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Abstract. Formal hardware veri�cation systems can be split into two
categories: theorem proving systems and automatic �nite state machine
based systems. Each approach has its own complementary advantages
and disadvantages. In this paper, we consider the combination of two
such systems: HOL (a theorem proving system) and MDG (an auto-
matic system). As HOL hardware veri�cation proofs are based on the
hierarchical structure of the design, sub-modules can be veri�ed using
other systems such as MDG. However, the results of MDG are not in the
appropriate form for this. We have proved a set of theorems that express
how results proved using MDG can be converted into the form used in
traditional HOL hardware veri�cation.

1 Introduction

In general, machine-assisted hardware veri�cation methods can be classi�ed into
two categories: interactive veri�cation using a theorem prover and automated
�nite state machine (FSM) veri�cation based on state enumeration. This study
investigates the combination of two such systems: the HOL and MDG systems.
The former is an interactive theorem proving system based on higher-order logic
[6]. The latter is an automatic system based on Multiway Decision Graphs [2].
Tahar and Curzon [12] compared these two systems based on using both to
independently verify real hardware: the Fairisle 4 by 4 switch fabric. Their results
indicate that both systems are very e�ective and they are complementary. By
combining them, it is hoped that the advantages of both can be obtained.

The MDG system is a hardware veri�cation system based on Multiway De-
cision Graphs (MDGs). MDGs subsume the class of Bryant's Reduced Ordered
Binary Decision Diagrams (ROBDD) [1] while accommodating abstract sorts
and uninterpreted function symbols. The system combines a variety of di�erent
hardware veri�cation applications implemented using MDGs [15]. The applica-
tions developed include: combinational veri�cation, sequential veri�cation, and
invariant checking.

The MDG veri�cation approach is a black-box approach. During the veri�-
cation, the user does not need to understand the internal structure of the design
being veri�ed. The strength of MDG is its speed and ease of use. However, it



does not scale well to complex designs. In general, BDD based systems cannot
cope with designs that combine datapaths and control hardware. MDG over-
comes some of these problems. However, the largest example veri�ed to date is
the Fairisle 4 by 4 fabric [13].

In HOL, the speci�cation language is higher-order logic. It allows functions
and relations to be passed as arguments to other functions and relations. Higher-
order logic is very 
exible and has a well-de�ned and well-understood semantics.
It also allows us to use a hierarchical veri�cation methodology that e�ectively
deals with the overall functionality of designs with complex datapaths. Designs
that combine control hardware and datapaths can be veri�ed. HOL scales better
than MDG as illustrated by the fact that a 16 by 16 fabric constructed from
elements similar to the 4 by 4 fabric has been veri�ed in HOL [3]. This is beyond
the capabilities of MDG on its own. To complete a veri�cation, however, a very
deep understanding of the internal structure of the design is required, as it is a
white-box approach. This enables the designer to gain greater insight into the
system and thus achieve better designs. However, the learning curve is very steep
and modeling and verifying a system is very time-consuming. The HOL system
is generally better for higher-level reasoning in a more abstract domain.

Can we combine the two systems to reap the advantages of both? If we could,
the problem size and complexity limits that can be handled in practice would
be increased. We cannot, however, just accept that a piece of hardware veri�ed
using an automated veri�cation tool such as the MDG System can be assumed
correct in a HOL proof. In this paper, we focus on the theoretical underpinning
of how to convert MDG results into HOL. In particular, we consider how to
convert MDG results to appropriate HOL theorems as used in a traditional
HOL hardware veri�cation in the style of Gordon [8]. We give formalizations
of MDG results in HOL based on the semantics of the MDG input language.
We then suggest versions of these results that are of the form needed in a HOL
hardware veri�cation. Finally we derive theorems that show that we can convert
between these two forms. Thus, these theorems provide the speci�cation for how
MDG results can be imported into the HOL system in a useful form. This work
is one step of a larger project to verify aspects of the MDG system in HOL so
that MDG results can be trusted in the HOL system. The work presented here
thus integrates with previous work to verify the MDG components library in
HOL [5] and work to verify the MDG-HDL compiler.

