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Abstract. In this report, we investigate the impact of design changes on formal verification
using MDG (Multiway Decision Graphs) tools. In particular, we would like to determine whether
the design changes that make verification by interactive theorem proving simpler, also make ver-
ification by automated decision diagram approach simpler as well. The design we consider is the
Fairisle 4 by 4 switch fabric which is in use for real applications in the Cambridge ATM Fairisle
network. A major consideration during the design change decisions should not compromise other
design goals such as performance and functionality. The specification and verification obtained
in MDG demonstrated the expected positive impact of these design changes.

1. Introduction

As communication networks become all pervasive, the consequences of errors in the design or
implementation of network components become an increasingly important area. The validation of
network components is at best difficult. Simulation cannot uncover all errors in an implementation
because only a small fraction of all possible cases can be considered. Formal verification is a dif-
ferent technique that can alleviate this problem. Because the correctness of a formally verified
design implicitly involves all cases regardless of the input values [8].

Asynchronous Transfer Mode (ATM) [7] is being hailed as the solution to many communica-
tion problems. In essence, it consists of sending data over a packet-switched network using virtual
circuits and short fixed size packets known as cells. It is a flexible technology and is being
adopted by both the computer and telecommunication industries in local and wide area networks
in response to changing communication demands. It has been adopted as the most important
transfer mode of the foreseeable future. However, it represents a large paradigm shift in communi-
cations and there is currently a little experience from which to derive confidence of correct behav-
ior. An ATM network design is thus a timely application for verification research. There have
been several projects on the verification of ATM switches. For instance, the formal verification of
the Cambridge Fairisle switch fabric had been done by Curzon [3] using the HOL theorem prover.
Taharet al. [13] verified the same switch in an automatic fashion using the MDG (Multiway Deci-
sion Graphs) tools by property checking and equivalence checking. Luet al. [10] also formally
verified this same ATM switch fabric using VIS. Chenet al. [2] at Fujitsu Digital Technology, for-
mally verified an ATM circuit using SMV. By using a combination of theorem proving and model
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checking Rajanet al. [11] discovered bugs in a high-level ATM model that was presumed correct
during simulation.

In this report, we investigate whether the formal verification task of an ATM design can be
simplified by making necessary design changes: that is whether a notion of “Design for Verifiabil-
ity”, similar to that for testability, is of practical interest. Curzon [4][5] introduced this idea in the
context of interactive proof. By using the HOL theorem prover [6], he suggested that the cost of
verification in terms of time can be reduced by making appropriate design changes. In this work,
we investigate whether the same design changes also reduce the verification cost while using the
MDG (Multiway Decision Graphs) tools [1].

Our investigation involved the verification of an existing hardware design which was designed
at the Computer Laboratory of the University of Cambridge. The component we considered is the
Fairisle 4 by 4 switching fabric which performs the actual switching of data cells and forms the
heart of the ATM Fairisle communication network [9]. The MDG tools, which were developed at
the University of Montreal, are based on a new class of decision graphs. These decision graphs
subsume Reduced Ordered Binary Decision Diagrams (ROBDD) while accommodating abstract
sorts and uninterpreted function symbols. While verifying the original description of the switch
fabric using the HOL theorem prover, which we refer to here as theOriginal Switch Fabric, Cur-
zon et al. [5] noted the factors that were increasing the verification cost in terms of time. It
became obvious that particular aspects of the behavioral specification were lengthening the verifi-
cation time by significant amounts. Moreover, by changing the behavior of the switch fabric,
which is controlled by the environment of the switch fabric, i.e., port controllers, the problems
would have been removed. While changing the actual design, Curzonet al. were concerned that
such changes should not affect the performance or functionality of the device. We will refer to the
modified design which includes the suggested design changes during the interactive proof, as the
“Cleaned” version of the Original Fairisle 4 by 4 switch fabric. The new design incorporated the
following changes without any significant loss of functionality:

•   The header arrive at least 5 cycles after the frame start signal.
•   The header and frame start must not occur together.
•   Internal delays were added to the datapaths so that no extra cell byte is lost.
• Minor changes to the internal timing of the data switch so it reads two grant signals at a

more sensible time.

