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Abstract. In this report, we investigate the impact of design changes on formal verification
using MDG (Multiway Decision Graphs) tools. In particular, we would like to determine whether
the design changes that make verification by interactive theorem proving simpler, also make ver-
ification by automated decision diagram approach simpler as well. The design we consider is the
Fairisle 4 by 4 switch fabric which is in use for real applications in the Cambridge ATM Fairisle
network. A major consideration during the design change decisions should not compromise other
design goals such as performance and functionality. The specification and verification obtained
in MDG demonstrated the expected positive impact of these design changes.

1. Introduction

As communication networks become all pervasive, the consequences of errors in the design or
implementation of network components become an increasingly important area. The validation of
network components is at best difficult. Simulation cannot uncover all errors in an implementation
because only a small fraction of all possible cases can be considered. Formal verification is a dif-
ferent technique that can alleviate this problem. Because the correctness of a formally verified
design implicitly involves all cases regardless of the input values [8].

Asynchronous Transfer Mode (ATM) [7] is being hailed as the solution to many communica-
tion problems. In essence, it consists of sending data over a packet-switched network using virtual
circuits and short fixed size packets known as cells. It is a flexible technology and is being
adopted by both the computer and telecommunication industries in local and wide area networks
in response to changing communication demands. It has been adopted as the most important
transfer mode of the foreseeable future. However, it represents a large paradigm shift in communi-
cations and there is currently a little experience from which to derive confidence of correct behav-
ior. An ATM network design is thus a timely application for verification research. There have
been several projects on the verification of ATM switches. For instance, the formal verification of
the Cambridge Fairisle switch fabric had been done by Curzon [3] using the HOL theorem prover.
Taharet al.[13] verified the same switch in an automatic fashion using the MDG (Multiway Deci-
sion Graphs) tools by property checking and equivalence checkingt bl [10] also formally
verified this same ATM switch fabric using VIS. Chenal.[2] at Fujitsu Digital Technology, for-
mally verified an ATM circuit using SMV. By using a combination of theorem proving and model



checking Rajaret al.[11] discovered bugs in a high-level ATM model that was presumed correct
during simulation.

In this report, we investigate whether the formal verification task of an ATM design can be
simplified by making necessary design changes: that is whether a notion of “Design for Verifiabil-
ity”, similar to that for testability, is of practical interest. Curzon [4][5] introduced this idea in the
context of interactive proof. By using the HOL theorem prover [6], he suggested that the cost of
verification in terms of time can be reduced by making appropriate design changes. In this work,
we investigate whether the same design changes also reduce the verification cost while using the
MDG (Multiway Decision Graphs) tools [1].

Our investigation involved the verification of an existing hardware design which was designed
at the Computer Laboratory of the University of Cambridge. The component we considered is the
Fairisle 4 by 4 switching fabric which performs the actual switching of data cells and forms the
heart of the ATM Fairisle communication network [9]. The MDG tools, which were developed at
the University of Montreal, are based on a new class of decision graphs. These decision graphs
subsume Reduced Ordered Binary Decision Diagrams (ROBDD) while accommodating abstract
sorts and uninterpreted function symbols. While verifying the original description of the switch
fabric using the HOL theorem prover, which we refer to here athginal Switch Fabric, Cur-
zon et al. [5] noted the factors that were increasing the verification cost in terms of time. It
became obvious that particular aspects of the behavioral specification were lengthening the verifi-
cation time by significant amounts. Moreover, by changing the behavior of the switch fabric,
which is controlled by the environment of the switch fabric, i.e., port controllers, the problems
would have been removed. While changing the actual design, Cetzalnwere concerned that
such changes should not affect the performance or functionality of the device. We will refer to the
modified design which includes the suggested design changes during the interactive proof, as the
“Cleaned version of the Original Fairisle 4 by 4 switch fabric. The new design incorporated the
following changes without any significant loss of functionality:

* The header arrive at least 5 cycles after the frame start signal.
» The header and frame start must not occur together.
» Internal delays were added to the datapaths so that no extra cell byte is lost.

* Minor changes to the internal timing of the data switch so it reads two grant signals at a
more sensible time.