Whilst this work concentrates on the MDG and HOL systems, the work has
a much wider applicability. The theorems proved could be applicable for other
veri�cation systems with similar architectures based on reachability analysis or
equivalence checking. Furthermore, the general approach taken is likely to be
applicable to veri�cation systems with di�erent architectures.

The structure of this paper is as follows: in Section 2, we review related
work. In Section 3, we overview the hierarchical hardware veri�cation approach
in HOL and motivate the need for MDG results to be in a particular form when
importing them into the HOL system. In Section 4, we give the formal theorems
that convert the MDG results into useful HOL theorems. These theorems have



been veri�ed using HOL. Our conclusions are presented in Section 5. Finally,
ideas for further work are presented in Section 6.

2 Related Work

In 1993, Joyce and Seger [10] presented a hybrid veri�cation system: HOL-
Voss. In their system, several predicates were de�ned in the HOL system, which
presents a mathematical link between the speci�cation language of the Voss sys-
tem (symbolic trajectory evaluation) and the speci�cation language of the HOL
system. A tactic VOSS TAC was implemented as a remote function. It calls the
Voss system that is then run as a child process of the HOL system. The Voss
assertion can be expressed as a term of higher-order logic. Symbolic trajectory
evaluation is used to decide whether or not the assertion is true. If it is true,
then the assertion will be transformed into a HOL theorem and this theorem
can be used by the HOL system to derive additional veri�cation results. Zhu et
al [16] applied the HOL-Voss veri�cation system successfully to the veri�cation
the Tamarack-3 microprocessor.

Rajan et al [11] proposed an approach for the integration of model checking
with PVS: an automated proof checking system. The mu-calculus was used as a
medium for communicating between PVS and a model checker. It was formal-
ized by using the higher-order logic of PVS. The temporal operators that apply
to arbitrary state spaces are given the customary �xpoint de�nitions using the
mu-calculus. The mu-calculus expression was translated to an input that is ac-
ceptable by the model checker. This model checker was then used to verify the
sub-goals. In [9], a complicated communication protocol was veri�ed by means
of abstraction and model checking.

More recently, HOL98 has been integrated with the BuDDy BDD package [7].
HOL was used to formalize the QBF (Quanti�ed Boolean Formulae) of BDDs.
The formulae can be interactively simpli�ed by using a higher-order rewriting
tool such as the HOL simpli�er to get simpli�ed BDDs. A table was used to map
the simpli�ed formulae to BDDs. The BDD algorithms can also strengthen its
deductive ability in this system.

We are not using the MDG system as an oracle, to then prove results already
determined by primitive inference in HOL, nor are we using HOL to improve
the way MDG works. Furthermore, we are not just farming out general lemmas
(eg propositional tautologies) that arise whilst verifying a particular hardware
module and that can be proved more easily elsewhere. Our work is perhaps
closer in spirit to that of the HOL-VOSS system than to other work in this
sense. We are concerned with linking HOL to a dedicated hardware veri�cation
system that is in direct competition with it. It produces similar results about
similar descriptions of circuits. We utilise this fact to allow MDG to be used
when it would be easier than obtaining the result directly in HOL. The main
contribution of this paper is that we present a methodology by which this can
be done formally. We do not simply assume that the results proved by MDG are
directly equivalent to the result that would have been proved in HOL.



3 Hierarchical Veri�cation in a Combined System

In this section, we motivate the need for the results from a system such as
MDG to be in a speci�c form by outlining the traditional HOL hierarchical
hardware veri�cation methodology. We also look at how an MDG result might
be incorporated into such a design approach.

