An Approach to Link HOL and MDG for Hardware Verification
V.K. Pisini', S. Tahar', O. Ait-Mohamed?, P. Curzon® and X. Song*

! ECE Dept., Concordia University, Canada
2(Cistel Technology, Inc., Canada
3School of Computing Science, Middlesex University, UK
4 IRO Dept., Université de Montreal, Canada

ABSTRACT- In order to overcome the limitations of automated
tools and the cumbersome proof process of interactive theorem prov-
ing, we adopt an hybrid approach for formal hardware verification by
linking HOL and MDG. This approach uses the strengths of theorem
proving (HOL) with its powerful mathematical tools such as induc-
tion and abstraction, and the advantages of automated tools (MDG)
which support equivalence checking and model checking.

I. INTRODUCTION AND RELATED WORK

There are several approaches to formal hardware verifica-
tion: theorem-proving, model checking, equivalence check-
ing, symbolic simulation to name a few [1], each of which
has its own strengths and weaknesses. In this paper, we
present a methodology as to how equivalence checking of
the automated MDG system [2] supports the proof process
of the HOL theorem prover [3] thereby bringing in the ad-
vantages of both. The MDG system which allows equiva-
lence checking and model checking is based on Multiway
Decision Graphs—an extension of the traditional ROB-
DDs. In HOL, which is built on higher-order logic, hierar-
chical verification is possible wherein the modules are di-
vided into sub-modules. In our hybrid approach, we enable
the verification of sub-modules using the MDG system.

There exist a number of hybrid approaches such as com-
bining theorem proving with model checking [4-5] and com-
bining theorem proving and symbolic trajectory evaluation
[6]. Rajan et. al [5] described an approach where a BDD-
based model checker for the propositional mu-calculus has
been used as a decision procedure within the framework of
the PVS proof checker. Joyce and Seger [6] described an
approach by means of an interface between the Voss system
and HOL. Schneider et. al [4] proposed an approach of in-
voking model checking from within HOL where properties
are translated from HOL to temporal logic.

II. METHODOLOGY

The work described in this paper is part of a larger
project to link VHDL, HOL and MDG as shown in Fig-
ure 1. Here, the VHDL model is analyzed to get a data
structure (Directed Acyclic Graph—DAG) of the model
which is passed through an HOL Generator to get the HOL
model. Within HOL, we use a function, MDG_TAC, to
generate the required files for the MDG system to com-
plete the verification. In the case of property verification,
an LTL property description (L-MDG ) is transformed into
an equivalent VHDL or MDG-HDL circuit description that
will either be fed into the Analyzer or directly to the MDG
system, respectively.

In our hybrid approach, the verification starts in HOL
with a goal to prove that an implementation implies a speci-
fication. Implementation and specification are described in

HOL. In order to ease the use of the integrated MDG-HOL
system, the specification is written in a table form of MDG
[7]. Figure 2 shows the block diagram of our hybrid system.
The interface block in Figure 2 takes the HOL description
of the sub-goal, generates all required MDG files and re-
turns the MDG verification result back to HOL. In the
positive case (verification succeeded), it creates a theorem
stating the proof of the sub-goal. In the above procedure,
we make sure, however, that the expression of the HOL
sub-goal is acceptable by the MDG system to be proved
through equivalence checking. As part of the build-up of
the interface, Curzon et. al [7] described a way to express
MDG tables in HOL, which we used as a formal link.

For each sub-goal which is an assertion to be verified in
MDG, the specification and implementation are translated
by invoking MDG_TAC which is an ML function (tactic)
that converts HOL expressions into MDG-HDL [8] circuit
description, and also into MDG tables. Besides these two
descriptions, the MDG system requires additional informa-
tion such as the order of used variables and state encoding
(for sequential verification). This information has to be
supplied by the user as descriptions in HOL. Finally, the
MDG system is called and the corresponding files are ex-
ecuted to get the verification result. The individual tasks
of MDG_TAC are summarized in Figure 3.

