
An Approach to Link HOL and MDG for Hardware Veri�cation
V.K. Pisini1, S. Tahar1, O. Ait-Mohamed2, P. Curzon3 and X. Song4

1 ECE Dept., Concordia University, Canada
2Cistel Technology, Inc., Canada

3School of Computing Science, Middlesex University, UK
4 IRO Dept., Universit�e de Montreal, Canada

ABSTRACT- In order to overcome the limitations of automated
tools and the cumbersome proof process of interactive theorem prov-
ing, we adopt an hybrid approach for formal hardware veri�cation by
linking HOL and MDG. This approach uses the strengths of theorem
proving (HOL) with its powerful mathematical tools such as induc-
tion and abstraction, and the advantages of automated tools (MDG)
which support equivalence checking and model checking.

I. Introduction and Related Work

There are several approaches to formal hardware veri�ca-
tion: theorem-proving, model checking, equivalence check-
ing, symbolic simulation to name a few [1], each of which
has its own strengths and weaknesses. In this paper, we
present a methodology as to how equivalence checking of
the automated MDG system [2] supports the proof process
of the HOL theorem prover [3] thereby bringing in the ad-
vantages of both. The MDG system which allows equiva-
lence checking and model checking is based on Multiway
Decision Graphs|an extension of the traditional ROB-
DDs. In HOL, which is built on higher-order logic, hierar-
chical veri�cation is possible wherein the modules are di-
vided into sub-modules. In our hybrid approach, we enable
the veri�cation of sub-modules using the MDG system.
There exist a number of hybrid approaches such as com-

bining theorem proving with model checking [4-5] and com-
bining theorem proving and symbolic trajectory evaluation
[6]. Rajan et. al [5] described an approach where a BDD-
based model checker for the propositional mu-calculus has
been used as a decision procedure within the framework of
the PVS proof checker. Joyce and Seger [6] described an
approach by means of an interface between the Voss system
and HOL. Schneider et. al [4] proposed an approach of in-
voking model checking from within HOL where properties
are translated from HOL to temporal logic.

II. Methodology

The work described in this paper is part of a larger
project to link VHDL, HOL and MDG as shown in Fig-
ure 1. Here, the VHDL model is analyzed to get a data
structure (Directed Acyclic Graph|DAG) of the model
which is passed through an HOL Generator to get the HOL
model. Within HOL, we use a function, MDG TAC, to
generate the required �les for the MDG system to com-
plete the veri�cation. In the case of property veri�cation,
an LTL property description (L MDG) is transformed into
an equivalent VHDL or MDG-HDL circuit description that
will either be fed into the Analyzer or directly to the MDG
system, respectively.
In our hybrid approach, the veri�cation starts in HOL

with a goal to prove that an implementation implies a speci-
�cation. Implementation and speci�cation are described in

HOL. In order to ease the use of the integrated MDG-HOL
system, the speci�cation is written in a table form of MDG
[7]. Figure 2 shows the block diagram of our hybrid system.
The interface block in Figure 2 takes the HOL description
of the sub-goal, generates all required MDG �les and re-
turns the MDG veri�cation result back to HOL. In the
positive case (veri�cation succeeded), it creates a theorem
stating the proof of the sub-goal. In the above procedure,
we make sure, however, that the expression of the HOL
sub-goal is acceptable by the MDG system to be proved
through equivalence checking. As part of the build-up of
the interface, Curzon et. al [7] described a way to express
MDG tables in HOL, which we used as a formal link.

For each sub-goal which is an assertion to be veri�ed in
MDG, the speci�cation and implementation are translated
by invoking MDG TAC which is an ML function (tactic)
that converts HOL expressions into MDG-HDL [8] circuit
description, and also into MDG tables. Besides these two
descriptions, the MDG system requires additional informa-
tion such as the order of used variables and state encoding
(for sequential veri�cation). This information has to be
supplied by the user as descriptions in HOL. Finally, the
MDG system is called and the corresponding �les are ex-
ecuted to get the veri�cation result. The individual tasks
of MDG TAC are summarized in Figure 3.

Once the equivalence checking has succeeded, MDG re-
turns \true" and this result is imported into HOL in the
form of a theorem (using the make theorem in HOL) and
the main proof procedure continues in HOL with the next
sub-goal to be proved. In case a sub-goal is not expressed
in the MDG acceptable form or the MDG veri�cation fails,
then the regular HOL proof procedure is followed.