In this new work, we repeat Curzon’s reverification of tbieanedrabric using MDG tools. In
addition to the suggested modification, we changed the original environment state machine which
was used irOriginal Fairisle 4 by 4 switch fabric verification using MDG tools [13]. The new
verification of theCleanedversion of the design has been performed by property checking and
equivalence checking provided by the MDG tools. We made this change to keep the external con-
straints on modules simple which in turn improves the design for verification.

The outline of this paper is as follows: In Section 2, we describeCtginal version of the
Fairisle switch fabric in terms of behavioral and structural description. In Section 3, we describe
the changes to the fabric that were suggested by the verification attempt in theorem prover. In Sec-
tion 4, we describe the verification of tiideanedversion in MDG. In Section 5, we are compar-
ing and contrasting different aspects of thleanedandOriginal versions of the switch fabric and
Section 6 concludes the paper.



2. The Fairisle ATM Switch

The Fairisle ATM switch consists of three types of componanfsit port controllersoutput port
controllersand aswitch fabrig as shown in Figure 1. It switches ATM cells from the input ports

to the output ports. A cell consists offeeader(one-byte tag containing routing information as
shown in Figure 2) and a fixed number of data bytes. The port controllers synchronize incoming
data cells, append headers in the front of the cells, and send them to the fabric. The fabric waits for
cells to arrive, strips off the tags, arbitrates between cells destined to the same output port, sends
successful cells to the appropriate output port controllers, and passes acknowledgments from the
output port controllers to the input port controllers. If different port controllers inject cells destined
for the same output port controller into the fabric at the same time then only one will succeed and
the others must retry later. The header also includes priority informatioority bit) that is used

by the fabric for arbitration which takes place in two stages.
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Figure 1: The structure of the Fairisle ATM switch

High priority cells are given precedence before the other cells. The choice within both priori-
ties is made on a round-robin basis. The input controllers are informed of whether their cells were
successful using acknowledgment signals. The fabric sends a negative acknowledgment to the
unsuccessful input ports, but passes the acknowledgment from the requested output port control-
lers to the successful input port. The port controllers and the switch fabric all use the same clock,
hence bytes are received synchronously on all links. They also use a higher-level cell frame
clock—theframe start(fy) signal (see Figure 1). It ensures that the port controllers inject data

cells into the fabric synchronously so that the headers arrive at the same time. In this paper, we are
concerned with the verification of tlsevitch fabric
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Figure 2: The routing tag of a Fairisle ATM cell

3. MDG Modeling of the CleanedFabric

Inspired by [4][5] and the verification of th@riginal design of the Fairisle switch fabric using the
MDG tools [13], we derived an MDG description of tideanedversion of the switch fabric. The



behavioral specification of the switch fabric is represented in the form of an Abstract State
Machine (ASM). It reflects the complete behavior of the fabric under the assumptions that the
environment maintains some constraints on the arrival time of the frame start signal and the cell
headers. We investigated the modified behavior of the switch fabric under the control of the envi-
ronment and describe o@eanedversion of the switch fabric in the following three sub-sections.

In Section 3.1, we describe the assumptions about the environment of the fabric, i.e., port control-
ler in the form of a finite state machine. In Section 3.2, we describe the behavioral specification of
the switch fabric under the assumptions described in Section 3.1. In Section 3.3 we describe the
implementation of the switch fabric.

3.1 Environment for the port controllers

The set of timing-diagrams in Figure 3 represents the expected behavior@iEdmeedversion
of the switch fabric during an active frame. Based on this and similar sets of timing-diagrams we
derived our environment state machine which controls the changed input-output behavior of the
switch fabric. After theframe start(at timetg), the switch waits for the headers to appear on the

input linesDin. After the arrival of the headers (at timig), an arbitration between the inputs

clashing for the same output is done in at most 2 cycles. The successful cells (bytes that follow the
headers omin) are transferred to the corresponding output pbduf) with a delay of 5 cycles
while acknowledgmentAin) starting at time§+3 traverse in the opposite direction without any

synchronous delay. Note that the last 5 cytjdsto t-5 of a frame do not accept any data.
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Figure 3: Timing diagram behavior during an active frame

The finite state machine having 64 states in Figure 4 was inspired by these timing-diagrams.
We modified the original environment state machine as given in the verification design documen-
tation of theOriginal version of the Fairisle switch [13] to comply with the modifications sug-
gested by Curzoet al. [5]. In the rest of the section, we describe the four modified assumptions
about the environment of the switch fabric and the reasons of the modifications from its anteced-
ent [13].

