about one
person-week. The time taken for the veri�cation of the gate-level description against
the RTL model, including the adoption of abstraction mechanisms and correction of
description errors, was about two person-weeks. The veri�cation of the RTL struc-
tural speci�cation against the behavioural model required about one person-week of
work. The user time required to set up four properties, build the environment state
machine, conduct the property checking on the structural speci�cation and interpret
the results was about one person-week. Checking of these same properties on the
behavioural speci�cation took about one hour. The average time for the injection
and veri�cation of an introduced design error was less than one person-hour. The

23

experimental results in machine time are shown in Table 1 which gives the CPU time
(on a SPARC station 10), memory usage and the number of MDG nodes generated.

Veri�cation CPU Time (s) Memory (MB) MDG Nodes
Generated

Gate-Level to RTL 183 22 183300
RTL to Beh. Model 2920 150 320556
P1: Data Output Reset 202 15 30295
P2: Ack. Output Reset 183 15 30356
P3: Data Routing 143 14 27995
P4: Ack. Output 201 15 33001
Error (i) 20 1 2462
Error (ii) 1300 120 150904
Error (iii) 1000 105 147339

Table 1: Experimental Results for the MDG Veri�cation

Like ROBDDs, the MDGs require a �xed node ordering. The variable ordering
plays an important role as it determines the canonical attribute of the graphs and
the size of the graphs which greatly a�ects its e�ciency. A bad ordering easily leads
to a state space explosion as occurred after an early ordering attempt. In contrast to
VIS which provides heuristics for several node ordering techniques including dynamic
ordering, node ordering in MDG has to be given by the user explicitly. This takes
much of the veri�cation time. On the other hand, unlike ROBDDs where all variables
are Boolean, time must be spent assigning to every variable used an appropriate sort
and type de�nitions must be provided for all functions. In some cases, rewrite rules
may need to be provided to partially interpret the otherwise uninterpreted function
symbols.

Because the veri�cation is essentially automatic, the amount of work re-running
a veri�cation for a new design is minimal compared to the initial e�ort since the
latter includes all the modeling aspects. Much of the e�ort is spent on determining
a suitable variable ordering. Depending on the kind of design changes adopted, it is
not obvious if the original variable ordering could still be used on a modi�ed design
without major changes.

The MDG gate level speci�cation is a concrete description of the fabricated im-
plementation. In contrast, the RTL structural and ASM behavioural speci�cations
are generic. They abstract away from frame, cell and word sizes, provided the
environment timing assumptions are kept. Design implementation changes at the
gate-level that still satisfy the RTL model behaviour would hence not a�ect the ver-
i�cation against the ASM speci�cation. For property checking, speci�c assumptions
about the operating environment were made, (e.g., that the frame interval is 64
cycles). This is sound since the switch fabric will in fact be used under the behest
of its operating environment (the port controllers). However, while this reduces the
veri�cation cost, it has the disadvantage that the veri�cation must be completely re-

24

done if the operating environment changes. Still, the work required is minor as only
a few parameters have to be changed in the description of the (simple) environment
state machine described above.

5.6 Errors

As with the HOL study, no errors were discovered in the implementation. For experi-
mental purposes, however, we injected several errors into the structural speci�cations
and checked them using either the set of properties or the behavioural model. Errors
were automatically detected and identi�ed using the counter-example facility. The
injected errors included the main errors introduced accidently in the HOL study, dis-
cussed in Section 4.6. We summarize here three further examples. (i) We exchanged
the inputs to the JK Flip-Flop that produces the output disable signal. This pre-
vented the circuit from resetting. (ii) We used, at one point, the priority information
of input port 0 instead of input port 2. (iii) We used an AND gate instead of an
OR gate within the acknowledgment unit, thus producing a faulty ackOut[0] signal.
Experimental results for these three errors, which have been checked by verifying
the RTL model against the behavioural speci�cation, are reported in Table 1.

While checking properties on the hardware structural description, we also dis-
covered some errors that we mistakenly introduced in the structural speci�cations.
However, we were able to easily identify and correct these errors using the counter-
example facility of the MDG tools. Also, during the veri�cation of the gate-level
model, we found a few errors in the description that were introduced during the
translation from Qudos HDL to MDG-HDL. These were easily removed by compar-
ing both descriptions, since they included the same collection of gates. Finally, many
trivial typing errors were highlighted at an early stage of the description process by
the error messages output after each compilation of the speci�cation's components.