Generally, when we use HOL to verify a design, the design is modeled as a
hierarchy structure with modules divided into submodules as shown in Figure 1.
The submodules are repeatedly subdivided until eventually the logic gate level is
reached. Both the structure and behavior speci�cations of each module are given
as relations in higher-order logic. The veri�cation of each module is carried out by
proving a theorem asserting that the implementation (its structure) implements
(implies) the speci�cation (its behavior). That is:

` implementation � specification (1)

Module

Submodule Submodule

Subsubmodule Subsubmodule

VerificationSpecification

Fig. 1. Hierarchical Veri�cation

The correctness theorem for each module states that its implementation down
to the logic gate level satis�es the speci�cation. The correctness theorem for each
module can be established using the correctness theorems of its sub-modules. In
this sense, the submodule is treated as a black-box. A consequence of this is that,
di�erent technologies can be used to address the correctness theorem for the sub-
modules. In particular, we can use the MDG system to prove the correctness of
sub-modules instead of HOL.



In order to do this, we need to formalize the results of the MDG veri�cation
applications in HOL. These formalizations have di�erent forms for the di�erent
veri�cation applications, i.e. combinational veri�cation gives a theorem of one
form, sequential veri�cation gives a di�erent form and so on. However, the most
natural and obvious way to formalize the MDG results does not give theorems of
the form that HOL needs if we are to use traditional HOL hardware veri�cation
techniques. We therefore need to be able to convert the MDG results into a
form that can be used. In other words, we need to prove a series of translation
theorems (one for combinational veri�cation, one for sequential veri�cation, etc.)
that state how an MDG result can be converted to the traditional HOL form1:

` Formalized MDG result �

(implementation � specification) (2)

To illustrate why we need a particular form of result in HOL consider the

A

A2A1

B1 B2

Fig. 2. The Hierarchy of Module A

HOL veri�cation of a system A. A theorem that the implementation satis�es its
speci�cation needs to be proved, i.e.

` A imp � A spec (3)

where A imp and A spec express the implementation and speci�cation of system
A, respectively. Suppose system A consists of two subsystems A1 and A2 and
A1 is further subdivided as shown in Figure 2. The structural speci�cation of A
will be de�ned by the equation:

` A imp = A1 imp ^ A2 imp (4)

where A1 imp is de�ned in a similar way. Thus (3) can be rewritten to

` A1 imp ^ A2 imp � A spec (5)

1 In this discussion we have simpli�ed the presentation for the purposes of exposition.
In particular details of inputs and outputs are omitted



The correctness theorem of the system A can be proved using the correctness
statements about its subsystems. In other words, we independently prove the
correctness theorems:

` A1 imp � A1 spec (6)

` A2 imp � A2 spec (7)

As these are implications, to prove (5) it is then su�cient to prove

` A1 spec ^ A2 spec � A spec (8)

Thus we verify A by independently verifying its submodules, then treating them
as black-boxes using the more abstract speci�cation of A1 and A2 to verify A.

Suppose now that A1 was veri�ed using MDG instead of HOL, but that we
still wish to use the result in the veri�cation of A. To make use of the result, we
need MDG to also prove results of the form

` A1 imp � A1 spec (9)

so that the implementation can be substituted for a speci�cation. However, re-
sults from MDG are not of this form2. For example, with sequential veri�cation
MDG proves a result about \reachable states" of a product machine. We need
to show how such a result can be expressed as an implication about the ac-
tual hardware under consideration as above. If A1 MDG RESULT is such a
statement about a product machine, then we need to prove

` A1 MDG RESULT � (A1 imp � A1 spec) (10)

Theorems such as this convert MDG results to the appropriate form to make
the step from (5) to (8).

Ideally, we want a general theorem of this form that applies to any hardware
veri�ed using MDG's sequential veri�cation tool. We also want similar results for
the other MDG veri�cation applications. In this paper, we prove such translation
theorems for a series of MDG applications. This is described in the next section.

4 The Translation Theorems

In this section, we consider each of the veri�cation applications of the MDG
system in turn, describing the conversion theorem required to convert results
to a form useful within a HOL proof. Each of these theorems has been proved
within the HOL system.