1. At start up {p) the frame starts without any delay, i.& = ty. In the current usages of the
fabric, theframe startis delayed by at least 2 cycles before being asserted. We brought this modi-
fication because it was lengthening the verification time by a significant amount.

2. The header arrivety) at least 5 cycles after thieame start i.e., t >t +5. In the current

usages of the fabric, the header arrives at least 3 cycles aftgathe start(ty), i.e., t 2t +3 We



made this change, so that this 4 by 4 switch fabric can be used as a module for the front elements
of a 16 by 16 switch fabric (a 16 by 16 switch fabric consists of eight 4 by 4 switch fabric — 4
front elements and 4 back elements) without any modification. In the case Ofidiaal version

the header arrives at 8 clock cycles after tteame start[5]. Under this assumption the required
clock cycles to process a cell having length 52 bytes were 68 clock cycles (refer to Figure 5). The
fabric was designed before the port controllers, so it was not clear what the necessary delays
required by the port controllers would be. In dCieanedversion, we need only 64 clock cycles to
process a cell having the same length which is similar to the frame size. Because of this assump-
tion, the arrival and leaving times of the cells will be less.

3. The current design of the fabric allows cells, and thus headers, to arrive at any time within a
frame provided that they all arrive together. This leads to a complex assumption about a frame
structure which will change form for different modules. This aspect of the design needs to ensure
that the cells do not arrive close to the frame start. This feature of the design caused much confu-
sion in the implementation of both the port controllers and the larger fabric. To overcome this
complexity, there should be a fixed time spacing between the arrival of the header and the frame
start signal. If the header arrives at a known time after the frame start, the timing circuitry would
be simpler and make it easier to verify. By considering the above reasons, the header may arrive at
least 5 cycles before the next frame start, i, +5

4. After the active bit goes high aame startsignal cannot arrive until the data is processed.
Hence, the neXrame startcannot arrive before at least 11 cycles from the curframe start(ty).

This is to maintain the consistency of the timing interval between the arrival of the header and the
frame startsignal.

Based on the above four assumptions our environment state machine will be a finite state
machine having 64 states as shown in Figure 4.
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Figure 4: The new environment state machine
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Figure 5: The original environment state machine

In Figure 4, there are 64 states enumerated by integers (using MDG-HDL, state variables can
be described as a concrete variables of sort [1, 2, .., 64]). State transitions are denoted by arrows.
In analogy to the environment states machine [13], we figddandd; to denote thdrame start

signal, the header of an active cell and the data processing in that state, respectively. The notion of
(dj) in Figure 4 and Figure 5 indicating that data are switched to the output port in that state. The

frame startsignal may arrive in state 1 or 64. Header and next frame start signal may arrive in
states 6 or 64, respectively. If the cell length is 52 bytesfridw@e startsignal will be cyclic in

every 64 clock cycles, i.e., the frame size is 64 cycles. States 2 to 64 represent the cyclic behavior
of the fabric. Between states 12 to 63, the remaining 52 bytes of the cell following the header
arrive at the output port.



3.2 Behavioral Specification of the Switch Fabric
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Figure 6: ASM of the Cleanedswitch fabric

Inspired by, the constraints from the above environment state machine which represents the
port controllers behavior, we describe in the following the overall behavior of the switch fabric. It
can be expressed in the form of a finite state machine (ASM) having 12 states (Figure 6). To sim-
plify the presentation, the symbadsandh denote drame start(fs=1) and the arrival of headers

(active bit set in at least or@in), respectively; “~” denotes negation, and the symlaplg or r
inside a state represent the processing of the acknowledgment oA}, (the data output
(Dout) or round-robin arbitration, respectively. Note that the absence of an acknowledgment or
data symbol in a state means that the default value 0 is produced.

