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 Abstract

In this paper, we investigate the impact of design chang-
es on formal verification using the MDG (Multiway Deci-
sion Graphs) tools. In particular, we would like to
determine whether the design changes that make verifica-
tion by interactive theorem proving simpler, also make ver-
ification by automated decision diagram approach simpler
as well. The design we consider is the Fairisle 4 by 4 switch
fabric which has been used for real applications in the
Cambridge ATM Fairisle network. A major consideration
was that design change decisions should not compromise
other design goals such as performance and functionality.
The specification and verification obtained in MDG dem-
onstrated the expected positive impact of these design
changes.

1.  Introduction

As communication networks become all pervasive, the
consequences of errors in the design or implementation of
network components become increasingly important. The
validation of network components is at best difficult. Simu-
lation cannot uncover all errors in an implementation
because only a small fraction of all possible cases can be
considered. Formal verification is a different technique that
can alleviate this problem, because the correctness of a for-
mally verified design implicitly involves all cases regardless
of the input values [6].

In this paper, we investigate whether the formal verifica-
tion of an ATM design can be simplified by making design
changes: that is whether a notion of “Design for Verifiabil-
ity”, similar to that for testability, is of practical interest. Cur-
zon [3][4] introduced this idea in the context of interactive
proof. By using the HOL theorem prover [5], he suggested
that the cost of verification in terms of time can be reduced
by making appropriate design changes. Here, we investigate
whether the same design changes also reduce the verification
cost while using the MDG tools [1].

Our investigation involved the verification of an existing
hardware design which was designed at the University
Cambridge. The component we considered is the Fairisl
by 4 switching fabric which performs the actual switching o
data cells and forms the heart of the ATM Fairisle comm
nication network [7]. The Cambridge Fairisle switch fabri
verification had been done by Curzon [2] using the HOL th
orem prover. Taharet al. [9] verified the same fabric in an
automatic fashion using the MDG (Multiway Decision
Graphs) tools. While verifying the original description of th
switch fabric which we refer to as theOriginal switch fabric,
Curzonet al. [4] noted the factors that were increasing th
verification cost in terms of time. It became obvious that pa
ticular aspects of the behavioral specification were leng
ening the verification time by significant amounts
Moreover, by changing the behavior of the switch fabri
which is controlled by the environment of the switch fabric
i.e., port controllers, the problems would have bee
removed. While changing the actual design, Curzonet al.[4]
were concerned that such changes should not affect the p
formance or functionality of the device. We will refer to the
modified design which includes the suggested desi
changes during the interactive proof, as theCleanedversion.

The outline of this paper is as follows: In Section 2, w
describe theOriginal version of the Fairisle switch fabric in
terms of behavioral and structural description. In Section
we describe the changes to the fabric that were suggeste
the verification attempt using a theorem prover. In Section
we describe the verification of theCleanedversion in MDG.
In Section 5, we compare and contrast different aspects
theCleanedandOriginal versions of the switch fabric and
Section 6 concludes the paper.

2.  The Fairisle ATM Switch

The Fairisle ATM switch consists of three types of com
ponents:input port controllers,output port controllersand a
switch fabric (Figure 1). It switches ATM cells from the
input ports to the output ports. A cell consists of aheader(a
one-byte tag containing routing information as shown
Figure 2) and a fixed number of data bytes. The port co



a
e

],

h
te
f

ed

ia-
n-

ic.

he

-

as
r-
d

m
ls
he
].
trollers synchronize incoming data cells, append headers to
the front of the cells, and send them to the fabric. The fabric
waits for cells to arrive, strips off the tags, arbitrates between
cells destined to the same output port, sends successful cells
to the appropriate output port controllers, and passes
acknowledgments from the output port controllers to the
input port controllers. If different port controllers inject cells
destined for the same output port controller into the fabric at
the same time, then only one will succeed and the others
must retry later. The header also includes apriority bit that is
used by the fabric for arbitration which takes place in two
stages.