4.1 Combinational Veri�cation

The simplest veri�cation application of MDG is the checking of equivalence of
input-output for two combinational circuits. A combinational circuit is a dig-
ital circuit without state-holding elements or feedback loops, so the output is

2 We give details of the form of theorems that MDG does prove in the next section



a function of the current input. The MDGs representing the input-output re-
lation of each circuit are computed by a relational product algorithm to form
the MDGs of the components of the circuit. Because an MDG is a canonical
representation, we can check whether the two MDGs are isomorphic and so the
circuits are equivalent. It is simple to formalize this in HOL. We use M(ip; op)
and M 0(ip; op0) to represent the circuits (machines) being compared. M is a re-
lation on input traces (given by ip) and output traces (given by op). The relation
is true if op represents a possible output trace for the given input trace ip and
is false otherwise. M 0 is a similar relation on inputs (ip) and outputs (op0). An
MDG combinational veri�cation result can be formalized as:

` 8 ip op: M (ip; op) = M 0 (ip; op) (11)

It veri�es that the two circuits are identical in behavior for all inputs and outputs.
If ip and op are possible input and output traces for M , then they are also
possible traces for M 0, and vice versa. This is not in the form of an implication
as described above. However, the MDG result does not need to be converted
to a di�erent form for it to be useful in a HOL hardware veri�cation, since an
equality can be used just as well as an implication.

ip

op1 op2ip

op

op

Fig. 3. Are these circuit equivalent?

Example 1. Consider the two circuits shown in Figure 3. Assume they have
been veri�ed both to be equivalent using the MDG system. We will show in the
following how to convert the MDG result to a useful HOL theorem.

The �rst circuit is one NOT gate that can be formalized as:

` 8 in op: NOT (ip; op) = (8 t: op t = � ip t)

The second circuit consists of three NOT gates in series and can be formalized
as:

` 8 ip op: NOT3 (ip; op) =

9 op1 op2: NOT (ip; op1) ^ NOT (op1; op2) ^ NOT (op2; op)

The MDG veri�cation result can be formalized as

` 8 ip op: NOT3 (ip; op) = NOT (ip; op1)

This theorem has the same form that we need in the HOL veri�cation system.



4.2 Combinational Veri�cation of Sequential Circuits

Combinational veri�cation can also be used to compare two sequential circuits
when a one-to-one correspondence between their registers exists and is known.
In this situation the M and M 0 are relations on inputs (ip), outputs (op) and
states (s). The result of the MDG proof can then be stated as:

` 8 ip op s: M (ip; op; s) = M 0 (ip; op; s) (12)

This is explicitly concerned with state in the form of the variable s. In a HOL
veri�cation the way we model hardware by a relation between inputs and output
traces means that we do not, in general, need to model the state explicitly. Traces
are described as history functions giving the value output at each time instance.
A register can then, for example, be speci�ed as

` REGH (ip; op) = (op 0 = F ) ^ (8 t: (op (t+ 1) = ip t)) (13)

There is no explicit notion of state in this de�nition{we just refer to values at
an earlier time instance.

MDG descriptions in MDG-HDL on the other hand explicitly include state:
state variables are declared and state transition functions given. The MDG ver-
sion could be formalized in HOL by

` REGM (ip; op; s) = INIT s ^ DELTA (ip; s) ^OUT (ip; op; s) (14)

where

INIT s = (s 0 = F)

DELTA (ip; s) = (8 t: s (t+ 1) = ip t

OUT (ip; op; s) = (8 t: op t = s t)

We therefore need a way of abstracting away this state when converting to the
HOL form. As was explained in Section 3, ultimately the correctness theorem
that HOL wants should have the form of (1). We can hide the state using exis-
tential quanti�cation and obtain:

` 8 ip op: (9 s: M (ip; op; s)) � (9 s: M 0 (ip; op; s)) (15)

This is of the required form:

M imp (ip; op) �M spec (ip; op)

where

M imp (ip; op) = (9 s: M (ip; op; s))

M spec (ip; op) = (9 s: M 0 (ip; op; s))



In this situation the converting theorem is:

` 8 M M 0:

(8 ip op s: M (ip; op; s) =M 0 (ip; op; s)) �

(8 ip op: (9 s: M (ip; op; s)) � (9 s: M 0 (ip; op; s))) (16)

We have proved this theorem in HOL. Note that the relations M and M 0 are
universally quanti�ed variables. The theorem thus applies to any hardware for
which an MDG result is veri�ed.

ip

op2

REG

REG

op1 op

opop3op1ip

Fig. 4. Are these circuit equivalent?