In this new work, we repeat Curzon’s reverification of theCleanedFabric using MDG tools. In
addition to the suggested modification, we changed the original environment state machine which
was used inOriginal Fairisle 4 by 4 switch fabric verification using MDG tools [13]. The new
verification of theCleanedversion of the design has been performed by property checking and
equivalence checking provided by the MDG tools. We made this change to keep the external con-
straints on modules simple which in turn improves the design for verification.

The outline of this paper is as follows: In Section 2, we describe theOriginal version of the
Fairisle switch fabric in terms of behavioral and structural description. In Section 3, we describe
the changes to the fabric that were suggested by the verification attempt in theorem prover. In Sec-
tion 4, we describe the verification of theCleanedversion in MDG. In Section 5, we are compar-
ing and contrasting different aspects of theCleanedandOriginal versions of the switch fabric and
Section 6 concludes the paper.



3

2. The Fairisle ATM Switch

The Fairisle ATM switch consists of three types of components:input port controllers, output port
controllersand aswitch fabric, as shown in Figure 1. It switches ATM cells from the input ports
to the output ports. A cell consists of aheader(one-byte tag containing routing information as
shown in Figure 2) and a fixed number of data bytes. The port controllers synchronize incoming
data cells, append headers in the front of the cells, and send them to the fabric. The fabric waits for
cells to arrive, strips off the tags, arbitrates between cells destined to the same output port, sends
successful cells to the appropriate output port controllers, and passes acknowledgments from the
output port controllers to the input port controllers. If different port controllers inject cells destined
for the same output port controller into the fabric at the same time then only one will succeed and
the others must retry later. The header also includes priority information (priority bit) that is used
by the fabric for arbitration which takes place in two stages.

Figure 1: The structure of the Fairisle ATM switch

High priority cells are given precedence before the other cells. The choice within both priori-
ties is made on a round-robin basis. The input controllers are informed of whether their cells were
successful using acknowledgment signals. The fabric sends a negative acknowledgment to the
unsuccessful input ports, but passes the acknowledgment from the requested output port control-
lers to the successful input port. The port controllers and the switch fabric all use the same clock,
hence bytes are received synchronously on all links. They also use a higher-level cell frame
clock—theframe start(fs) signal (see Figure 1). It ensures that the port controllers inject data
cells into the fabric synchronously so that the headers arrive at the same time. In this paper, we are
concerned with the verification of theswitch fabric.

Figure 2: The routing tag of a Fairisle ATM cell

3. MDG Modeling of theCleanedFabric

Inspired by [4][5] and the verification of theOriginal design of the Fairisle switch fabric using the
MDG tools [13], we derived an MDG description of theCleanedversion of the switch fabric. The
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behavioral specification of the switch fabric is represented in the form of an Abstract State
Machine (ASM). It reflects the complete behavior of the fabric under the assumptions that the
environment maintains some constraints on the arrival time of the frame start signal and the cell
headers. We investigated the modified behavior of the switch fabric under the control of the envi-
ronment and describe ourCleanedversion of the switch fabric in the following three sub-sections.
In Section 3.1, we describe the assumptions about the environment of the fabric, i.e., port control-
ler in the form of a finite state machine. In Section 3.2, we describe the behavioral specification of
the switch fabric under the assumptions described in Section 3.1. In Section 3.3 we describe the
implementation of the switch fabric.

3.1 Environment for the port controllers

The set of timing-diagrams in Figure 3 represents the expected behavior of theCleanedversion
of the switch fabric during an active frame. Based on this and similar sets of timing-diagrams we
derived our environment state machine which controls the changed input-output behavior of the
switch fabric. After theframe start(at timets), the switch waits for the headers to appear on the
input linesDin. After the arrival of the headers (at timeth), an arbitration between the inputs
clashing for the same output is done in at most 2 cycles. The successful cells (bytes that follow the
headers onDin) are transferred to the corresponding output port (Dout) with a delay of 5 cycles
while acknowledgment (Ain) starting at time th+3 traverse in the opposite direction without any
synchronous delay. Note that the last 5 cycleste-1 to te-5 of a frame do not accept any data.