Two time axes illustrate the time units of a frame to which the transitions correspond. The sym-
bolstg andt;, represent the arrival time of flame startsignal and the arrival time of a header,

respectively. The end timef of a frame is not given, since it is the sametasf the next frame.

State 1 is the initial state from which a frame may begin without any delay. This complies with the
first constraint on the environment of the switch. After a waiting loop for the fliasshe startin

state 1, states 2 to 6 describe the behavior of the fabric after the arrivdtarha start with at

least a five-cycle delay before the arrival of the headers. This delay represents the second con-
straint on the environment. The waiting loop for the arrival of the headers in state 6 is shown by a
natural numbey. States 7 to 12 describe the behavior of the fabric after the arrival of the headers.
When the headers arrive, tirame startsignal must not arrive before at least 6 cycles to comply
with the third constraint on the environment. The arrival &fsane startin state 12 complies with

the last constraint of the environment which describes that the next frame will not arrive before at
least 11 cycles from the currefitame start.After arbitration (state 9), the switch fabric transfers



the acknowledgments in each cycle of a frame and switches data delayed by three cycles. This
delay is represented using the sequence of transitions from state 9 to 12. The self-loop in state 12
represents the transmission of data and acknowledgments in the remaining cycles of the cell (indi-
cated by a natural numbéj. The arrival of aframe startin state 12 marks the beginning of
another frame. Here, a new sequence of state transitions alotgatkie progresses similarly as

in states 2, 3, 4, 5 and 6 described above.
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Figure 7: ASM of the Original switch fabric

Figure 7 represents ti@riginal ASM of the switch fabric that used in the Original MDG veri-
fication of the Fabric [13]. To model the computation in MDG of the acknowledgments, the data
outputs and the round-robin arbitration, we use the same techniques described in [13].

3.3 Implementation of the Switch Fabric

Figure 8shows a block diagram of th@riginal switch fabric implementation. It consists of an arbi-
tration unit, an acknowledgment unit and a dataswitch unit. The arbitration unit is composed of a Tim-
ing unit, a Decoder, a Priority Filter andset of Arbiters. We do not describe the functionality of
each module in this section. For more details about the implementation refer to [3].

To reflect the modifications suggested in [5], minor changes were made to the Timing unit,
Arbiters, control path between the Arbitration and Dataswitch units and datapath to the
Dataswitch unit of the original implementation. The modified Timing module ensures that the
header and frame start signals must not occur togetherfrahee startsigral just gets there 5
cycles later as required to make it trigger 5 cycles later. All it does is delay the triggering of the switch-
ing to give the cell bytes time to arrive. The block diagrams of@niginal and theCleaned version of



the Timing module are given in Figure 10 and Figure 11, respectively. The shaded boxes in Figure 9
represent the modified modules in Gleanedmplementation
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Figure 8: Fairisle switch fabric Original implementation
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Figure 9: Fairisle switch fabric Cleanedimplementation

The Arbiters generate thmutput disableandgrant signals. They work consistently only when a
frame startarrives at the same time asauteEnable TheOriginal Arbiters disable the outputs one
cycle earlier than is desirable. This is essential because of the way the dataswitch part is imple-
mented. On each cycle, to determine which output the current byte should be sent to, the
Dataswitch consults the two bits of the grant control signal produced by the Arbiter. One of those
bits is sampled on the cycle before it is used, but the other is sampled on the same cycle. This ulti-
mately means that the grant signal for the last cycle cannot be used as its value changes between
the bits being sampled. The problem is removed by adding extra delays across the path to the



Dataswitch. TheCleanedArbiters disable the outputs one cycle later than@migjinal one, so that
the last bytes of a cell are not ignored.
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Figure 10: The implementation of theOriginal timing module

act
OR
anyAct
! dr re
f AND 1 DFFd | ——+——
1 1 1
en
fs 1
1
fs fsBar
INV
1 | den en
| AND tl OR | DFFd 1
act 4 !
INV
4 actBar
1
en

Figure 11: The implementation of theCleanedtiming module

The Dataswitch module chooses a word to be output to each of the output ports. It delays the
data long enough for an arbitration decision to be made. To comply with the extra delay in the arbi-
tration unit, minor changes had been made to its internal timing so it can read the two grant lines at
a more sensible time. To do so, an extra register is added across the datapath to Dataswitch unit.



