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Abstract

In order to overcome the limitations of automated tools and the cumbersome
proof process of interactive theorem proving, we adopt a hybrid approach for
formal hardware verification which uses the strengths of theorem proving (HOL)
with powerful mathematical tools such as induction and abstraction, and the
advantages of automated tools (MDG) which support equivalence checking and
model checking. The MDG system is a decision diagram based verification tool,
primarily designed for hardware verification. HOL is a theorem prover built on
higher-order logic. The methodology used to link the tools and the functioning
of the interface are described in detail. We use the timing block of the 4 by 4
Fairisle ATM switch fabric to illustrate the verification using this hybrid tool.
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1 Introduction

With the ever increasing complexity of the design of digital systems and the size
of the circuits in VLSI technology, the role of design verification has gained a lot
of importance. Simulation, which is the state-o-the-art is often used as the main
approach for verification, and despite the major simulation efforts, serious design
errors often remain undetected which resulted in the evolution of applications such
as formal methods in verifying the hardware design. There are several approaches to
formal hardware verification: theorem-proving, model checking, equivalence checking,
symbolic simulation to name a few [18]. Each of them has its own strengths and
weaknesses. In this report, we present a methodology with an example as to how
equivalence checking of the automated MDG system [4] supports the proof process of
the HOL theorem prover [9]. HOL is an interactive system that is built on higher-order
logic and developed at the University of Cambridge, U.K. Theorem proving can handle
very large circuits for verification but it is a cumbersome and time-consuming process
and needs expertise in using it. We believe that the present VLSI industry, however
needs the automation of the verification process as much as possible without suffering
the under-capability of the automated tools when it comes to handling large circuits.
Integration of interactive and automated tools eases the verification complexity to a
great extent.

The MDG system is a decision diagram based verification tool, primarily designed
for hardware verification which allows equivalence checking and model checking. It
is based on Multiway Decision Graphs which extend ROBDDs [2] with abstract sorts
and uninterpreted function symbols. In the theorem proving approach to verification,
a system and its properties are described by means of logical formulae and the system
is shown by means of a logical proof to entail the desired properties. It allows functions
and relations to be passed as arguments to other functions and relations. Higher-order
logic is very flexible and has a well-defined and well-understood semantics. It also
allows us to use hierarchical verification wherein the modules are divided into sub-
modules and even the sub-modules are divided until the lowest level (gate level) is
reached. The behavioral and structural specifications of each module are expressed in
higher-order logic and each module is verified by proving a theorem stating that the
implementation implies the specification. Each sub-module is verfied, and its result
is used to verify the other sub-modules as needed. HOL scales better than MDG as
illustrated by related work on microprocessor verification [19, 22, 11]. This is beyond
the capabilities of the MDG on its own. To complete a verification, however, a very
deep understanding of the internal structure of the design is required, as it is a white-
box approach. Modeling and verifying a system is very time-consuming. Combining
both systems reaps the advantages of both. In our hybrid approach, we verify the
sub-modules using the MDG system.

The remaining sections of this report contain the related work and describe the



methodology we used in this hybrid approach. Section 3 describes the MDG and
HOL systems. The MDG system is described in detail for the reader to understand
the linking approach which is the main contribution of our work. In Section 4 we
describe our hybrid approach and how it is embedded inside the logic of an interactive
theorem-prover. In Section 5 we present an example we considered, the Timing block
of the Fairisle ATM switch fabric, through which we illustrate the advantages of our
approach. Section 6 finally concludes the paper.

2 Related Work

There exist a number of hybrid approaches such as combining theorem proving with
model checking [8, 10, 15, 16, 17] and combining theorem proving and symbolic tra-
jectory evaluation [1, 12]. Joyce and Seger [12] implemented a prototype software
tool for their hybrid approach by means of an interface between the Voss system and
HOL. A symbolic simulator can be used to verify assertions about the state of a circuit
that results from a given sequence of inputs. An extension to symbolic simulation is
symbolic trajectory evaluation which makes possible to verify assertions about state
trajectories, that is, sequences of states rather than just single states. In addition
to treating node values symbolically, symbolic trajectory evaluation provides a rig-
orous technique for verifying temporal relationships between these node values. In
their hybrid system, several predicates were defined in HOL whereby a mathematical
link is established between both systems. The authors implemented a tactic called
VOSS_TAC which calls the Voss system and does a part of the verification using
symbolic trajectory evaluation to decide whether an assertion is true which in turn
can be used by the HOL system to proceed with further verification procedure.