5.7 Scalability

Like any FSM-based veri�cation system, the MDG proof approach is not directly
scalable to large designs. This is due to the possible state space explosion that results
from large designs. Unlike other ROBDD-based approaches, however, MDGs do not
need to cope with the datapath complexity since they use data of abstract sort and
uninterpreted functions. Still, a direct veri�cation of the gate-level model against the
behavioural model or even against the set of properties is practically impossible. We
overcame this problem by providing an abstract RTL structural speci�cation which
we instantiated for the veri�cation of the gate-level model. To handle large designs,
major e�orts are in general required to set up the appropriate model abstraction
levels.

6 The VIS Veri�cation of the Fabric

In the third study [20] the VIS tool [3] was used to perform property checking on
various abstracted models of the fabric. In addition, equivalence checking was con-

25

ducted between behavioural and structural speci�cations of sub-modules of the fab-
ric written in Verilog. The whole fabric was also re-implemented using the Synopsys
synthesis tool and all generated modules graphically simulated using the Verilog-XL
simulator of Cadence.

6.1 The VIS Veri�cation System

VIS [3] is a decision diagram based tool that integrates the veri�cation, simulation
and synthesis of �nite-state hardware systems. It uses a Verilog front-end and
supports fair CTL model checking, language emptiness checking, combinational and
sequential equivalence checking, cycle-based simulation, and hierarchical synthesis.
Its fundamental data structure is a multi-level network of latches and combinational
gates. The variables of a network are multi-valued, and logic functions over these
variables are represented by an extension of BDDs: multi-valued decision diagrams.

VIS operates on the intermediate format BLIF-MV. It includes a compiler from
Verilog to BLIF-MV. It extracts a set of interacting FSMs that preserves the be-
haviour of the Verilog program de�ned in terms of simulated results. Through the
interacting FSMs, VIS performs fair CTL model checking under Buchi fairness con-
straints. The language of a design is given by sequences over the set of reachable
states that do not violate the fairness constraint. Also VIS can check the combi-
national and sequential equivalence of two designs. Sequential veri�cation involves
building the product FSM, and checking whether a state where the values of corre-
sponding outputs di�er can be reached from the set of initial states of the product
machine. If model checking or equivalence checking fails, VIS reports the failure
with a counter-example.

6.2 The Structural Speci�cations

The Verilog structural speci�cation of the fabric is very similar to the other descrip-
tions. A big advantage of the VIS Verilog front-end is the ease of importing existing
(industrial) designs with no extra overhead of manual translation. Moreover, it al-
lows the direct interaction of VIS with other commercial tools for simulation and
synthesis. However, the fabric structure had to be reduced to 4 bits and the dat-
apath further to 1 bit to enable the model checking procedure to terminate. The
control path could not be reduced below 4 bits as the data includes the header con-
trol information. For more details about the abstraction and reduction techniques
adopted refer to [20].

The following is the Verilog description of the DMUX4T2 module given in Sec-
tion 5.2. CLBMAP5i20 and AO is an AND-OR module de�ned in terms of Verilog
library components:

module DMUX4T2(d,x, dOut);

input [3:0] d; input x; output [1:0] dOut; wire xBar;

begin CLBMAP5i20 Clb(d[1:0],x,d[3:2],dOut[1:0]);

not InvX (xBar, x);

AO B0 (d[0],xBar,d[1],x,dOut[0]);

26

AO B1 (d[2],xBar,d[3],x,dOut[1]);

end;

6.3 The Behavioural Speci�cations

We gave the behavioural speci�cation of the fabric in two forms: an RTL description
as a state machine of the whole fabric and a set of liveness and safety properties
covering its essential behaviour. In addition, as with HOL, behavioural speci�cations
of submodules of the design hierarchy were developed. VIS-Verilog HDL is used for
behavioural speci�cation. It contains two new features over standard Verilog: a
nondeterministic construct, $ND, to specify non-determinism on wire variables; and
symbolic variables which use an enumerated type mechanism similar to the one
available in the MDG system.