Figure 3:  Timing diagram behavior during an active frame

The finite state machine having 64 states in Figure 4 was inspired by these timing-diagrams.
We modified the original environment state machine as given in the verification design documen-
tation of theOriginal version of the Fairisle switch [13] to comply with the modifications sug-
gested by Curzonet al. [5]. In the rest of the section, we describe the four modified assumptions
about the environment of the switch fabric and the reasons of the modifications from its anteced-
ent [13].

1. At start up (t0) the frame starts without any delay, i.e.,ts = t0. In the current usages of the
fabric, theframe startis delayed by at least 2 cycles before being asserted. We brought this modi-
fication because it was lengthening the verification time by a significant amount.
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made this change, so that this 4 by 4 switch fabric can be used as a module for the front elements
of a 16 by 16 switch fabric (a 16 by 16 switch fabric consists of eight 4 by 4 switch fabric — 4
front elements and 4 back elements) without any modification. In the case of theOriginal version
the header arrives at 8 clock cycles after theframe start[5]. Under this assumption the required
clock cycles to process a cell having length 52 bytes were 68 clock cycles (refer to Figure 5). The
fabric was designed before the port controllers, so it was not clear what the necessary delays
required by the port controllers would be. In ourCleanedversion, we need only 64 clock cycles to
process a cell having the same length which is similar to the frame size. Because of this assump-
tion, the arrival and leaving times of the cells will be less.

3. The current design of the fabric allows cells, and thus headers, to arrive at any time within a
frame provided that they all arrive together. This leads to a complex assumption about a frame
structure which will change form for different modules. This aspect of the design needs to ensure
that the cells do not arrive close to the frame start. This feature of the design caused much confu-
sion in the implementation of both the port controllers and the larger fabric. To overcome this
complexity, there should be a fixed time spacing between the arrival of the header and the frame
start signal. If the header arrives at a known time after the frame start, the timing circuitry would
be simpler and make it easier to verify. By considering the above reasons, the header may arrive at
least 5 cycles before the next frame start, i.e., .

4. After the active bit goes high a frame startsignal cannot arrive until the data is processed.
Hence, the nextframe startcannot arrive before at least 11 cycles from the currentframe start(ts).
This is to maintain the consistency of the timing interval between the arrival of the header and the
frame start signal.

Based on the above four assumptions our environment state machine will be a finite state
machine having 64 states as shown in Figure 4.

Figure 4:  The new environment state machine

Figure 5: The original environment state machine

In Figure 4, there are 64 states enumerated by integers (using MDG-HDL, state variables can
be described as a concrete variables of sort [1, 2, .., 64]). State transitions are denoted by arrows.
In analogy to the environment states machine [13], we usedfs, h anddi to denote theframe start
signal, the header of an active cell and the data processing in that state, respectively. The notion of
(di) in Figure 4 and Figure 5 indicating that data are switched to the output port in that state. The
frame startsignal may arrive in state 1 or 64. Header and next frame start signal may arrive in
states 6 or 64, respectively. If the cell length is 52 bytes, theframe startsignal will be cyclic in
every 64 clock cycles, i.e., the frame size is 64 cycles. States 2 to 64 represent the cyclic behavior
of the fabric. Between states 12 to 63, the remaining 52 bytes of the cell following the header
arrive at the output port.
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3.2 Behavioral Specification of the Switch Fabric

Figure 6:  ASM of theCleaned switch fabric

Inspired by, the constraints from the above environment state machine which represents the
port controllers behavior, we describe in the following the overall behavior of the switch fabric. It
can be expressed in the form of a finite state machine (ASM) having 12 states (Figure 6). To sim-
plify the presentation, the symbolss andh denote aframe start(fs=1) and the arrival of headers
(active bit set in at least oneDin), respectively; “~” denotes negation, and the symbolsa, d or r
inside a state represent the processing of the acknowledgment output (Aout), the data output
(Dout) or round-robin arbitration, respectively. Note that the absence of an acknowledgment or
data symbol in a state means that the default value 0 is produced.