Aagaard et al [1] constructed a system that integrates symbolic trajectroy evalua-
tion based model checking with theorem proving in a higher-order classical logic. The
approach is made possible by using the same programming language fl as both the
meta and object language of theorem proving. This is done by “lifting” fl, essentially
deeply embedding f[ in itself. The approach provides an efficient and extensible ver-
ification environment. Their goal in this approach was to move seamlessly between
model checking, where fl functions are erecuted, and theorem proving, where they
reason about the behavior of fl functions. Those goals are achieved via a mechanism
that they referred to as “lifted fl”. This approach is applicable to any dialect of
the ML programming language and any model-checking algorithm that has inference
rules for combining results.

Rajan et al [15] described an approach where a BDD-based model checker for the
propositional mu-calculus has been used as a decision procedure within the frame-
work of the PVS proof checker. An extension of the mu-calculus is defined using the
higher-order logic of PVS. The temporal operators are then given their customary
fixpoint definitions using the mu-calculus. These temporal operators apply to arbi-
trary state spaces. In the instance when the state type is constructed in a hereditarily
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finite manner, mu-calcululs expressions are translated into input acceptable by a mu-
calculus model checker. This model checker can then be used as a decision procedure
within a proof to prove certain subgoals. The model checker accepts the translated
input from mu-calculus expression. The generated sub-goals are verified by the model
checker and the results are used in the proof process of PVS.

Schneider et al [17] proposed an approach of invoking model checking from within
HOL where properties are translated from HOL to temporal logic. A new class of
higher-order formulae were presented, which allows a unified description of hardware
structure and behavior at different levels of abstraction. Datapath oriented verifica-
tion goals involving abstract data types can be expressed by these formulae as well as
control dominated verification goals with an irregular structure. To ease the proofs
of the goals in HOL, a translation procedure was presented which converts the goals
into several CTL model checking problems, which are then solved outside HOL.

Hurd [10] described GANDALF _TAC, a HOL tactic that proves goals by calling
Gandalf which is a first-order resolution theorem-prover optimized for speed and
specializing in manipulations of large clauses, and mirroring the resulting proofs in
HOL. This call can occur over a network, and a Gandalf server may be set up servicing
multiple HOL clients. GANDALF _TAC is a Prosper plug-in [7] which does not go
through all of the proof procedure of the goal, but rather is a component of an
underlying proof infrastructure. GANDALF _TAC takes the input goal, converts it to
a normal form, writes it in an acceptable format, sends the string to Gandalf, parses
the Gandalf proof, translates it to a HOL proof, and proves the original goal.

Schneider and Hoffmann [16] described the embedding of linear time temporal
logic LTL in HOL together with a translation of LTL formulae into equivalent w-
automata [21]. The translation is implemented by HOL rules. Its implementation is
mainly based on pre-proven theorems. It runs in linear time in terms of the given
formula. The main application of this conversion is the sound integration of symbolic
model checkers as decision procedures in the HOL theorem prover. The conversion
also enables HOL users to directly verify temporal properties by means of HOL’s
induction rules.

Gordon [8] described the integration of the BuDDy BDD package in HOL. HOL
was used to formalize the Quantified Boolean Formulae of BDDs. By using a higher-
order rewriting tool, the formulae can be interactively simplified to get simplified
BDDs. Mapping the simplified formulae to BDDs was done by using a table. The
BDD algorithms can also strengthen its deductive ability in this system.

More work is still being done to integrate the formal verification tools. Since
theorem proving approach has the flexibility to express the behavior of the circuit at
different levels with ease which complements the reliability of the obtained results,
the formal verification research community is looking more into the ways to integrate
the automated tools with theorem provers to reap the advantages of both. Among
the developed hybrid tools, model checking technique is mostly used to integrate with
theorem provers because the model checking tools offer complete automation.



In difference to related work, in this report we combine theorem proving with
automated equivalence checking. We proposed a methodology as to how equivalence
checking of the automated MDG system [4] supports the proof process of the HOL
theorem prover [9]. The implementation of the proposed methodology is achieved by
building a linkage tool using Standard Meta Language (SML) to translate from HOL
to MDG. Two tactics (SML functions) MDG_COMB_TAC and MDG SEQ_TAC are
built for translation from HOL to MDG and verification in MDG. Later the results
from MDG are imported [23] to HOL.