As an example, consider the speci�cation of the timing module (Figure 10), which
determines when the arbitration unit is triggered. The module has the following
behaviour. The routeEnable signal is normally low. After the frameStart signal
goes high, it waits until any of the active bits (anyActive signal) goes high for one
cycle, returning to low until the next frame. We use symbolic variables to express
the timing states: RUN, WAIT and ROUTE.

typedef enum f RUN, WAIT, ROUTE g timing state;

module TIMING (frameStart, clock, anyActive, routeEnable) ;

...

always (posedge clock) begin case (state)

RUN: if (frameStart == 1) state = WAIT;

WAIT: if ((frameStart == 0) && (anyActive == 1)) state = ROUTE;

ROUTE: begin if (frameStart = 0) && (anyActive == 1)) state = ROUTE;

else state = WAIT;

endcase end

endmodule;

Both behavioural and structural speci�cation were written in Verilog, so we
were able to perform their simulation in Verilog-XL directly. It was very useful for
detecting some syntax and semantic errors of the descriptions before performing
equivalence or model checking. In addition, we extracted some safety properties
from the generalization of simulation vectors. These safety properties were further
used in model checking, enabling the detection of design errors that were omitted by
simulation. The Verilog-XL graphical interface also eased the analysis of counter-
examples which were generated by model and equivalence checking. Furthermore, as
the RTL behavioural speci�cation was written in Verilog, we were able to synthesize
the structural speci�cation with some timing constraints directly using the Synopsys
Design Compiler. We performed equivalence checking between the submodules of
the RTL behavioural speci�cation and the submodules of the synthesized structural
one to ensure the correctness of the synthesis.

27

WAIT

ROUTE

else

frameStart = 1 / routeEnable = 0

frameStart = 0 / routeEnable = 0

frameStart = 0 & anyActive = 1 /
routeEnable = 1

else

else

RUN

Figure 10: Behavioural FSM of the Fabric Timing Block

6.4 The Veri�cation Process

As mentioned in the previous sections, we translated the original Qudos HDL gate-
level description of the switch fabric into Verilog HDL. We also derived a complete
high-level behavioural speci�cation in the form of a �nite state machine according
to the timing diagrams describing the expected behaviour of the switch fabric. This
speci�cation was developed independently of the actual hardware design and uses a
di�erent design hierarchy to the structural one. Using these Verilog speci�cations,
we attempted to obtain a complete veri�cation of the switch fabric from a high-level
behavioural speci�cation down to the gate-level implementation through equivalence
checking. This veri�cation was similar to that in the MDG case. However, it did
not succeed in VIS due to state space explosion. We therefore attempted to sepa-
rately verify the submodules of the fabric based on the same design hierarchy as the
structural one. This is similar to the HOL study, and involved writing separate Ver-
ilog RTL behavioural speci�cations for each submodule. We succeeded in verifying
the equivalence of the behavioural speci�cation of each submodule and its corre-
sponding structural speci�cation by VIS sequential equivalence checking. Through
this veri�cation, we checked that the implementation of each submodule satis�es its
speci�cation. Unlike the HOL veri�cation, we could not verify the correctness of
the connections among the submodules of the switch fabric. For real designs, this
step would be useful to verify if the logic synthesis is correct.

As an alternative to equivalence checking, we attempted model checking of prop-
erties of the switch fabric. Unlike MDG, property checking is the main veri�cation
approach in VIS. Model checking needs to be performed on a closed system [19].

28

However, the switch fabric is not a closed machine. We thus built an environment
state machine [20] based on the behaviour of the port controller. This environment
state machine is similar to the environment described in Section 4.2, except that we
compressed the 68 states into 7 states in order to ease the model checking in VIS.
Again we failed to verify the whole switch fabric due to the state space explosion.
We succeeded in model checking a simpli�ed fabric with its datapath and control
path reduced from 8 bits to the minimum 1 bit and 4 bits, respectively.

6.4.1 Property Checking

Unlike in MDG, we extensively used property checking to verify the fabric in VIS
as it is optimized for model checking. Moreover, thanks to the expressiveness of
CTL, properties can be de�ned more easily in VIS. With MDG a property (invari-
ant) is described in MDG-HDL using ITE and tabular constructs. Before using
model checking to verify the overall behaviour of the switch fabric, we set up an
environment state machine and developed a set of properties. The nondeterminis-
tic construct ($ND) of VIS-Verilog HDL eases the establishment of an environment
state machine. We used it to express the inputs of the switch fabric. CTL can rep-
resent both safety and liveness properties. The latter can be used to detect deadlock
or livelock which is di�cult using simulation. 58 CTL properties were veri�ed. We
�rst veri�ed a number of safety properties including all those used in the MDG
study. In addition, we veri�ed many CTL liveness properties. Example properties
that we checked on the fabric model can be found in [20].