Two time axes illustrate the time units of a frame to which the transitions correspond. The sym-
bols ts and th represent the arrival time of aframe startsignal and the arrival time of a header,
respectively. The end time (te) of a frame is not given, since it is the same asts of the next frame.
State 1 is the initial state from which a frame may begin without any delay. This complies with the
first constraint on the environment of the switch. After a waiting loop for the firstframe startin
state 1, states 2 to 6 describe the behavior of the fabric after the arrival of aframe start, with at
least a five-cycle delay before the arrival of the headers. This delay represents the second con-
straint on the environment. The waiting loop for the arrival of the headers in state 6 is shown by a
natural numberj. States 7 to 12 describe the behavior of the fabric after the arrival of the headers.
When the headers arrive, theframe startsignal must not arrive before at least 6 cycles to comply
with the third constraint on the environment. The arrival of aframe startin state 12 complies with
the last constraint of the environment which describes that the next frame will not arrive before at
least 11 cycles from the currentframe start.After arbitration (state 9), the switch fabric transfers
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the acknowledgments in each cycle of a frame and switches data delayed by three cycles. This
delay is represented using the sequence of transitions from state 9 to 12. The self-loop in state 12
represents the transmission of data and acknowledgments in the remaining cycles of the cell (indi-
cated by a natural numberk). The arrival of aframe startin state 12 marks the beginning of
another frame. Here, a new sequence of state transitions along thets axis progresses similarly as
in states 2, 3, 4, 5 and 6 described above.

Figure 7:  ASM of theOriginal switch fabric

Figure 7 represents theOriginal ASM of the switch fabric that used in the Original MDG veri-
fication of the Fabric [13]. To model the computation in MDG of the acknowledgments, the data
outputs and the round-robin arbitration, we use the same techniques described in [13].

3.3 Implementation of the Switch Fabric

Figure 8shows a block diagram of theOriginal switch fabric implementation. It consists of an arbi-
tration unit, an acknowledgment unit and a dataswitch unit. The arbitration unit is composed of a Tim-
ing unit, a Decoder, a Priority Filter and aset of Arbiters. We do not describe the functionality of
each module in this section. For more details about the implementation refer to [3].
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Arbiters, control path between the Arbitration and Dataswitch units and datapath to the
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the Timing module are given in Figure 10 and Figure 11, respectively. The shaded boxes in Figure 9
represent the modified modules in theCleaned implementation.

Figure 8:  Fairisle switch fabric Original implementation

Figure 9: Fairisle switch fabric Cleanedimplementation

The Arbiters generate theoutput disableandgrantsignals. They work consistently only when a
frame startarrives at the same time as arouteEnable. TheOriginal Arbiters disable the outputs one
cycle earlier than is desirable. This is essential because of the way the dataswitch part is imple-
mented. On each cycle, to determine which output the current byte should be sent to, the
Dataswitch consults the two bits of the grant control signal produced by the Arbiter. One of those
bits is sampled on the cycle before it is used, but the other is sampled on the same cycle. This ulti-
mately means that the grant signal for the last cycle cannot be used as its value changes between
the bits being sampled. The problem is removed by adding extra delays across the path to the
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Dataswitch. TheCleanedArbiters disable the outputs one cycle later than theOriginal one, so that
the last bytes of a cell are not ignored.

Figure 10: The implementation of theOriginal timing module

Figure 11: The implementation of theCleanedtiming module

The Dataswitch module chooses a word to be output to each of the output ports. It delays the
data long enough for an arbitration decision to be made. To comply with the extra delay in the arbi-
tration unit, minor changes had been made to its internal timing so it can read the two grant lines at
a more sensible time. To do so, an extra register is added across the datapath to Dataswitch unit.
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4. MDG Verification of the Cleaned Fabric

TheCleanedversion was designed and formally verified, based on the modifications described in
the previous section. In the following two sub-sections we describe property checking and
sequential equivalence checking of the switch fabric. Before checking the equivalence of the spec-
ification of the switch fabric against the implementation, we have to make sure that these two
models themselves are correct with respect to the new environment.