The motivation to take up this work originated while looking into ways to integrate
VHDL and formal verification. The work described in this report is part of a larger
project to link VHDL, HOL and MDG as shown in Figure 1. Here, the VHDL
model is analyzed to get a data structure (Directed Acyclic Graph—DAG) of the
model which is passed through an HOL Generator to get the HOL model. Within
HOL, we use the functions, MDG_COMB_TAC and MDG_SEQ_TAC, to generate
the required files for the MDG system to complete the verification for combinational
and sequential verifications respectively. In the case of property verification, an LTL
property description (L_MDG) [24] is transformed into an equivalent VHDL or MDG-
HDL circuit description that will either be fed into the Analyzer or directly to the
MDG system, respectively.

PROPERTIES

E] o
Analyser VIEloDL -MDG

HOL-ASM Equivalence
Generator Checking
HOL Model Chetieng
Order File )—=
L-MDG

Checking
HOL Invariant File
MDG_COMB_TAC
MDG_SEQ TAC

Figure 1: Intended VHDL-HOL-MDG Project Skeleton




3 HOL and MDG

3.1 HOL System

The HOL System is a theorem prover based on higher-order logic [9] which was
originally intended for use in hardware verification but now used in a variety of
application areas since it is a general purpose proof system. It provides a wide range
of proof commands of varying sophistication, including rewriting tools and decision
procedures. Also, it is user programmable, allowing user-defined and application
specific proof tools to be developed.

The basic interface to the system is a Standard ML (SML) interpreter. SML [14]
is both the implementation language of the system and the meta-language in which
proofs are written. Proofs are input to the system as calls to SML functions. It
is very flexible and supports forward and backward proof by creating theorems and
applying inference rules to the already created theorems. In the backward proof, the
user sets the desired theorem as a goal.

HOL has many built-in inference rules and ultimately all theorems are proven in
terms of the axioms and basic inferences of the calculus. By applying a set of primitive
inference rules, a theorem can be created. Once a theorem is proven, it can be used
in further proofs without recomputation of its own proof. In the backward proof,
the user sets the desired theorem as a goal. Tactics are applied to the goal to create
sub-goals and inference rules are applied to prove the sub-goals which in turn proves
the main goal. The system is guided by applying tactics to proof obligations; a tactic
is an SML function that corresponds to a high-level proof step and automatically
generates the sequence of elementary inferences necessary to justify the step. Tactics
are used in backward proofs and inference rules are used for forward proofs. Tactics
can be composed into even larger steps using tacticals such as “apply tactics A then
B and then C repeatedly until no further simplification is obtained”.

A notable aspect of the system is that user-defined tactics cannot compromise
the soundness of a proof because the basic inferences operate on proof states. The
results are strong and the user can have great confidence since the most primitive
rules are used to prove a theorem. The HOL system also has automatic recursive
type definitions, structural induction tools, rewriting tools (from LCF), automatic
primitive recursive definitions, built-in theories of arithmetic, lists, sets, tautology
checker, automatic inductive definitions, parser and pretty-printer generator and an
online help facility. The applications of the HOL system are hardware design and ver-
ification, reasoning about security, verification of fault-tolerant computers, reasoning
about real-time systems. It is also used in compiler verification, program refinement
calculus, software verification, modeling concurrency and automata theory.



3.2 MDG System

The MDG verification approach is a black-box approach. During the verification the
user does not need to understand the internal structure of the design being verified.
The strength of MDG is its speed and ease of use. The MDG hardware verification
system has been used in the verification of significant hardware examples [3]. A
fundamental primitive of its hardware description language is the table which is the
truth table representation of a relation between the values on variables. Used with
don’t-care and default values, next state variables and variable entries, it becomes a
powerful specification construct that can be used to give behavioral specifications of
hardware as abstract state machines (ASM) [4].