For instance:

AG ((dIn0[3:0]=0011 * dIn1[1]=0 * dIn2[1]=0 * dIn3[1]=0 * state=S2)

-> AX AX AX AX AX (dOut0==dIn0));

is a CTL formula equivalent to the property described in Section 5. Here dIn[0]
indicates the active bit for input port 0, dIn[2] and dIn[3] represent the routing bits
for input port 0. state = S2 denotes the state when the routing tag arrives. dIn0
and dOut0 express the input data cell and output data cell, respectively. We can
also express this particular behaviour as a liveness property as follows:

AG(dIn0[0]=1 * dIn0[2]=0 * dIn0[3]=0 * state=S2 -> EF(dIn0==dOut0));

Due to the state space explosion, we succeeded in checking only a few properties
on the abstracted fabric directly. Instead, we adopted several techniques that divide
a property into sequentially or parallelly related sub-properties in a similar manner
to the compositional reasoning proposed in [19]. Details about the speci�c property
division techniques we used are reported in [20].

6.4.2 Equivalence Checking

Besides property checking, VIS supports combinational and sequential equivalence
checking of two circuits. Since we did post-design veri�cation of the switch fab-
ric, we attempted sequential equivalence veri�cation between the Verilog structural

29

description (which we translated from the original Qudos HDL implementation),
and the Verilog behavioural description of the fabric based on its FSM behaviour
speci�cation. If both descriptions are equivalent, the correctness of the fabric is
proved. We �rst provided a complete behavioural description of the whole switch
fabric as one module and tried to verify its equivalence against the implementation
of the whole fabric including all connections of submodules. However, we did not
succeed in verifying it in VIS after three days of continuous execution on a Sun
Sparc 20 workstation due to state space explosion, even though we used di�erent
variations of model abstraction, combination with environment state machine, dy-
namic ordering, etc. We hence followed a second approach that modularizes the
fabric to several parts that are similar to the hierarchical modules of the structural
description, where each module will be, in addition, described in terms of its be-
haviour speci�cation. This second approach has the shortcoming that while we are
able to check the correctness of separate submodules of the fabric structure, it is
di�cult to ensure the correctness of the network connecting all the submodules.
This shortcoming is overcome by simulation and property checking. This second
approach, however, has the advantage that the developed behavioural descriptions
of the submodules are close to that used in industrial design synthesis, and hence
�ts in with on-the-
y veri�cation.

For the Fairisle switch fabric (see Figure 3), we veri�ed the sequential equivalence
of the Timing, Priority decode, Arbiters and Arbitration modules. In addition,
we checked the combinational equivalence of the Acknowledgment module. The
veri�cation of the Arbitration module consumed an excessive amount of CPU time
(see Table 3). We also failed to verify in VIS the Dataswitch module and obviously
the whole fabric. Table 3 gives the veri�cation CPU time and number of latches for
the modules veri�ed using equivalence checking.

6.5 Time Taken

The translation of the Qudos structural description to Verilog was straightforward
taking about three person-days. The time spent for understanding the expected
behaviour and writing the behavioural speci�cation was around ten person-days.
The time taken for the simulation of both RTL behavioural and structural spec-
i�cation in Verilog-XL, including the development of test-bench �les, was about
three person-days. The veri�cation of the RTL behavioural speci�cation against the
structural speci�cation was done automatically, and took around one person-day.
The user time required to set up 58 CTL properties, build the related environment
state machine, construct the appropriate property division and conduct the model
checking took approximately three weeks. The injection and veri�cation of an error
took less than one hour.

The experimental results of model checking, which were obtained on a Sun Sparc
20, are shown in Table 2. VIS generates comparatively more BDD nodes than the
MDG system does. This is due to the data abstraction within MDG that is absent
in VIS. The equivalence checking of the whole switch fabric ran for three days before
running out of memory. The same problem occurred with the dataswitch module.

30

Equivalence checking of the arbitration module was successful but it took two days
of machine time. The lower level modules such as the timing unit were veri�ed in
seconds. We also failed to verify the properties on the original switch fabric after
two days of machine time. Finally we reduced the datapath of the switch fabric
from 8 to 1 bit. The successful model checking results in Table 2 are based on this
reduced model.