4.1Property Checking

We applied property checking to ascertain that both implementation and specification of the
switch fabric satisfy some specific requirements while working under the control of the environ-
ment, i.e., port controllers. Sample properties are correct circuit-reset and correct data-routing.
Using the time pointsts, th and te, as introduced in Section 3, we described several properties
which reflect the modified behavior of the switch fabric. The verification of theCleanedversion
of the switch fabric was done using the following four properties [13]:

• Property 1: From ts+5 to th+5, the default value (zero) appears on the data output portDouti ,

wherezero is a generic constant andi = 0,...,3.
• Property 2: From ts+1 to th+2, the default value (0) appears on the acknowledgment output

portAouti, i = 0,...,3.
• Property 3: From th+6 to te-1 (i.e., 1 cycle before the nextts), if input port i, i ={0,..,3},

chooses output portj, j ={0,..,3}, with the priority bit set in the header, and no other input ports
have their priority bits set, the value onDoutj will be equal to that ofDini 5 clock cycles ear-
lier.

• Property 4: From th+3 to te-1 (i.e., 1 cycles before the nextts), if input port i chooses output
port j with the priority bit set in the header, and no other input ports have the priority bit set,
the value onAoutj will be that ofAini.

Properties 1and2 deal with the reset behavior of the circuit, whileProperty 3and4 state spe-
cific behaviors of the switching of cells. Although the (informal) description of the above proper-
ties explicitly involves the notion of time, we can verify them using only safety property checking
based on the environment state machine model described earlier. This is elaborated in the follow-
ing sub-sections.

4.1.1 Properties Description

The 64 state environment state machine (Figure 4) represents the cyclic behavior of the port
controller of the ATM switch. This state machine periodically generates a frame of 64 clock
cycles: starting from state 2 and back to it corresponds to one frame. The data inserted into the
fabric has a length of 52 bytes (48 bytes data + 4 bytes header). Using the following ITE (If-Then-
Else) formulas of the MDG-HDL, we can restate the previous four properties in terms of a state
variables of the environment state machine as follows.
• Property 1: If (s∈ [6, ..., 11])then Douti = zeroelse don’t care
• Property 2: If (s∈ [2, ..., 8])then Aouti = 0 else don’t care

• Property 3: If (s∈ [12, ..., 63])∧ priority[0..3] = [1,0,0,0] ∧ route[0] = 0 then Dout0 = Din0’

elsedon’t care
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• Property 4: If (s∈ [9, ..., 63]) ∧ priority[0..3] = [1,0,0,0] ∧ route[0] = 0 then Aout0 = Ain0

elsedon’t care

whereDin0’ is the input ofDin0 5 clock cycles earlier,priority[0..3] are the priority bits of the four
input ports androute[0] represents the routing bits for input port0 (refer to Figure 2).

4.1.2 Properties Verification

Figure 12:  Composed state machine for property checking

To verify these safety properties, we composed the fabric (specification or implementation)
with the environment state machine as shown in Figure 12. As there is a 5-clock-cycle delay for
the cells to reach the output ports, a delay circuit (five-stage shift register) is used to memorize the
input values that are to be compared with the outputs. Thus we can state the properties in terms of
the equality betweenDini’ andDoutj (e.g.,Property 3). By combining these machines (the dashed
frame in Figure 12) and the delay counter, we obtain the required platform for verification. This
verification technique is indeed inspired by the technique described in [13]. By using the property
checking facility of the MDG tools, we checked in each reachable state if the outputs satisfy the
logic expression of the property which should be true over all reachable states. The experimental
results from the verification of all the properties stated in Section 4.1.1 for both implementation
and specification, are given in Table 1 and Table 2, respectively. All experimental results were
obtained on a Sun Ultra SPARC 2 workstation (296MHz / 768 MB) and include CPU time in sec.,
memory usage in MB and the number of MDG nodes generated.