4. MDG Verification of the CleanedFabric

The Cleanedversion was designed and formally verified, based on the modifications described in
the previous section. In the following two sub-sections we describe property checking and
sequential equivalence checking of the switch fabric. Before checking the equivalence of the spec-
ification of the switch fabric against the implementation, we have to make sure that these two
models themselves are correct with respect to the new environment.

4.1Property Checking

We applied property checking to ascertain that both implementation and specification of the
switch fabric satisfy some specific requirements while working under the control of the environ-
ment, i.e., port controllers. Sample properties are correct circuit-reset and correct data-routing.
Using the time pointd,, t, andt,, as introduced in Section 3, we described several properties
which reflect the modified behavior of the switch fabric. The verification ofGheanedversion
of the switch fabric was done using the following four properties [13]:

» Property I Fromtgs+5 toty+5, the default valuezerg appears on the data output pbaut
wherezerois a generic constant and 0,...,3.

* Property 2 Fromtgt1 to t,+2, the default valued) appears on the acknowledgment output
portAout,i=0,...,3.

* Property 3 Fromt,+6 to te-1 (i.e., 1 cycle before the nexy), if input porti, i ={0,..,3},
chooses output poytj ={0,..,3}, with the priority bit set in the header, and no other input ports
have their priority bits set, the value &@vout will be equal to that oDin; 5 clock cycles ear-
lier.

* Property 4 Fromt,+3 tots-1 (i.e., 1 cycles before the netg, if input porti chooses output
portj with the priority bit set in the header, and no other input ports have the priority bit set,
the value orAouy will be that ofAin;.

Properties 1land2 deal with the reset behavior of the circuit, whiteoperty 3and4 state spe-

cific behaviors of the switching of cells. Although the (informal) description of the above proper-

ties explicitly involves the notion of time, we can verify them using only safety property checking

based on the environment state machine model described earlier. This is elaborated in the follow-
ing sub-sections.

4.1.1 Properties Description

The 64 state environment state machine (Figure 4) represents the cyclic behavior of the port
controller of the ATM switch. This state machine periodically generates a frame of 64 clock
cycles: starting from state 2 and back to it corresponds to one frame. The data inserted into the
fabric has a length of 52 bytes (48 bytes data + 4 bytes header). Using the following ITE (If-Then-
Else) formulas of the MDG-HDL, we can restate the previous four properties in terms of a state
variables of the environment state machine as follows.

* Property 1 If (sU[6, ..., 11])then Dout = zeroelsedon't care

* Property 21If (sO[2, ..., 8])then Aout =0 elsedon’t care
« Property 3 If (sO[12, ..., 63]) priority[0..3] = [1,0,0,0] L routgl0] = 0 then Douty = Ding’
elsedon’t care
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« Property 4 If (sO[9, ..., 63]) U priority[0..3] =[1,0,0,0] I routg0] = 0 then Aougy = Aing
elsedon’t care

whereDing' is the input 0fDing 5 clock cycles earlieriority[0..3] are the priority bits of the four
input ports andoutd0] represents the routing bits for input p@ifrefer to Figure 2).

4.1.2 Properties Verification
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Figure 12: Composed state machine for property checking

To verify these safety properties, we composed the fabric (specification or implementation)
with the environment state machine as shown in Figure 12. As there is a 5-clock-cycle delay for
the cells to reach the output ports, a delay circuit (five-stage shift register) is used to memorize the
input values that are to be compared with the outputs. Thus we can state the properties in terms of
the equality betweeDin;’ andDout (e.g.,Property 3. By combining these machines (the dashed

frame in Figure 12) and the delay counter, we obtain the required platform for verification. This
verification technique is indeed inspired by the technique described in [13]. By using the property
checking facility of the MDG tools, we checked in each reachable state if the outputs satisfy the
logic expression of the property which should be true over all reachable states. The experimental
results from the verification of all the properties stated in Section 4.1.1 for both implementation
and specification, are given in Table 1 and Table 2, respectively. All experimental results were
obtained on a Sun Ultra SPARC 2 workstation (296MHz / 768 MB) and include CPU time in sec.,
memory usage in MB and the number of MDG nodes generated.