Design errors can be detected by either equivalence or model checking. Like
MDG, VIS provides a counter-example generation facility to help identify the source
of design errors. Since VIS is based on ROBDDs, the node ordering has a dramatic
in
uence on the speed of both equivalence checking and model checking. Unlike
MDG, VIS provides dynamic ordering facilities to reduce the cost of manual variable
ordering. The algorithm used is so e�cient that it enhanced the model checking and
equivalence checking by up to 15 times in our example.

The experimental results given in Table 2 were obtained using VIS dynamic
ordering. It is to be noted that in some cases a manually optimized ordering, e.g.,
an interleaved order of the bits of the data words, would have enhanced the VIS
veri�cation.

Veri�cation CPU Time (s) Memory (MB) Nodes Generated

P1: Data Output Reset 3593.4 32.4 93,073,140
P2: Ack. Output Reset 833.0 4.5 28,560,871
P3: Data Routing 3679.7 40.9 79,687,784
P4: Ack. Output 414.8 5.3 4,180,124
Error (i) 82.5 3.5 1,408,477
Error (ii) 49.3 2.4 250,666
Error (iii) 15.4 1.1 85,238

Table 2: Experimental Results for the VIS Model Checking

Module Number of Latches CPU time (seconds)
Acknowledgement 0 1

Timing 2 1
Arbiters 12 13

Priority decode 16 27
Arbitration 30 67860
Dataswitch 64 {
Switch fabric 190 {

Table 3: Experimental Results for the VIS Equivalence Checking

We also applied cascade and parallel property divisions (practical approaches
to compositional reasoning) [20]. Using these techniques, we enhanced the model

31

Errors CPU time
Error (i) 20.6
Error (ii) 24.0
Error (iii) 1.7

Table 4: Experimental Results for the VIS Equivalence Checking with Errors

checking by up to 200 times. However, we had to establish environment state ma-
chines and abstract the circuit �rst. The derivation of reduced models from the
original structure and the division of properties was very time consuming. For a
cascade property division, we built a new partial environment state machine for
each target sub-circuit. For parallel property division, we disassembled a circuit at
di�erent symmetric locations and later composed the properties.

6.6 Errors

As in the HOL and MDG studies, no errors were discovered in the switch fabric
implementation. We injected the same errors as for MDG into the implementation
and checked them using either model checking or equivalence checking. Experi-
mental results are reported in Tables 2 and 4. Injected errors were automatically
detected and, using the counter-example facility, further viewed graphically with
Verilog-XL. Through checking the equivalence between the RTL behavioural and
the structural speci�cations of the submodules, we discovered errors that we mis-
takenly introduced in the structural speci�cation. Also, during model checking, we
found connection errors that were mistakenly introduced in the RTL behavioural
and structural speci�cations. We easily identi�ed and corrected these errors from
the counter-examples.

6.7 Scalability

The VIS proof approach is not directly scalable to large designs due to state space
explosion. To solve this problem the datapath complexity must be decreased by
abstraction and reduction. In a large design like the switch fabric, we also had to
apply compositional reasoning [19]. The environment state machine must imitate
the behaviour of the interfaced modules. It must also have fewer components than
the original models. Consequently, the environment state machine is especially
hard to develop when the concurrent interaction between the target model and its
associated models is complex.

7 Conclusions

In the previous sections we have given overviews of the speci�cation and veri�cation
of the Fairisle switch fabric using the 3 separate tools: HOL, MDG and VIS. In

32

this section we directly compare the advantages of the three systems based on those
experiences.

Structural Speci�cation The structural descriptions are very similar. HOL pro-
vides signi�cantly more expressibility allowing more natural speci�cations. Some
generic features were included in the MDG description that were not in the HOL
description. This could have been done with minimal e�ort, however. Due to its
Verilog front-end, (commercial) designs can be imported into VIS with no extra
overhead of a manual translation, which is one reason for its popularity. This also
allows direct interaction with commercial tools for simulation and synthesis.