Multiway Decision Graphs (MDGs) have been proposed [4] as a solution to the
data width problem of ROBDD based verification tools. The MDG tool combines
the advantages of representing a circuit at higher abstract levels as is possible in a
theorem prover, and of the automation offered by ROBDD based tools. An MDG is a
finite, directed acyclic graph (DAG). MDGs essentially represent relations rather than
functions. MDGs can also represent sets of states. They are much more compact than
ROBDDs for designs containing a datapath. Furthermore, sequential circuits can be
verified independently of the width of the datapath. The MDG tools package the
basic MDG operators and verification procedures [25]. The verification procedures
are combinational and sequential verification. The combinational verification provides
the equivalence checking of two combinational circuits. The sequential verification
provides invariant checking and equivalence checking of two state machines. The
MDG operators and verification procedures are implemented in Quintus Prolog [25].

MDG-HDL which is the input language for MDG, supports structural descriptions,
behavioral ASM descriptions or a mixture of both. A structural description is usually
a netlist of components connected by signals, and a behavioral description is given by
a tabular representation of the transition/output relation or truth table. The MDG-
HDL comes with a large library of predefined, commonly used, basic components (such
as logic gates, multiplexers, registers, bus drivers, ROMs, etc.). A circuit description
includes the definition of signals, components and the circuit outputs. Signals are
declared along with their sorts. Components are declared by the instantiation of the
input/output ports of a predefined component module.

For example, a multiplexer with a control signal select of concrete sort having
[0,1,2,3] as an enumeration, inputs: x1, x2, x3 of an abstract sort and output: y of
the same abstract sort is defined as:

component (mux1,mux(sel(select),
inputs([(0,x0), (1,x1),(2,x2)]1), output(y))

Among predefined modules we have a special module called table. Tables can be
used to describe a functional block in the implementation, as well as in the specifica-
tion. A table is essentially a series of lists, together with a single final default value.



The first list contains variables and cross-terms. The last element of the list must
be a variable (either concrete or abstract). The other variables in the list must be
concrete variables. The last element in the list of values could be a first order term.

A table can be thought of as taking 5 arguments. The first argument is a list of
the inputs, the second is the single output, the third is a list of table rows. Each row
is a list itself, giving one allocation of values to the inputs. The entries in the list
can be either actual values or a special don’t-care marker. The latter matches any
value the input could hold. The fourth argument is a list of output values. Each is
the value on the output when the inputs have the values in the corresponding row.
The final argument is the default value, taken by the output if the input values do
not match any row.

For example, a 2-input AND gate can be described as a table as:

table([[x1,x2,y], [0,%,0], [1,0,0] | 11)

The necessary files for verification in MDG are: a behavioral specification file,
a circuit description file, an algebraic file, a symbol order file, and an invariant file
[25]. The behavioral specification file declares signals and specifies the behavior of
the circuit using tables as dexcribed above. The algebraic specification file defines
sorts, function types and generic constants. The symbol order file provides the user-
defined symbol order for all the variables and cross operators which would appear
in MDGs. The circuit description file declares signals and their sort assignments,
describes the circuit network and the mapping between state variables and the next
state variables. The invariant file takes the corresponding circuit outputs from both
behavioral specification file and circuit description file and joins them to enable the
MDG system to check for equivalence between those outputs.



4 Linking Approach

4.1 Hierarchical Verification

In our hybrid approach, we follow a hierarchical hardware verification methodology.
Generally, when we use HOL to verify a design, the design is modeled as a hierarchy
structure with modules divided into sub-modules as shown in Fig. 2. The sub-modules
are repeatedly subdivided until eventually the logic gate level is reached.

Specification Module A Verification
Submodule A1 Submodule A2

Submodule A11 H Submodule A12 ‘ ‘ Submodule A21 H Submodule A22

Figure 2: Hierarchical Verification

By proving a theorem saying that the implementation (structure) implements the
specification (behavior), we accomplish the verification of each module. That is:

= Imp_A = Spec_A (4.1)

The verification starts in HOL with a goal to be proved. The correctness theorem
for each module states that its implementation down to the logic gate level satisfies
the specification. The correctness theorem for each module can be established using
the correctness theorems of its sub-modules. When the module is sub-divided, then
we can write the theorem about the structural description as

FImp_A = Imp_Al A Imp_A2 (4.2)
Now (4.1) can be written as
FImp_ Al A Imp_A2 = Spec_A (4.3)

The correctness statements of the sub-modules A1 and A2 can be used to prove
the correctness theorem for the module A. Likewise we can prove independently for
each sub-module that