III. Conclusions and Future Work

Equivalence checking yields stronger result than impli-
cation. The veri�cation with this hybrid tool is faster
since it is partially automated. The behavioral description
can easily be expressed in HOL using the table format of
MDG [7]. The present compiler can be extended to accom-
modate model checking to be used as a decision procedure
within HOL. We will know the limitations of this hybrid
tool when we take up the veri�cation of large designs in-
cluding a 16 by 16 ATM switch fabric [9]. The described
hybrid approach follows a top-down approach starting from
HOL and proving sub-goals using MDG. We will also be
working on bottom-up approach where a given circuit im-
plementation is divided into smaller parts and the veri�-
cation is carried with MDG �rst and later exported into
HOL for higher level veri�cations.

References

[1] C. Seger, \An Introduction to Formal Hardware Veri�cation,"
Tech. Rep. 92-13, Dept. of Computer Science, University of
British Columbia, Vancouver, B.C., Canada, June 1992.

[2] F. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny, \Mul-
tiway Decision Graphs for Automated Hardware Veri�cation,"
Formal Methods in System Design, vol. 10, no. 1, pp. 7{46, 1997.

[3] M. Gordon and T. Melham, Introduction to HOL: A Theorem
Proving Environment for Higher-Order Logic. Cambridge Uni-
versity Press, Cambridge, U.K., 1993.

[4] K. Schneider and T. Kropf, \Verifying Hardware Correctness by
Combining Theorem Proving and Model Checking," Tech. Rep.
SFB358-C2-5/95, University of Karlsruhe, Karlsruhe, Germany,
December 1995.

[5] S. Rajan, N. Shankar, and M. Srivas, \An Integration of Model-
checking with Automated Proof Checking," in Computer Aided
Veri�cation (P. Wolper, ed.), vol. 939 of Lecture Notes in Com-
puter Science, (Liege, Belgium), pp. 84{97, Springer-Verlag, 1995.

[6] J. Joyce and C. Seger, \Linking BDD-based Symbolic Evalua-
tion to Interactive Theorem Proving," in Proceedings of the 30th
Design Automation Conference, Association for Computing Ma-
chinery, 1993.

[7] P. Curzon, S. Tahar, and O. Ait-Mohamed, \Veri�cation of
the MDG Components Library in HOL," in Theorem Prov-
ing in Higher Order Logics: Emerging Trends (J. Grundy and
M. Newey, eds.), (Australian National University, Canberra, Aus-
tralia), pp. 31{45, September 1998.

[8] Z. Zhou and N. Boulerice, MDG Tools (V1.0) User's Manual.
Dept. of Computer Science, University of Montreal, Montreal,
Canada, June 1996.

[9] I. Leslie and D. McAuley, \Fairisle: An ATM Network for the
Local Area," ACM Communication Review, vol. 19(4), pp. 327{
336, 1991.

HOL

VHDL

PROPERTIES

MDG

Equivalence
Checking

L-MDG
Checking

VHDL Model

Analyser

DAG-M

HOL Model

MDG_TAC

VHDL
Circuit

L-MDG

L-MDG
to

L-MDG
to

MDG-HDL

MDG-HDL

Alg. File

Order File

L-Circuit
MDG-HDL

Invariant
Checking

HOL Generator

Fig. 1. Intended VHDL-HOL-MDG Project Skeleton

System MDG

I

E

C

A

F

R

E

T

N

 HOL System Goal True / False

HOL Sub-goal MDG Files

True

Make_theorem

Fig. 2. Block Diagram of the Hybrid System

Sub-goal

Sub-goal
acceptable ? Regular HOL Proof

No

Yes

and do the verification
Call MDG in a different window

RESULT

MDG
 from

Else

True

Make Theorem

User’s Decision

IMPL(HOL) --> IMPL(MDG)

ORDER(HOL list) --> ORDER_FILE(MDG)

ALGEBRAIC(HOL) --> ALGEBRAIC FILE(MDG)

TABLE_SPEC(HOL) --> TABLE_SPEC(MDG)

Fig. 3. Task of MDG TAC as a Flow Diagram