4.2Equivalence Checking

The original design of the switch fabric was described in Qudos HDL. The switch fabric is
composed of the acknowledgment, arbitration and dataswitch units. Each unit is further defined as
a module which is further subdivided until the same gate-level implementation is reached as in the
original Qudos HDL design. The authors in [13] translated the Qudos HDL description into
MDG-HDL using the same collection of gates. The switch fabric has a 32 bit-wide data input and
output lines. In Qudos HDL the data input and output lines are modeled as 32 individual lines. By
using the data abstraction technique of the MDG tools, we could better describe these 32 individ-
ual lines as words of sizen (e.g., an abstract sortwordn) . This arbitrary word size makes the
descriptions generic where we do not need to specify the exact word size. By abstracting the data
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lines from a bundle of bits to a compact word of abstract sort, we obtain an abstract RTL model of
the switch fabric. This RTL model will be equivalent to the original gate-level description, if it
produces the same output as the original gate-level for all input sequences. As the gate-level
description is not generic, it is not possible to verify the equivalence of an abstract RTL model
against an original gate-level implementation. To do that we should “instantiate” the data signals
of the abstract RTL model to be 8-bits wide. We can decode the abstract data to Boolean data by
usinguninterpretedfunction symbols in the MDG-HDL description of the two models. Decoding

can be realized by using 8 uninterpreted functionsbiti (i=0..7) of type [ ]. biti
extracts theith bit of an n-bit data. Based on this technique, one can verify that an abstract model
is equivalent to its original gate-level implementation.

By using the sequential equivalence checking facility of the MDG tool, we verified that the
abstract RTL implementation of the switch fabric complied with the specification of the behav-
ioral model. To verify the RTL implementation against the behavioral specification, we made use
of the fact that the corresponding input/output signals used in both descriptions have the same
sort. We obtained a complete verification of the switch fabric from a behavioral specification
down to the gate-level implementation using the above two verification steps. The experimental
result of the verification is given in Table 3.

Table 1: Property checking on the implementation of theCleanedfabric

Verification CPU time (in sec.) Memory (in MB) MDG Nodes generated

Property 1 173.81 32 88085

Property 2 151.53 31 89738

Property 3 166.21 30 90554

Property 4 164.76 32 90933

Table 2: Property checking on the behavioral specification of theCleaned fabric

Verification CPU time (in sec.) Memory (in MB) MDG Nodes generated

Property 1 186.65 27 74948

Property 2 199.67 23 75287

Property 3 195.23 23 73020

Property 4 160.43 28 72843

Table 3: Equivalence checking between different levels of theCleanedfabric

Verification CPU time (sec.) Memory Usage (MB) Number of Nodes

RTL vs. Beh. Level 1934.56 148 230798

gate-level vs. RTL 30.85  13  13899

wordn bool→
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5. Comparison betweenCleaned and Original version of the switch fabric

The motivation of this work was to compare the formal verification, in terms of time, of the
Cleanedversion of the Fairisle ATM switch fabric with theOriginal version using MDG tool.
Timing aspect of formal verification is an important issue to the industrial community. We are
comparing these two versions with respect to themachine-time and thehuman-time.

Human time spent on the verification of theOriginal version was longer than that of the
Cleanedversion. The amount of work in re-running a verification of a modified design is minimal
compared to the initial effort since the latter includes all the modeling aspect. In the verification
by MDG tools, manual interventions is needed for variables ordering which has an impact on the
verification time. In the verification of theOriginal version, much of the time was spent on deter-
mining a suitable variable ordering. As there were no major changes to theOriginal version, we
did not spend much time on redetermining a suitable variable ordering. The translation of the
original Qudos HDL design description to the MDG-HDL gate-level structural model took about
one person-week as described in the paper by Taharet al. [12]. The time spent on the modification
of the structural description of the design for theCleanedversion was four person-days. Because
the verifier needs to understand the design thoroughly, the time spent for understanding and writ-
ing the behavioral specification of theOriginal version was about four person-weeks. On the
other hand, for theCleanedversion it took two person-weeks. In the verification of theOriginal
version, the time required to setup four properties, to build the environment state machine, to con-
duct the property checking both on the implementation and the specification and to interpret the
results was about three person-weeks. For theCleanedversion, building a new environment state
machine and conducting the property checking on both the implementation and the specification
was taken about two person-weeks. The equivalence checking of the RTL implementation with its
behavioral specification and the RTL model against the gate-level model of theOriginal version
required about two person-weeks as the adoption of abstraction mechanisms and correction of
description errors for RTL implementation were needed. On the other hand for theCleanedver-
sion, it took about one person-week. The summary of the differences between theOriginal
Cleanedversion, in terms ofhuman-time taken during the verification phase, is given in Table 4.