Once the equivalence checking has succeeded, MDG re-
turns “true” and this result is imported into HOL in the
form of a theorem (using the make_theorem in HOL) and
the main proof procedure continues in HOL with the next
sub-goal to be proved. In case a sub-goal is not expressed
in the MDG acceptable form or the MDG verification fails,
then the regular HOL proof procedure is followed.

III. CoNcLUSIONS AND FUTURE WORK

Equivalence checking yields stronger result than impli-
cation. The verification with this hybrid tool is faster
since it is partially automated. The behavioral description
can easily be expressed in HOL using the table format of
MDG [7]. The present compiler can be extended to accom-
modate model checking to be used as a decision procedure
within HOL. We will know the limitations of this hybrid
tool when we take up the verification of large designs in-
cluding a 16 by 16 ATM switch fabric [9]. The described
hybrid approach follows a top-down approach starting from
HOL and proving sub-goals using MDG. We will also be
working on bottom-up approach where a given circuit im-
plementation is divided into smaller parts and the verifi-
cation is carried with MDG first and later exported into
HOL for higher level verifications.



(1]

2]

e ERELINUEDS

C. Seger, “An Introduction to Formal Hardware Verification,”
Tech. Rep. 92-13, Dept. of Computer Science, University of
British Columbia, Vancouver, B.C., Canada, June 1992.

F. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny, “Mul-
tiway Decision Graphs for Automated Hardware Verification,”
Formal Methods in System Design, vol. 10, no. 1, pp. 746, 1997.
M. Gordon and T. Melham, Introduction to HOL: A Theorem
Proving Environment for Higher-Order Logic. Cambridge Uni-
versity Press, Cambridge, U.K., 1993.

K. Schneider and T. Kropf, “Verifying Hardware Correctness by
Combining Theorem Proving and Model Checking,” Tech. Rep.
SFB358-C2-5/95, University of Karlsruhe, Karlsruhe, Germany,
December 1995.

S. Rajan, N. Shankar, and M. Srivas, “An Integration of Model-
checking with Automated Proof Checking,” in Computer Aided
Verification (P. Wolper, ed.), vol. 939 of Lecture Notes in Com-
puter Science, (Liege, Belgium), pp. 84-97, Springer-Verlag, 1995.
J. Joyce and C. Seger, “Linking BDD-based Symbolic Evalua-
tion to Interactive Theorem Proving,” in Proceedings of the 30th
Design Automation Conference, Association for Computing Ma-
chinery, 1993.

P. Curzon, S. Tahar, and O. Ait-Mohamed, “Verification of
the MDG Components Library in HOL,” in Theorem Prov-
ing in Higher Order Logics: Emerging Trends (J. Grundy and
M. Newey, eds.), (Australian National University, Canberra, Aus-
tralia), pp. 31-45, September 1998.

Z. Zhou and N. Boulerice, MDG Tools (V1.0) User’s Manual.
Dept. of Computer Science, University of Montreal, Montreal,
Canada, June 1996.

I. Leslie and D. McAuley, “Fairisle: An ATM Network for the
Local Area,” ACM Communication Review, vol. 19(4), pp. 327—
336, 1991.

PROPERTIES
L-MDG \
to
VHDL L-MDG
to
MDG-HDL

MDG

Equivalence
Checking
Invariant
@ Checking

L-MDG
Checking
MDG_TAC]

Fig. 1. Intended VHDL-HOL-MDG Project Skeleton

HOL Generator

Goal

True/ Felse

[
N
HOL Sub-god T MDG Files
E
HOL System R MDG System
Make_theorem F
A
c
E True

Fig. 2. Block Diagram of the Hybrid System

Regular HOL Proof

IMPL(HOL) --> IMPL(MDG)
TABLE_SPEC(HOL) --> TABLE_SPEC(MDG)
ORDER(HOL list) --> ORDER_FILE(MDG)
ALGEBRAIC(HOL) --> ALGEBRAIC FILE(MDG)

i

Call MDG in adifferent window
and do the verification

User’s Decision

True

Make Theorem

Fig. 3. Task of MDG_TAC as a Flow Diagram