Example 2. Consider verifying the sequential circuit in Figure 4 for combi-
national equvalence. We check that three not gates and a register are equvilent
to a single not gate and register. We use REGNOT3M to formalize the �rst
circuit,

` REGNOT3M(ip; op; s) =

9 op1 op2 op3:

NOT (ip; op1) ^ NOT (op1; op2) ^ NOT (op2; op3) ^ REGM (op3; op; s)

We use REGNOTM to formalize the second circuit,

` REGNOTM (ip; op; s) = 9 op1: NOT (ip; op1) ^REGM (op1; op; s)

Suppose we have veri�ed that these two circuits are equivalent using the
MDG system. The MDG veri�cation result can be stated as:

` 8 ip op s: REGNOT3M (ip; op; s) = REGNOTM (ip; op; s)

Combining this with our conversion theorem (16), we obtain

` 8 ip op:

(9 s: REGNOT3M (ip; op; s) � (9 s: REGNOTM (ip; op; s))) (17)



This is not quite the theorem we would have proved if the veri�cation was
done directly in HOL. However, it can be obtained if we �rst prove the theorems:

` REGNOT3H (ip; op) = (9 s: REGNOT3M (ip; op; s)) (18)

` REGNOTH (ip; op) = (9 s: REGNOTM (ip; op; s)) (19)

where REGNOT3H and REGNOTH are stateless HOL descriptions of the cor-
resping circuits3. They are de�ned as follows:

` REGNOT3H (ip; op) =

9 op1 op2 op3:

NOT (ip; op1) ^NOT (op1; op2) NOT (op2; op3) ^ REGH (op3; op)

` REGNOTH (ip; op) =

9 op1: NOT (ip; op1) ^REGH (op1; op)

Finally, using (18) and (19) to rewrite (17), we obtain the theorem which is
needed in a traditional HOL veri�cation.

` 8 ip op: REGNOT3H (ip; op) � REGNOTH (ip; op)

It should be noted that the actual veri�cation application of MDG does not do
state traversal so the state is not actually used in the MDG veri�cation process.
However the MDG hardware description language (HDL) is still used as the
description language. Therefore the explicit introduction of state is required if the
relations are to represent semantic objects of MDG-HDL. This is of importance
in our work since we ultimately intend to link these theorems with ones that
explicitly refer to the semantics of MDG-HDL.

4.3 Sequential Veri�cation

The behavioral equivalence of two abstract state machines (Figure 5) is veri�ed
by checking that the machines produce the same sequence of outputs for every
sequence of inputs. The same inputs are fed to the two machinesM ,M 0 and then
reachability analysis is performed on their product machine using an invariant
asserting the equality of the corresponding outputs in all reachable states.

This e�ectively introduces new \hardware" (see Figure 5) which we refer to
here as PSEQ (the Product machine for SEQuential veri�cation). PSEQ has the
same inputs as M and M 0, but has as output a single Boolean signal (flag).
The outputs op and op0 of M and M 0 are input into an equality checker. On
each cycle, PSEQ outputs true if op and op0 are identical at that time, and false
otherwise. PSEQ can be formalized as

` PSEQ (ip; flag; op; op0; s; s0; M; M 0) =

M (ip; op; s) ^M 0 (ip; op0; s0) ^ EQ (op; op0; f lag) (20)

3 The need for such theorems will be discussed further in section 6



M
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op

op’

ip flag (T/F)

PSEQ

EQ

Fig. 5. The Product Machine used in MDG Sequential Veri�cation

where EQ is the equality checker de�ned as:

` EQ (op; op0; f lag) = (8 t: f lag t = (op t = op0 t)) (21)

The result that MDG proves about PSEQ is that the 
ag output is always true,
i.e. the outputs are equal for all inputs. This can be formalized as

` 8 s s0 ip op op0:

PSEQ (ip; flag; op; op0; s; s0; M; M 0) � (8 t: f lag t = T) (22)