Table 4: Summary of human-time taken for the Verification

To demonstrate the reduced verification time we compare themachine-timetaken to complete
theCleanedversion verification with that for theOriginal version. The machine-time taken by the
Cleanedversion for both the Property checking and the Equivalence checking has been reduced
by a significant amount of CPU time than that of theOriginal version. The differences between

Verification Phase Cleaned version Original version

Behavioral specification description Two person-weeks Four person-weeks

Implementation description of the Cleaned ver. Four person-days one person-week

New Env. state machine and Property checking Two person-weeks Three person-weeks

Equivalence checking:
RTL vs. Beh. Spec.  and RTL vs. Gate-level One person-week Two person-weeks
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the verification of theCleanedand theOriginal versions are illustrated with respect to CPU time
taken, memory usages and MDG nodes generated (see Table 5).

Table 5: Experimental Results for the Verifications of theCleaned and Original Fabric

6. Conclusions

In this report, we have demonstrated that design for verifiability can have a significant effect on
the speed of verification using automated decision diagram based technique. The same result was
obtained by using interactive proof with the HOL theorem prover for the same design verification.
The difference in nature of these two verification methodologies suggests design for verifiability
can be widely applicable as design for testability. One of the motivations of this work was to show
that designers can ease the verification task without compromising other design considerations.
Our investigation suggests that one way this can be done is by ensuring that the operating assump-
tions of modules are as few and as simple as possible. Design for verifiability in mind makes any
design simple to verify. The designer may have to work a little harder to ease the verifier’s task.
However, the result is a much cleaner design. It thus can be done early in the design cycle. The
development of design constraints for formal verification would be useful. This is vital for safety-
critical systems where formal verification techniques are most likely to be used.

The implementation we considered for this investigation was the Fairisle 4 by 4 switch fabric
which performs the actual switching of data cells and forms the heart of the ATM Fairisle commu-
nication network. We made some changes to the timing constraints of the fabric which is con-

Verification
Cleaned version Original version

CPU
time (s)

Memory
(MB)

Nodes
Generated

CPU
time (s)

Memory
(MB)

Nodes
Generated

Reachability Analysis
Specification

Implementation
180.40
219.22

32
34

73157
90208

188.59
232.74

36
35

74130
90319

Property checking
Specification
Property 1
Property 2
Property 3
Property 4

Implementation
Property 1
Property 2
Property 3
Property 4

186.65
199.67
195.23
160.43

173.81
151.53
166.21
164.76

27
23
23
28

32
31
30
32

74948
75287
73020
72843

88085
89738
90554
90933

251.53
279.02
257.52
236.42

235.34
233.49
205.04
268.75

25
26
25
25

34
35
33
84

74554
76265
74636
74441

92229
93882
92052
225486

Equivalence checking
RTL vs. Beh. Spec.
RTL vs. Gate-level

1934.56
30.85

148
13

230798
13899

2210.22
30.85

162
 13

245707
13899
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trolled by the environment of the fabric, i.e., port controllers. By changing these timing
constraints we made the operating assumptions of the fabric simpler and cleaner. We also changed
the design of the Arbiters, the Timing unit, the control path between the Arbitration and
Dataswitch unit and datapath to the Dataswitch unit without loss of any significant functionality.
The verification time taken by bothhumanandmachinefor the modified design (Cleanedversion)
was much less than that of the original design (Original version) as demonstrated in the previous
section. Based on the above statistics we can conclude that the verification time can be saved if the
“design for verifiability” is integrated into the design process itself.
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