F Imp_Al = Spec_Al (4.4)
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F Imp_A2 = Spec_A2 (4.5)
Since these are implications, to prove (4.1), it is enough to prove that
F Spec_A1 N Spec_A2 = Spec_A (4.6)

Similarly, A1 is verified from its sub-modules A11 and A12, and A2 is verified from
its sub-modules A21 and A22. Hence, we verify module A by independently verifying
its sub-modules A1l and A2. Using this top-down approach, the main objective of our
work is to identify and prove the correctness of certain sub-modules in an automatic
fashion using the MDG system. In MDG, for each sub-module it will be proved
by automatic verification that implementation is equivalent to specification and the
result is imported into HOL. In our hybrid system, the sub-module is treated as a
black-box.

4.2 Linking HOL and MDG

In HOL, the specification and implementation are expressed in higher-order logic. The
MDG system uses MDG-HDL to describe the implementation and the specification,
the latter is written in the table form [5]. The sub-goals from the main goal are
generated by HOL. The user decides if the sub-goal can be proved in MDG and its
description is written in MDG acceptable form using the description predicates. In
case a sub-goal is not expressed in the MDG acceptable form or the MDG verification
fails, then the regular HOL proof procedure is followed. Once all the sub-goals are
proved, it implies that the main goal is proved and hence the circuit is formally
verified. The interface converts the HOL descriptions to equivalent MDG files and all
required files for the MDG verification as specified in the following.

HOL Sub-goal MDG Files

& HOL System MDG System True/ Fase

Make_theorem

m O » m X m 4 =z

True

Figure 3: Block Diagram of the Hybrid System
The sub-goal specification and implementation which are in two different files are

given as input to the interface which is built in SML. The two HOL files contain
the inputs, outputs, intermediate outputs and their signal types. If there are new
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user defined types, they are usually defined in the HOL specification file. From the
given two HOL files, corresponding MDG circuit description file, MDG specification
file, MDG algebraic specification file, MDG order file and MDG invariant file are
created automatically. These MDG files are used for verification by the MDG system
for equivalence checking. In the case where the equivalence checking has succeeded,
MDG returns “true” and this result is imported into HOL in the form of a theorem
(using the make_theorem in HOL) and the main proof procedure continues in HOL
with the next sub-goal to be proved. Xiong et al [23] showed how the results of
MDG can be imported into HOL. [23] provides a formal proof for the soundness
of imported verification results from MDG to HOL. As part of the build-up of the
mathematical interface between the two tools, the total MDG library was specified in
HOL as predicates and Curzon et al [5] formally verified the MDG component library
in HOL. The authors also showed how the MDG tables can be expressed in HOL.

We developed two SML functions (tactics), MDG_COMB_TAC (for combinational
verification) or MDG_SEQ_TAC (for sequential verification) which link HOL and
MDG for hybrid verification. The tasks of MDG_COMB_TAC/MDG_SEQ_TAC are
shown as a flow-diagram in Fig. 4.

Sub-goal No
acceptable ?

Yes

SPEC (MDG)
IMPL (MDG)
ORDER File
ALGEBRAIC File
INVARIANT File

SPEC (HOL)
IMPL (HOL)

Call MDG and do the
verification

RESULT
from

MDG

False

True
A 4

‘ Make Theorem ‘ ‘ Regular HOL Proof ‘

Figure 4: Task of MDG_COMB_TAC/MDG _SEQ_TAC

Fig. 5 explains the internal structure of the hybrid tool in detail. First, one of
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the tactics invokes the translation, and once the translation is done, the verification
begins and the obtained validation result is imported into HOL for further verifi-
cation proof process. All file generators (Algebraic, Order, Invariant, Specification,
Implementation) shown in Fig. 5 are associated each to a specific generator in the
translator code.