Figure 1.  The structure of the Fairisle ATM switch

High priority cells are given precedence. The choice
within both priorities is made on a round-robin basis. The
input controllers are informed of whether their cells were
successful using acknowledgment signals. The fabric sends
a negative acknowledgment to the unsuccessful input ports,
but passes the acknowledgment from the requested output
port controllers to the successful input port. The port con-
trollers and the switch fabric all use the same clock, hence
bytes are received synchronously on all links. They also use
a higher-level cell frame clock—theframe start(fs) signal

(Figure 1). It ensures that the port controllers inject data cells
into the fabric so that the headers arrive together. Here we are
concerned with the verification of theswitch fabric.

Figure 2.  The routing tag of a Fairisle ATM cell

3.  MDG Modeling of theCleaned Fabric

The new design of the Fairisle switch fabric incorporates
the following changes without any significant loss of func-
tionality:

• The header arrives at least 5 cycles after the frame
start signal.

•   The header and frame start must not occur together.

• Internal delays were added to the datapaths so that
no extra cell byte is lost.

• Minor changes to the internal timing of the dat
switch so it reads two grant signals at a mor
sensible time.

Inspired by [3][4] and the verification of theOriginal
design of the Fairisle switch fabric using the MDG tools [9
we derived an MDG description of theCleanedversion of
the switch fabric. The behavioral specification of the switc
fabric is represented in the form of an Abstract Sta
Machine (ASM). We investigated the modified behavior o
the switch fabric under the control of the environment.

3.1.  Environment for the port controllers

The timing-diagrams in Figure 3 represent the expect
behavior of theCleanedversion of the switch fabric during
an active frame. Based on this and similar sets of timing-d
grams we derived our environment state machine which co
trols the changed input-output behavior of the switch fabr
After the frame start(at time ts), the switch waits for the

headers to appear on the input linesDin. After the arrival of
the headers (at timeth), an arbitration between the inputs

clashing for the same output is done in at most 2 cycles. T
successful cells (bytes that follow the headers onDin) are
transferred to the corresponding output port (Dout) with a
delay of 5 cycles while acknowledgment (Ain) starting at
time th+3 traverse in the opposite direction without any syn

chronous delay. Note that the last 5 cycleste-1 to te-5 of a

frame do not accept any data.

Figure 3.  Timing behavior during an active frame

We modified the original environment state machine
given in the verification design documentation of the Fai
isle switch [9] to comply with the modifications suggeste
by Curzonet al. [4]. Figure 4 shows the modified environ-
ment state machine which reflects the above timing diagra
for a 64 clock cycles frame. In [10], we describe in detai
the four modified assumptions about the environment of t
switch fabric and the reasons of the modifications from [9

Figure 4.  The new environment state machine
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In Figure 4, there are 64 states enumerated by integers
(using MDG-HDL, state variables can be described as a con-
crete variable of sort [1, 2, .., 64]). State transitions are
denoted by arrows. In analogy to the environment state
machine of [9], we usedfs, handdi to denote theframe start

signal, the header of an active cell and the data processing in
that state, respectively. The notation(di) in Figure 4 indicates
that data is switched to the output port in that state.

3.2.  Behavioral Specification

Inspired by the constraints from the above environment
state machine which represents the port controller behavior,
we describe in the following the overall behavior of the
switch fabric. It can be expressed in the form of a finite state
machine (ASM) having 12 states (Figure 5). To simplify the
presentation, the symbolssandh denote aframe start(fs=1)
and the arrival of headers (active bit set in at least oneDin),
respectively; “~” denotes negation, and the symbolsa, d or
r inside a state represent the processing of the
acknowledgment output (Aout), the data output (Dout) or
round-robin arbitration, respectively.