Behavioral Speci�cation The behavioural descriptions are totally di�erent. The
MDG and VIS speci�cations are based on a state machine model while HOL's is
based on interval operators explicitly describing the timing behaviour in terms of
frames corresponding to whole ATM cells arriving. In the MDG and VIS speci-
�cations the frame abstraction is not used: the description is �rmly at the byte
level. Verilog allows direct testing of the speci�cations using commercial simulation
facilities, however. Unlike Verilog descriptions, HOL's higher-order logic and the
MDG-HDL descriptions are not directly executable. All describe the behaviour in
a clear and comprehensive form. Writing the behavioural speci�cations took longer
in HOL and VIS, as separate speci�cations were needed for each module. In MDG
this was not necessary as the whole design was veri�ed in one go. This also reduced
the MDG veri�cation time because fewer mistakes were made.

Property Checking An advantage of both MDG and VIS is that a property
speci�cation is easy to set up and verify. Expected operating conditions can be used
to simplify this, even if the full speci�cation is more general. For both systems it
was necessary to introduce an environment state machine in order to restrict the
possible inputs to the switch fabric. It is veri�ed that the speci�cation satis�es
its requirements under speci�c working conditions. It can greatly reduce the full
veri�cation cost by catching errors at an early stage. In this respect VIS, with
its very e�cient CTL based model checking, outperforms its MDG counterpart.
Properties are easier to describe in CTL than are invariants in the MDG system.

Veri�cation Time The HOL veri�cation was much slower, taking several months.
This time includes the veri�cation of each of the modules and of their combination.
Much of the time was spent on the connection of the highest level modules (which
VIS failed on). Using HOL, many lemmas had to be proved and much e�ort was
required to interactively create the proof scripts. For example, the time spent veri-
fying the dataswitch was about three days. The proof script was over 500 lines long
(17 KB). The MDG and VIS veri�cations were achieved automatically without the
need of a proof script. For MDG, however, careful management of the MDG node
ordering was needed (which currently has to be done manually). This could take
hours or a few days of work. In contrast, VIS provides several options for variable

33

ordering heuristics which eliminate the ordering overhead. However, major e�ort
was spent here developing abstract models of the switch fabric units to manage the
state explosion of the boolean representation. Furthermore, the HOL and MDG
veri�cations succeeded in verifying the whole switch fabric but VIS failed to verify
even the smallest 1-bit datapath version of the fabric using equivalence checking.
Additional time was spent hierarchically verifying submodules as with HOL but
their combination could not be veri�ed.

In the MDG and VIS veri�cations we imposed two more assumptions on the
environment of the switch fabric than in HOL. These assumptions are taken from
the informal description of the switch fabric, and reduce the complexity of our
automatic veri�cation by a factor of 2. The HOL proof, however, is consequently
more general.

Design Modi�cation In all the approaches, the work needed to verify a modi�ed
design is greatly reduced once the original has been veri�ed. MDG and HOL allow
generic veri�cation to be performed (e.g. word sizes are unspeci�ed), though HOL
is more
exible. No generic veri�cation is possible in VIS. Because MDG and VIS
are automated and fast, re-veri�cation times are largely the time taken to modify
the speci�cations and, for MDG, to �nd a new variable ordering. With HOL the
behavioural speci�cations of many modules and the proof scripts themselves may
need to be modi�ed. For model checking in VIS, new environment machines, and
model abstraction and reduction techniques may be required.

Tool Con�dence An advantage of the HOL approach over the others is the con-
�dence in the tool the LCF approach o�ers. Although the VIS and to a certain
extent the MDG software packages have been successfully tested on several bench-
marks and have been considerably improved, they cannot guarantee the same level
of proof security as HOL. Compared to MDG, VIS is a more mature tool. It is
implemented in a well-engineered fashion in C as compared to the prototype imple-
mentation of MDG in Prolog. Moreover, VIS is very widely used in both academia
and industry, giving con�dence in its correctness.

Error Detection All the approaches highlight errors, and help determine their
location. However, the way this information manifests itself di�ers. VIS and MDG
are more straightforward, outputting a trace of the input sequence that leads to
the erroneous behaviour. Errors are detected automatically and can be diagnosed
with the help of the counter-example facility. In addition, due to its front-end, VIS
counter-examples can be analyzed using commercial tools such as XL-Verilog. In
HOL, errors manifest themselves as unprovable goals. The form of the goal, the
context of the proof and the veri�er's understanding of the proof are combined to
track down the location, and understand its cause.