 HOL
TACTIC ‘
HOL_Spec.
HOL_Impl.
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Trangator
Algebraic Order Invariant Spec Impl

MDG MDG MDG MDG MDG
Alg. File Order File Inv. File Spec. File Impl. File

Validation

Gial\ No

Proven 2

Yes

Theorem
Generator

Figure 5: Internal Structure of the Hybrid Tool

5 Case Study

For illustration purposes, we show the verification of a sub-module of the Fairisle
ATM switch fabric [13] (see Fig. 6) using our hybrid approach. Curzon [6] formally
verified this ATM switching element using the theorem-prover HOL. Tahar et al [20]
reverified it using MDG. The Fairisle switch fabric is a real switch fabric designed and
in use at University of Cambridge for multimedia applications. The Fairisle switch
forms the heart of the Fairisle network. Considering the fabric as the main module to
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be verified, it can be split into 3 sub-modules namely Acknowledgement, Arbitration
and Data Switch. Further dividing the Arbitration sub-module, we have the Timing,
Decoder, Priority Filter and Arbiters as sub-sub-modules (Fig. 6). In our example,
we have taken the Timing block to be a sub-sub-module (one of the sub-goals) and
used our hybrid tool to achieve the desired verification.

Aout0 1 ; . A0
Aoutl < Ainl
Aout2 1 1 ACKNOWL. L A
Aout3 = Ain3
fs . I
: L ARBITRATION .
= .
= £ ‘ :
= E 2 :
[ = ] 1
! @ |12 outDis;
' B [ xGrantj :
e - b yGrantj
11832 2518 8 16 :
H ox = '
4 : 3 5= oy ;
4 s> O | L X
4 4 o mecccccccccccccccccccccccceclecaaaaa
Din0 g 8 8 g = o Dout0
Dinl % L2 —— 7 Doutl
Din2 ® 8 - ? DATASWITCH ? Dout?
Din3 x X — x Dout3

Figure 6: Fairisle ATM Switch Fabric

5.1 Proof Structure of the ATM Fabric

The verification of the Fairisle switch fabric is arranged according to the division of
the fabric in a hierarchical fashion as shown in Fig. 7.

ATM Fabric

Acknowledge Arbitration Data Switch

Timing Decoder Priority Filter Arbiters

Figure 7: Hierarchical Verification of the Fairisle Switch Fabric

The goal is to prove that
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F Fabric_.Imp = Fabric_Spec (5.1)
From Fig. 7 and the equations in Section 4.1, we have
F Fabric_Imp = Ack_Imp N Arb_Imp A DataSw_Imp (5.2)

as in (4.4) and (4.5), we can prove that

F Ack_Imp = Ack_Spec (5.3)
F Arb_Imp — Arb_Spec (5.4)
F DataSw_Imp = DataSw_Spec (5.5)

Now it is enough to prove that
F Ack_Spec N Arb_Spec N\ DataSW _Spec =—> Fabric_Spec (5.6)

Likewise, at the next lower level the Arbitration block is proved in the same
fashion. In this Arbitration block, one of the sub-modules or sub-goal is the Timing
block. Instead of proving the implication in HOL, it can be proved using equivalence
in MDG which we illustrate in the following section.

5.2 Timing Block Verification

The Timing block controls the timing of the arbitration decision based on the frame
start signal and the time the routing bytes arrive. The implementation of the Timing
is shown in Fig. 8 and the FSM representation is shown in Fig. 9.

act [0..3]

anyActive
OR
4
dx X
AND DFFd
X = routeEnable
frameStart INV frameStartBar

INV

dy y
xBar OR DFFd
AND yterm W

Figure 8: Implementation of the Timing Block
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The implementation of the Timing block shown in Fig. 8 described in HOL is:

FV frameStart actO actl act2 act3 routeEnable.
TIMING_IMP ((frameStart actO actl act2 act3)) ((routeEnable))
3 anyActive frameStartBar x xBar y yterm dx dy .
(or4 act0 actl act2 act3 anyActive) A
(not frameStart frameStartBar) A
(not x xBar) A
(and xBar y yterm) A
(and4 anyActive y frameStartBar xBar dx) A
(or frameStart yterm dy) A
(reg dx x) A
(reg dy y) A
(fork x routeEnable)

9
S
& Q

frameStart = 1/routeEnable=0

Figure 9: State Transitions of the Timing Block

The resulting MDG-HDL implementation of the Timing block equivalent to that
of HOL, as generated by MDG_SEQ_TAC is:

component (anyActive_impl,or4 (input(act0,actl,act2,act3),
output (anyActive))).

component (frameStartBar_impl,not (input (frameStart),
output (frameStartBar))) .

component (xBar_impl,not (input (x) ,output(xBar))) .

component (yterm impl,and(input(y,xBar) ,output(yterm))).