Note that this is not of the form P imp � P spec, (i.e. implementation implies
speci�cation) forM andM 0 but is of that form for the �ctitious hardware PSEQ.
To make use of such a result in a HOL hardware veri�cation, we need to convert
it to that form forM and M 0. This can be done in a series of steps starting from
(22). Expanding the de�nitions and rewriting with the value of 
ag, we obtain

` 8 s s0 ip op op0:

M (ip; op; s) ^M 0 (ip; op0; s0) � (8 t: op t = op0 t) (23)

i.e. we have proved a lemma:

` 8 M M 0:

(8 s s0 ip op op0:

PSEQ (ip; flag; op; op0; s; s0; M; M 0) � 8 t: f lag t = T) �

(8 s s0 ip op op0: M (ip; op; s) ^M 0 (ip; op0; s0) � (8 t: op t = op0 t)) (24)

This is still not in an appropriate form, however. We need to abstract away from
the states as with combinational veri�cation. The theorem should also be in the
form of (1). The machineM can be considered as the structure speci�cation (im-
plementation) and machine M 0 the behavior speci�cation (speci�cation). Based
on this consideration, the theorem that HOL needs is as follows:

` 8 ip op: (9 s: M (ip; op; s)) � (9 s0: M 0 (ip; op; s0)) (25)



i.e. for all input and output traces if there exists a reachable sequence of states s
that satisfy the relation M (ip; op; s), then must exist a reachable state s0 that
satis�es the relationM 0 (ip; op; s0). As mentioned above, the converting theorem
from MDG to HOL should be in the form of (2). For sequential veri�cation the
conversion theorem should be

(22) � (25):

To prove this, given (24) it is su�cient to prove

(23) � (25):

However, this can only be proved with an additional assumption. Namely, for
all possible input traces, the behavior speci�cation M 0 can be satis�ed for some
output and state traces (i.e. there exists at least one output and state trace for
which the relation is true):

` 8 ip: 9 op0 s0: M 0 (ip; op0; s0) (26)

This means that the machine must be able to respond whatever inputs are given.
This should always be true for reasonable hardware. You should not be able to
give inputs which break it. For any input sequence given to this machine, at
least one output and state sequence will correspond. Therefore, we can actually
only prove ` (22) ^ (26) � (25),

` 8 MM 0:

((8 s s0 ip op op0:

PSEQ (ip; flag; op; op0; s; s0; M; M 0) � 8 t: f lag t = T) ^

(8 ip: 9 op0 s0: M 0 (ip; op0; s0))) �

(8 ip op: (9 s: M (ip; op; s)) � (9 s0: M 0 (ip; op; s0))) (27)

With the same reasoning, the machine M 0 could have been considered as the
structural speci�cation and machine M could have been considered as the be-
havioral speci�cation. We would then need the assumption

` 8 ip: 9 op s: M (ip; op; s) (28)

We would obtain the alternative conversion theorem (29)

` 8 MM 0:

((8 s s0 ip op op0:

PSEQ (ip; flag; op; op0; s; s0; M; M 0) � 8 t: f lag t = T) ^

(8 ip: 9 op s: M (ip; op; s))) �

(8 ip op: (9 s0: M 0 (ip; op; s0)) � (9 s: M (ip; op; s))) (29)

Both these theorems have been veri�ed in HOL. As with combinational ver-
i�cation, the universal quanti�cation of M and M 0 means the theorems can



be instantiated for any hardware under consideration. The symmetry in these
equations is as might be expected given the symmetry of PSEQ.

Example 3. The circuits given in Figure 4 can also be veri�ed using se-
quential veri�cation. We shall show how to convert the result obtained to form
a useful HOL theorem.

op

op’

ip flag (T/F)

PSEQ

EQ

REGNOT3M

REGNOTM

Fig. 6. The machine used in verifying the circuit in Fig. 4. for sequential veri�cation

The MDG veri�cation result can be stated as

` 8 ip op s:

REGNOT3M (ip; op; s) ^ REGNOTM (ip; op; s) ^ EQ (op; op0; f lag) �

(8 t: f lag t = T)

We have proved the required theorem that states that the REGNOTM unit
responds whatever inputs are given.