Design Aid With the MDG (and to a certain extent the VIS) veri�cation ap-
proach the veri�er does not need to be concerned with the internal structure of the

34

Table 5: Summary of the Comparison

Area Feature HOL MDG VIS

Speci�cation Behavioral Speci�cation - Time Taken ++ +

Structural Speci�cation - Time Taken + + ++

Behavioral Speci�cation - Expressibility ++ +

Structural Speci�cation - Expressibility ++ +

Executability of Speci�cations + ++

Veri�cation Full Veri�cation Completed ++ +

Machine Time Taken + +

Total Veri�cation Time Taken ++ +

Veri�cation Time for Modi�ed Designs + + +

Safety Property Checking + ++

Liveness Property Checking + ++

Equivalence Checking ++ +

Scalability ++

Con�dence in Tool ++ +

Errors Detect Errors ++ ++ ++

Locating Errors + ++ ++

Avoid Error Introduction + + +

False Error Reports ++ +

Design Impart Understanding of Design ++ + +

Suggesting Design Improvements ++ + +

Commercial Front End ++

Integration into Design Cycle + ++

design being veri�ed. This means that no understanding of the internals is obtained
by doing the veri�cation. In contrast, with HOL, a very detailed understanding of
the internal structure is needed. The veri�er must know why the design works the
way it does. The process of doing the veri�cation helps the veri�er achieve this
understanding. This means that internal idiosyncrasies in the implementation are
likely to be spotted, as are other potential improvements.

A summary of the main comparison points is given in Table 5. Each system is
given a rough rating of either \++", \+" or nothing to indicate how favorably the
system comes out with respect to that feature. In conclusion, the major advantages
of HOL are: the expressibility of the speci�cation language; the con�dence a�orded
in its results; the potential for scalability and the insight into the design that is
obtained. The strength of MDG and VIS is in their speed; their relative ease of
use and their error detection capabilities. MDG has the advantage of using abstract
data types and uninterpreted functions with a rewriting facility, hence allowing larger
circuits to be veri�ed|but with the drawback that an MDG veri�cation may not
terminate in some cases. VIS is a very e�cient model checker supporting the CTL
expressiveness for both liveness and safety properties. Moreover, VIS outperforms
MDG due to its maturity in the use of e�cient graph manipulation techniques. The

35

VIS Verilog front-end and mature C implementation make VIS very attractive to
industry.

Acknowledgments

We are grateful for the advice of X. Song and E. Cerny at the University of Montreal,
I. Leslie and M. Gordon at the University of Cambridge, Z. Zhou at Texas Instru-
ments, M. Langevin at Nortel, R. Brayton at Berkeley, F. Somenzi at Colorado, and
H. Thimbleby, H. Goodman and R. Butterworth at Middlesex University.

References

[1] C.M. Angelo, D. Verkest, L. Claesen and H. de Man. On the Comparison of
HOL and Boyer-Moore for Formal Hardware Veri�cation. Formal Methods in

System Design, 2:45{72, Kluwer, 1993.

[2] R. Bryant. Graph-based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C-35(8):677{691, 1986.

[3] R. Brayton et al. VIS: A System for Veri�cation and Synthesis In R. Alur
and T. Henzinger, eds, Computer Aided Veri�cation, LNCS 1102, 428{432,
Springer-Verlag, 1996.

[4] B. Chen, M. Yamazaki and M. Fujita. Bug Identi�cation of a Real Chip Design
by Symbolic Model Checking. In Proceedings of the International Conference

on Circuits and Systems, 132{136, 1994.

[5] F. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny. Multiway Deci-
sion Graphs for Automated Hardware Veri�cation. Formal Methods in System

Design, 10(1):7{46, 1997.

[6] P. Curzon. Tracking Design Changes with Formal Machine-checked Proof. The
Computer Journal, 38(2):91{100, July 1995.

[7] P. Curzon and I.M. Leslie. A Case Study on Design for Provability. In Pro-

ceedings of the International Conference on Engineering of Complex Computer

Systems, pages 59{62, IEEE Computer Society Press, 1995.

[8] P. Curzon and I.M. Leslie. Improving Hardware Designs whilst Simplifying their
Proof. Designing Correct Circuits, Workshops in Computing, Springer-Verlag,
1996.

[9] K. Edgcombe. The Qudos Quick Chip User Guide. Qudos Limited.

[10] E. Garcez and W. Rosenstiel. The Veri�cation of an ATM Switching Fabric
using the HSIS Tool. In IX Brazilian Symp. on the Design of Integrated Circuits,
1996.