Figure 5.  ASM of the Cleaned  switch fabric

Two time axes illustrate the time units of a frame to which
the transitions correspond. The symbolsts andth represent
the arrival time of aframe startsignal and the arrival time of
a header, respectively. The end time (te) of a frame is not
given, since it is the same astsof the next frame. State 1 is the
initial state from which a frame may begin without any
delay. This complies with the first constraint on the environ-
ment of the switch. After a waiting loop for the firstframe
startin state 1, states 2 to 6 describe the behavior of the fabric
after the arrival of aframe start, with at least a five-cycle
delay before the arrival of the headers. This delay represents
the second constraint on the environment. The waiting loop
for the arrival of the headers in state 6 is shown by a natural
numberj. States 7 to 12 describe the behavior of the fabric

after the arrival of the headers. When the headers arrive,
frame startsignal must not arrive before at least 6 cycles
comply with the third constraint on the environment. Th
arrival of aframe startin state 12 complies with the last con
straint of the environment which requires that the next fram
does not arrive before 11 cycles from the currentframe start.
After arbitration (state 9), the switch fabric transfers th
acknowledgments in each cycle of a frame and switch
data, delayed by three cycles. This delay is represented us
the sequence of transitions from state 9 to 12. The loop
state 12 represents the transmission of data and acknowle
ments in the remaining cycles of the cell (indicated by a na
ural numberk). The arrival of aframe startin state 12 marks
the beginning of another frame. Here, a new sequence
state transitions along thets axis progresses similarly as in

states 2, 3, 4, 5 and 6 described above.

TheOriginal ASM of the switch fabric used in the MDG
verification of the Fabric is given in [9]. To model the com
putation in MDG of the acknowledgments, the data outpu
and the round-robin arbitration, we use the techniqu
described in [9].

3.3.  Structural Implementation

Figure 6 shows a block diagram of the switch fabri
implementation. It consists of an arbitration unit, a
acknowledgment unit and a dataswitch unit. The arbitrati
unit is composed of a Timing unit, a Decoder, a Priority Fi
ter and a set of Arbiters. For more details about the impl
mentation refer to [2].

To reflect the modifications suggested in [4], mino
changes were made to the Timing unit, Arbiters, control pa
between the Arbitration and Dataswitch units and datapa
to the Dataswitch unit of the original implementation. Th
modified Timing module ensures that the header and fra
start signals must not occur together. Theframe startsignal
just gets there 5 cycles later as required to make it trigge
cycles later. The shaded boxes in Figure 6 represent the m
ified modules in theCleanedimplementation.

Figure 6. Cleaned fabric implementation
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The Arbiters generate theoutput disableandgrant sig-
nals. TheOriginal Arbiters disable the outputs one cycle
earlier than is desirable. On each cycle, to determine which
output the current byte should be sent to, the Dataswitch
consults the two bits of the grant control signal produced by
the Arbiter. One of those bits is sampled on the cycle before
it is used, but the other is sampled on the same cycle. This
ultimately means that the grant signal for the last cycle can-
not be used as its value changes between the bits being sam-
pled. The problem is removed by adding extra delays across
the path to the Dataswitch. TheCleanedArbiters disable the
outputs one cycle later than theOriginal one, so that the last
bytes of a cell are not ignored.

The Dataswitch module chooses a word to be output to
each of the output ports. It delays the data long enough for an
arbitration decision to be made. To comply with the extra
delay in the arbitration unit, minor changes had been made to
its internal timing so it can read the two grant lines at a more
sensible time. To do so, an extra register is added across the
datapath to the Dataswitch unit.

4.  MDG Verification of the CleanedFabric

TheCleanedversion was formally verified, based on the
modifications described in the previous section. In the fol-
lowing two sub-sections we describe property checking and
sequential equivalence checking of this modified switch fab-
ric.