component (dx_impl,and4 (input (anyActive,y,frameStartBar,xBar),
output (dx))).

component (dy_impl, or (input (frameStart,yterm) ,output (dy))) .

component (x_impl,reg(input (dx) ,output(x))) .

component (y_impl,reg(input (dy) ,output(y))) .

component (fork_for_routeEnable_impl,fork(input(x),output(routeEnable))).
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The specifications of the Timing block in HOL and MDG are shown below. The
HOL specification of the Timing FSM is described using a state transition function
and output function. The HOL definition of the state transitions of the FSM in Fig. 9
which is written in terms of the table specification is given as:

TABLE [anyActive;frameStart;timing state] (n_timing state o NEXT)
[[DONT_CARE; TABLE_VAL (TRANS T) ; TABLE_VAL(STATE RUN)];
[DONT_CARE ; TABLE_VAL (TRANS F) ; TABLE_VAL(STATE RUN)];
[TABLE_VAL(TRANS T) ;TABLE_VAL(TRANS F);

TABLE_VAL (STATE WAIT)];
[DONT_CARE; TABLE_VAL(TRANS T) ; TABLE_VAL(STATE ROUTE)]]
[WAITSIG;RUNSIG;ROUTESIG;WAITSIG] WAITSIG

The equivalent MDG table specification of the Timing FSM state transition is
generated using MDG_SEQ_TAC as:

[[anyActive, frameStart, timing state, n_timing state],
[*,1,run, wait],

[*,0,run, run],

[1,0,wait, route],

[*,1,route, wait] | wait]

Once the specification and implementation in HOL are translated to MDG-HDL,
MDG_SEQ_TAC generates the required order file, algebraic specification file and in-
variant file and calls the MDG tool for equivalence checking. The succeeded result

from MDG is imported into HOL as a theorem. And hence the verification of the
Timing block is done.

5.3 Verification Results

We have shown that:
Timing_-Imp = Timing_Spec (equivalence) (6.1)
We got the above result from MDG and it is imported into HOL as [23]:

F Timing_Imp — Timing_Spec (6.2)
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Using similar MDG proofs for the other sub-modules of the arbitration block, we
get:

F Timing_Spec A Decoder_Spec A PFilter _Spec A\ Arbiters_Spec
= Arb_Spec (6.3)

Hence proving the higher-level subgoal for the whole Arbitration block.

We showed using MDG that the structural description (i.e. implementation) is
equivalent to a high level specification specified using tables. Writing the high-level
specification (behavioral specification) using the tables in MDG is far easy compared
to writing it down in HOL. In HOL, the proof is interactive and is time-consuming
[6].

Using our hybrid tool, the procedure is faster than proving in HOL that the
implementation implies the high-level specification. Curzon [6] took several hours
to do the proof of the Timing block whereas the verification is done in less than a
second in MDG (see Table 1). It took six man hours to write the specification and
implementation files in HOL. The automatic translation to MDG proved effective in
this case. The verification results obtained by means of equivalence checking can be
formally related to higher levels of abstraction. Also, equivalence is a stronger result
compared to implication.

| MDG Nodes | CPU Time (sec.) | Memory (MB) |
| 227 | 0.41 | 0.161 |

Table 1: MDG Equivalence Checking Results for Timing Block

6 Conclusions

To summarize our work, we have built a tool linking HOL and MDG. It can be
invoked by calling the functions MDG_COMB_TAC or MDG_SEQ_TAC from HOL. A
translator uses the specification and implementation written in HOL in terms of MDG
like tables and components respectively, generates all the required files (specification
and implementation files, algebraic specification file, symbol order file and invariant
file automatically, to be used in MDG. After the generation of the files the MDG
system is invoked for the verification. By using the automated MDG system, the
total verification time is significantly reduced. This is the main advantage of this
hybrid tool. The example we have chosen neatly fits into the proof structure.

By using this tool, more complex circuits can be verified using the powerful induc-
tion and expressiveness of HOL and the automation of MDG. This hybrid approach
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is more effective in hierarchical verification. If the main module can be divided into
smaller sub-modules, then certainly the use of this hybrid approach proves to be effec-
tive since there are less chances of state-explosion problem and MDG can effectively
handle smaller circuits. The translator we have implemented works for equivalence
checking of MDG. This work can be extended to use model checking as part of the
hybrid tool.
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