` 8 ip: (9 op0 s0: REGNOTM (ip; op0; s0))

Combining the above two theorems with our conversion theorem (27), we
obtain:

` 8 ip op:

9 s: REGNOT3M (ip; op; s) � 9s0: REGNOTM (ip; op; s0) (30)

Finally, after using (18) and (19) to rewrite (30), we obtain a theorem in a
form that can be used in a HOL veri�cation.

` 8 ip op: REGNOT3H (ip; op) � REGNOTH (ip; op)



4.4 Invariant Checking.

Systems such as MDG also provide property/invariant checking. Invariant check-
ing is used for verifying that a design satis�es some speci�c requirements. This
is useful since it gives the designer con�dence at low veri�cation cost. In MDG,
reachability analysis is used to explore and check that a given invariant (prop-
erty) holds in all the reachable states of the sequential circuit under considera-
tion, M . We consider one general form of property checking here.

TESTPRO

(PROPERTY)

M
op

(T/F)

ip

flag

Fig. 7. The Machine Veri�ed in Invariant Checking

As was the case for sequential veri�cation, we introduce new \hardware" (see
Figure 7) which we refer to as PINV (Product machine for INVariant checking).
It consists of the original hardware and hardware representing the test prop-
erty4 wired together so that the property circuit has access to both the inputs
and outputs of the circuit under test. PINV checks whether the outputs of the
machine M satisfy the speci�c property or not. It is formalized as follows:

` PINV (ip; flag; op; s; M; PROPERTY ) =

M (ip; op; s) ^ TESTPRO (ip; op; flag; PROPERTY ) (31)

where

` TESTPRO (ip; op; flag; PROPERTY ) =

(8 t: f lag t = PROPERTY (ip t; op t)) (32)

i.e. TESTPRO is a piece of hardware which tests if its inputs and outputs sat-
isfy some speci�c requirements given at each time instance by PROPERTY .
PROPERTY is a relation on a single input value and output value. Again in

4 Invariants in MDG must be written in or converted to the same hardware description
language as the actual hardware: invariants are thus ultimately treated by the system
as if they were just hardware.



discussing correctness it is actually a result about this di�erent hardware that
we obtain from the property checking. The result that the property checking
proves about PINV can be stated as:

` 8 ip s op M PROPERTY:

PINV (ip; flag; op; s; M; PROPERTY ) � 8 t: f lag t = T (33)

i.e. its speci�cation is that the flag output should always be true. Note that
this is not of the form (1) (i.e. implementation implies speci�cation) for M but
in that form for the �ctitious hardware PINV. To make use of such a result in a
HOL hardware veri�cation we need to convert it to the form:

` 8 ip op: 9 s: M (ip; op; s) � 8 t: PROPERTY (ip t; op t) (34)

i.e. for all input and output sequences, if there exists a reachable state trace, s,
satisfying the relation M (ip; op; s) then the relation PROPERTY must be
true for the input and output values at all times. In other words, the machine
M satis�es the speci�c requirement 8 t: PROPERTY (ip t; op t). Hence the
conversion theorem for invariant checking is:

` 8 M PROPERTY:

(8 ip op s:

(PINV (ip; flag; op; s; M; PROPERTY ) � 8 t: f lag t = T)) �

(8 ip op: 9 s: M (ip; s; op) � 8 t: PROPERTY (ip t; op t)) (35)

We have proved this general conversion theorem in HOL. Once more the theo-
rems can be instantiated for any hardware and property under consideration.

5 Conclusions

We have formally speci�ed the correctness results produced by four di�erent
hardware veri�cation applications using HOL. We have in each case proved a
theorem that translates them into a form usable in a traditional HOL hard-
ware veri�cation i.e. that the structural speci�cation implements the behavioral
speci�cation. The �rst applications considered were the checking of input-output
equivalence of two combinational circuits and the similar comparison of two se-
quential circuits when a one-to-one correspondence between their registers exists
and is known. The next application of MDG considered was sequential veri�ca-
tion, which checks that two abstract state machines produce the same sequence
of outputs for every sequence of inputs. Finally we considered the checking of
invariant properties of a circuit.