4.1.  Property Checking

We applied property checking to ascertain that both
implementation and specification of the switch fabric satisfy
some specific requirements while working under the control
of the new environment, i.e., port controllers. Sample prop-
erties are correct circuit-reset and correct data-routing.
Using the time pointsts, th andte, as introduced in Section
3.1, we described several properties which reflect the mod-
ified behavior of the switch fabric. The verification of the
Cleanedfabric was done using four properties similar to
those described in [9].

Properties 1and2 deal with the reset behavior of the cir-
cuit, while Property 3and4 describe specific behaviors of
the switching of cells.

• Property 1: From ts+5 to th+5, the default value (zero)
appears on the data output portDouti, where zero is a
generic constant andi = 0,...,3.

• Property 2: From ts+1 to th+2, the default (0) appears
on the acknowledgment output portAouti where i =
0,...,3.

• Property 3: From th+6 to te-1 (i.e., 1 cycle before the
nextts), if input port i, i ={0,..,3}, chooses output portj,

j ={0,..,3}, with the priority bit set in the header, and no
other input ports have their priority bits set, the valu
onDoutj will be equal to that ofDini 5 clock cycles ear-

lier.

• Property 4: From th+3 to te-1 if input port i chooses

output portj with the priority bit set in the header, and
no other input ports have the priority bit set, the valu
onAoutj will be that ofAini.

Figure 7.  Composed state machine for property
checking

To verify these safety properties, we composed the fab
(specification or implementation) with the environmen
state machine as shown in Figure 7. This verificatio
approach is inspired by the technique described in [9]. B
using the property checking facility of the MDG tools, we
checked in each reachable state if the outputs satisfy
logic expression of the property which should be true over
reachable states. The experimental results from the verifi
tion of all the properties stated above for both implement
tion and specification, are given in Table 1. All experiment
results were obtained on a Sun Ultra SPARC 2 workstati
(296MHz / 768 MB) and include CPU time in sec., memor
usage in MB and the number of MDG nodes generated.

4.2.  Equivalence Checking

The original design of the switch fabric was described
the gate-level in Qudos HDL. The authors in [9] translate
the Qudos HDL description into MDG-HDL using the sam
collection of gates. By abstracting the data lines from a bu
dle of bits to a compact word of abstract sort, we also obta
an abstract RTL model of the switch fabric. This RTL mode
will be equivalent to the original gate-level description if i
produces the same output as the original gate-level for
input sequences. We adopted the modifications mentione
Section 3.3 to both the gate-level and RTL models of th
switch fabric to reflect the design changes. We then pr
ceeded with the equivalence checking between gate-le
and RTL description using the sequential equivalen
checking of MDG. This was achieved after instantiation o
the RTL model to 8-bits [9].

state state
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Using the sequential equivalence checking facility of the
MDG tool, we also verified that the abstract RTL implemen-
tation of the switch fabric complied with the new specifica-
tion of the behavioral model described in Section 3.2. We
obtained a complete verification of the switch fabric from a
behavioral specification down to the gate-level implementa-
tion. The experimental results are given in Table 1.

Table 1.  Verification of the Cleaned  version

5.  Summary of Results

The motivation of this work was to compare the formal
verification, in terms of time, of theCleanedversion of the
Fairisle ATM switch fabric with theOriginal version using
MDG tool. Timing aspect of formal verification is an impor-
tant issue to the industrial community. We compare these
two versions with respect tomachine-timeandhuman-time.

Human time spent on the verification of theOriginal ver-
sion was longer than that of theCleanedversion. The
amount of work in re-running a verification of a modified
design is minimal compared to the initial effort since the lat-
ter includes all the modeling aspect. In the verification by
MDG tools, manual intervention is needed for variables
ordering which has an impact on the verification time.