4.2 Equivalence Checking

The original design of the switch fabric was described in Qudos HDL. The switch fabric is
composed of the acknowledgment, arbitration and dataswitch units. Each unit is further defined as
a module which is further subdivided until the same gate-level implementation is reached as in the
original Qudos HDL design. The authors in [13] translated the Qudos HDL description into
MDG-HDL using the same collection of gates. The switch fabric has a 32 bit-wide data input and
output lines. In Qudos HDL the data input and output lines are modeled as 32 individual lines. By
using the data abstraction technique of the MDG tools, we could better describe these 32 individ-
ual lines as words of size (e.g., an abstract sowordn) . This arbitrary word size makes the
descriptions generic where we do not need to specify the exact word size. By abstracting the data

11



lines from a bundle of bits to a compact word of abstract sort, we obtain an abstract RTL model of
the switch fabric. This RTL model will be equivalent to the original gate-level description, if it
produces the same output as the original gate-level for all input sequences. As the gate-level
description is not generic, it is not possible to verify the equivalence of an abstract RTL model
against an original gate-level implementation. To do that we should “instantiate” the data signals
of the abstract RTL model to be 8-bits wide. We can decode the abstract data to Boolean data by
usinguninterpretedunction symbols in the MDG-HDL description of the two models. Decoding

can be realized by using 8 uninterpreted functibits(i=0..7) of type Wwordn — bool]. bit;

extracts the'" bit of an n-bit data. Based on this technique, one can verify that an abstract model
is equivalent to its original gate-level implementation.

Table 1: Property checking on the implementation of th&leanedfabric

Verification | CPU time (in sec.)| Memory (in MB) | MDG Nodes generated
Property 1 173.81 32 88085
Property 2 151.53 31 89738
Property 3 166.21 30 90554
Property 4 164.76 32 90933

Table 2: Property checking on the behavioral specification of th€leaned &bric

Verification | CPU time (in sec.)| Memory (in MB) | MDG Nodes generated

Property 1 186.65 27 74948
Property 2 199.67 23 75287
Property 3 195.23 23 73020
Property 4 160.43 28 72843

Table 3: Equivalence checking between different levels of ti@eanedfabric

Verification CPU time (sec.) Memory Usage (MB)| Number of Nodeg
RTL vs. Beh. Level 1934.56 148 230798
gate-level vs. RTL 30.85 13 13899

By using the sequential equivalence checking facility of the MDG tool, we verified that the
abstract RTL implementation of the switch fabric complied with the specification of the behav-
ioral model. To verify the RTL implementation against the behavioral specification, we made use
of the fact that the corresponding input/output signals used in both descriptions have the same
sort. We obtained a complete verification of the switch fabric from a behavioral specification
down to the gate-level implementation using the above two verification steps. The experimental
result of the verification is given in Table 3.
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5. Comparison betweerCleanedand Original version of the switch fabric

The motivation of this work was to compare the formal verification, in terms of time, of the
Cleanedversion of the Fairisle ATM switch fabric with th@riginal version using MDG tool.
Timing aspect of formal verification is an important issue to the industrial community. We are
comparing these two versions with respect tontlehine-timeand thehuman-time

Human time spent on the verification of ti@riginal version was longer than that of the
Cleanedversion The amount of work in re-running a verification of a modified design is minimal
compared to the initial effort since the latter includes all the modeling aspect. In the verification
by MDG tools, manual interventions is needed for variables ordering which has an impact on the
verification time. In the verification of th@riginal version, much of the time was spent on deter-
mining a suitable variable ordering. As there were no major changes rtgmal version, we
did not spend much time on redetermining a suitable variable ordering. The translation of the
original Qudos HDL design description to the MDG-HDL gate-level structural model took about
one person-week as described in the paper by Tetredr[12]. The time spent on the modification
of the structural description of the design for fBkeanedversion was four person-days. Because
the verifier needs to understand the design thoroughly, the time spent for understanding and writ-
ing the behavioral specification of th@riginal version was about four person-weeks. On the
other hand, for th&€leanedversion it took two person-weeks. In the verification of eginal
version, the time required to setup four properties, to build the environment state machine, to con-
duct the property checking both on the implementation and the specification and to interpret the
results was about three person-weeks. FoiGleanedversion, building a new environment state
machine and conducting the property checking on both the implementation and the specification
was taken about two person-weeks. The equivalence checking of the RTL implementation with its
behavioral specification and the RTL model against the gate-level model Girihmal version
required about two person-weeks as the adoption of abstraction mechanisms and correction of
description errors for RTL implementation were needed. On the other hand fGi¢haedver-
sion, it took about one person-week. The summary of the differences betwee@ritmal
Cleanedversion, in terms diuman-timeaken during the verification phase, is given in Table 4.