The veri�cation applications considered were based on those of the MDG
Hardware veri�cation system. We have thus given a theoretical basis for con-
verting MDG results into HOL. Furthermore, by proving these theorems in HOL
itself we have given practical tools that can be used when verifying hardware



using a combined system{\theorems" can be initially imported into HOL in the
MDG form and converted to the appropriate HOL form using the conversion
theorems. This gives greater security than importing the theorems directly in
the HOL form, as mistakes are less likely to be introduced. Alternatively, if theo-
rems of the HOL form are created directly, then the conversion theorems provide
the speci�cation of the software that actually creates the imported theorem.

Whilst the veri�cation applications were based on the MDG System and the
proof done in HOL, the general approach could be applied to the importing of
results between other systems. The results could also be extended to other ver-
i�cation applications. Furthermore, our treatment has been very general. The
theorems proved do not explicitly deal with the MDG-HDL semantics or mul-
tiway decision graphs. Rather they are given in terms of general relations on
inputs and outputs. Thus they are applicable to other veri�cation systems with
a similar architecture based on reachability analysis, equivalence checking and/or
invariant checking.

The translation theorems are relatively simple to prove. The contribution of
the paper is not so much in the proofs of the theorems, but in the methodology
of using imported results presented. It is very ease to fall into the trap of as-
suming that because a result has been obtained in one system, an \obviously"
corresponding result can be asserted in another. An example of the dangers is
given by the extra assumption needed for sequential veri�cation and invariant
checking that the circuit veri�ed can respond to any possible input. It could
easily be overlooked. By formalizing the results in the most natural form of the
veri�cation application, and proving it equivalent to the desired form, we reduce
the chances of such problems occurring.

6 Discussion and Further Work

The reason that the state must be made explicit in the formalism of MDG is
that the semantics of MDG-HDL { the input language to the MDG system {
has an explicit notion of state. We have used relations M and M 0 to represent
MDG semantic objects. Ultimately we intend to combine the theorems described
here with correctness theorems about the MDG-HDL compiler which translates
MDG HDL programs into decision graphs [5] [14]. This will provide a formal link
between the low level objects actually manipulated by the veri�cation system
(and about which the veri�cation results really refer) and the results used in
subsequent HOL proofs. Compiler veri�cation involves proving that the compiler
preserves the semantics of all legal source programs. It thus requires the de�nition
of both a syntax and semantics of HDL programs. Using an explicit notion
of state in the translation theorems ensures they will be compatible with the
semantics of the MDG-HDL language used in the compiler veri�cation.

However, if proving results directly in HOL, as we saw, introducing such
an explicit notion of state is unnecessary. We could do so for the convenience
of combining systems. However, this would make subsequent speci�cation and



veri�cation in HOL more cumbersome. Consequently, we hide the state in the
conversion theorems, introducing terms such as:

9 s: M(ip; op; s)

However, this implies that we also de�ne HOL components in this way. For
example, it suggests a register is de�ned as

` 8 ip op: REGH (ip; op) = 9 s: REGM (ip; op; s) (36)

where REGM is as de�ned in (13). We actually want to give and use de�nitions
as in (14), however, and derive (36). As a consequence for any component veri�ed
in MDG we must prove a theorem that the two versions are equivalent as we did
in examples 3 and 4.

In general we need to prove theorems of this form for each MDG HDL basic
component. We then need to construct a similar theorem for the whole circuit
whose veri�cation result is to be imported. Such proofs can be constructed from
the theorems about individual components. In general, we must prove for any
network of components (n) that

` 8 n: HOL DESCRIPTION n (ip; op) =

9 s: MDG DESCRIPTION n (ip; op; s):

If we prove this theorem, we can then convert our importing theorems into ones
without state automatically. To do such a proof requires a syntax of circuits:
precisely what is needed in the veri�cation of the MDG compiler as noted above.
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