36

[11] M.J.C. Gordon, A.J. Milner and C.P. Wadsworth. Edinburgh LCF: A Mechan-
ical Logic of Computation. Volume 78 of LNCS, Springer Verlag, 1979.

[12] M.J.C. Gordon. HOL: A Proof Generating System for Higher-order Logic. In
G. Birtwistle and P.A. Subrahmanyam, eds, VLSI Speci�cation, Veri�cation
and Synthesis, pages 73{128. Kluwer Academic Publishers, 1988.

[13] M.J.C. Gordon and T.F. Melham. Introduction to HOL: A Theorem Proving

Environment for Higher-order Logic. Cambridge University Press, 1993.

[14] F.K. Hanna and N. Daeche. Speci�cation and Veri�cation of Digital Systems
using Higher-order predicate logic. IEE Proceedings, 133, E-5, 242-254, Septem-
ber 1986.

[15] J.M.J. Herbert. Case Study of the Cambridge Fast Ring ECL Chip using
HOL. Technical Report 123, University of Cambridge, Computer Laboratory,
February 1988.

[16] S. Coupet-Grimal and L. Jakubiec. Hardware Veri�cation using Co-induction
in Coq. In Proceedings of the International Conference on Theorem Proving in

Higher-Order Logics, Nice, France, September 1999.

[17] T. Kropf Formal Hardware Veri�cation: Methods and Systems in Comparison.
LNCS 1287, State-of-the-Art Survey, Springer Verlag, 1997.

[18] I.M. Leslie and D.R. McAuley. Fairisle: An ATM Network for the Local Area.
ACM Communication Review, 19(4):327{336, 1991.

[19] D.E. Long. Model Checking, Abstraction and Compositional Veri�cation. Ph.D
thesis, Carnegie Mellon University, July 1993.

[20] J. Lu and S. Tahar Practical Approaches to the Automatic Veri�cation of
an ATM Switch Fabric using VIS. In Proceedings of the IEEE Great Lakes

Symposium on VLSI, 368{373, 1998.

[21] J. Lu, S. Tahar, D. Voicu, and X. Song. Model Checking of a real ATM Switch.
In Proceedings of the IEEE International Conference on Computer Design, 195{
198, Austin, Texas, October 1998,

[22] K. L. McMillan. Symbolic Model Checking. Kluwer, 1993.

[23] S. Owre, N. Shankar, and J. Rushby. PVS: A Prototype Veri�cation System.
In Proceedings of CADE 11, Saratoga Springs, New York, June 1992.

[24] M. Palanisamy and S. Tahar. Formal Veri�cation of an RCMP Routing Logic.
In Proceedings of the 11th International Conference on Microelectronics, Kuwait
City, Kuwait, November 1999.

37

[25] S. Rajan, M. Fujita, K. Yuan, and M. Lee. High-Level Design and Validation
of ATM Switch. In Proceedings of the IEEE International High Level Design

Validation and Test Workshop, Oakland, California, November 1997.

[26] K. Schneider and T. Kropf. Verifying Hardware Correctness by Combining
Theorem Proving and Model Checking. In J. Alves-Foss, editor, Higher Or-

der Logic Theorem Proving and Its Applications: Short Presentations, 89{104,
1995.

[27] S. Tahar, X. Song, E. Cerny, Z. Zhou, M. Langevin, and O. Ait-Mohamed.
Modeling and Veri�cation of the Fairisle ATM Switch Fabric using MDGs.
IEEE Transactions on CAD, 18(7):956{972, July 1999.

[28] D. Voicu, E. Cerny, and X. Song. Formal Veri�cation of an ATM Switch
Port Controller. In Proceedings of the 5th Int. Conf. on Electronic Devices and

Systems, Czech Rep., June 1998.

[29] Y. Xu, E. Cerny, X. Song, F. Corella and O. Ait-Mohamed. Model Checking for
a First Order Temporal Logic Using Multiway Decision Graphs. In A. Hu and
M. Vardi (editors), Computer Aided Veri�cation, Lecture Notes in Computer
Science 1427, Springer-Verlag, 219{231, 1998.

[30] Z. Zhou and N. Boulerice. MDG Tools (V1.0) User's Manual. University of
Montreal, Dept. D'IRO, 1996.

38