Table 4: Summary of human-time taken for the Verification

Verification Phase Cleaned version Original version

Behavioral specification description Two person-weeks  Four person-wegks

Implementation description of the Cleaned Vier. Four person-days one person-week

New Env. state machine and Property checking Two person-weeks  Three person-weeks

Equialence checking:
RTL vs. Beh. Spec. and RTL vs. Gate-level One person-week Two person-weeks

To demonstrate the reduced verification time we comparenthghine-timeaken to complete
theCleanedversion verification with that for th®riginal version. The machine-time taken by the
Cleanedversion for both the Property checking and the Equivalence checking has been reduced
by a significant amount of CPU time than that of tBdginal version. The differences between

13



the verification of theCleanedand theOriginal versions are illustrated with respect to CPU time
taken, memory usages and MDG nodes generated (see Table 5).

Table 5: Experimental Results for the Verifications of theCleanedand Original Fabric

Cleanedversion Original version
Verification CPU | Memory Nodes CPU | Memory Nodes
time (s)| (MB) Generated time (s)| (MB) Generated
Reachability Analysis

Specification 180.40 32 73157 188.59 36 74130
Implementation 219.22 34 90208 232.74 35 90319

Property checking

Specification
Property 1 186.65 27 74948 251.53 25 74554
Property 2 199.67 23 75287 279.02 26 76265
Property 3 195.23 23 73020 257.52 25 74636
Property 4 160.43 28 72843 236.42 25 74441
Implementation
Property 1 173.81 32 88085 235.34 34 92229
Property 2 151.53 31 89738 233.49 35 93882
Property 3 166.21 30 90554 205.04 33 92052
Property 4 164.76 32 90933 268.75 84 225486
Equwalence checking

RTL vs. Beh. Spec. | 1934.56| 148 230798 | 2210.22| 162 245707
RTL vs. Gate-level | 30.85 13 13899 30.85 13 13899

6. Conclusions

In this report, we have demonstrated that design for verifiability can have a significant effect on
the speed of verification using automated decision diagram based technique. The same result was
obtained by using interactive proof with the HOL theorem prover for the same design verification.
The difference in nature of these two verification methodologies suggests design for verifiability
can be widely applicable as design for testability. One of the motivations of this work was to show
that designers can ease the verification task without compromising other design considerations.
Our investigation suggests that one way this can be done is by ensuring that the operating assump-
tions of modules are as few and as simple as possible. Design for verifiability in mind makes any
design simple to verify. The designer may have to work a little harder to ease the verifier’s task.
However, the result is a much cleaner design. It thus can be done early in the design cycle. The
development of design constraints for formal verification would be useful. This is vital for safety-
critical systems where formal verification techniques are most likely to be used.

The implementation we considered for this investigation was the Fairisle 4 by 4 switch fabric
which performs the actual switching of data cells and forms the heart of the ATM Fairisle commu-
nication network. We made some changes to the timing constraints of the fabric which is con-
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trolled by the environment of the fabric, i.e., port controllers. By changing these timing
constraints we made the operating assumptions of the fabric simpler and cleaner. We also changed
the design of the Arbiters, the Timing unit, the control path between the Arbitration and
Dataswitch unit and datapath to the Dataswitch unit without loss of any significant functionality.
The verification time taken by botitumanandmachinefor the modified designGleanedversion)

was much less than that of the original desi@mi¢inal version) as demonstrated in the previous
section. Based on the above statistics we can conclude that the verification time can be saved if the
“design for verifiability” is integrated into the design process itself.
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