In the verification of theOriginal version, much of the
time was spent on determining a suitable variable ordering.
As there were no major changes to theOriginal version, we
did not spend much time on redetermining a suitable vari-
able ordering. The translation of the original Qudos HDL

design description to the MDG-HDL gate-level structura
model took about one person-week as described by Tahaet
al. [8]. The time spent on the modification of the structura
description of the design for theCleanedversion was four
person-days. Because the verifier needs to understand
design thoroughly, the time spent for understanding a
writing the behavioral specification of theOriginal version
was about four person-weeks. On the other hand, for t
Cleanedversion it took two person-weeks. In the verifica
tion of theOriginal version, the time required to setup fou
properties, to build the environment state machine, to co
duct the property checking both on the implementation a
the specification and to interpret the results was about th
person-weeks. For theCleanedversion, building a new envi-
ronment state machine and conducting the property che
ing on both the implementation and the specification too
about two person-weeks. The equivalence checking of
RTL implementation with its behavioral specification an
the RTL model against the gate-level model of theOriginal
version required about two person-weeks due to the ad
tion of abstraction mechanisms and correction of descripti
errors for the RTL implementation. On the other hand for th
Cleanedversion, it took about one person-week. The sum
mary of the differences between theOriginal version and the
Cleanedversion, in terms ofhuman-timetaken during the
verification phase, is given in Table 2.

Table 2.  Summary of human-time taken

To demonstrate the reduced verification time we compa
themachine-timetaken to complete theCleanedversion ver-
ification with that for theOriginal version. The machine-
time taken by theCleanedversion for both the Property
checking and the Equivalence checking was reduced b
significant amount of CPU time to that of theOriginal ver-

Verification
Phases

CPU
time (s)

Memory
(MB)

No. of
Nodes

Reach. Analy.
Specification

Implementation
180.40
219.22

32
34

73157
90208

Prop. Checking
Specification

Prop. 1
Prop. 2
Prop. 3
Prop. 4

Implementation
Prop. 1
Prop. 2
Prop. 3
Prop. 4

186.65
199.67
195.23
160.43

173.81
151.53
166.21
164.76

27
23
23
28

32
31
30
32

74948
75287
73020
72843

88085
89738
90554
90933

Equv. Checking
RTL vs. Beh. +
RTL vs. Gate

1934.56
30.85

148
13

230798
13899

Verification Phase
Cleaned
version

Original
version

Behavioral spec.
modeling

Two
person-weeks

Four
person-weeks

Gate and RTL impl.
modifications

Four
person-days

One
person-week

Env. state machine and
property checking

Two
person-weeks

Three
person-weeks

Equiv. Checking:
RTL vs. Beh. Spec. +
RTL vs. Gate-level

One
person-week

Two
person-weeks
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sion. The differences between the verification of theCleaned
and theOriginal versions are illustrated with respect to CPU
time taken, memory usages and MDG nodes generated
(compare Tables 1 and 3).

Table 3.  Verifications of the Original version

6.  Conclusions

In this paper, we have demonstrated that design for veri-
fiability can have a significant effect on the speed of verifi-
cation using automated decision diagram based technique.
The same result was obtained by using interactive proof with
the HOL theorem prover for the same design verification.
The difference in nature of these two verification methodol-
ogies suggests design for verifiability can be widely appli-
cable. One of the motivations of this work was to show that
designers can ease the verification task without compromis-
ing other design considerations. Our investigation suggests
that one way this can be done is by ensuring that the oper-
ating assumptions of modules are as few and as simple as
possible. The designer may have to work a little harder to
ease the verifier’s task. However, the result is a much cleaner
design. It thus can be done early in the design cycle. The
development of design constraints for formal verification
would be useful. This is vital for safety-critical systems
where formal verification techniques are most likely to be
used.

The implementation we considered for this investigatio
is the Fairisle 4 by 4 switch fabric which forms the heart o
the ATM Fairisle communication network. We made som
changes to the timing constraints of the fabric which is co
trolled by the environment of the fabric, i.e., port controllers
By changing these timing constraints we made the operat
assumptions of the fabric simpler and cleaner. We al
changed the design of the Arbiters, the Timing unit, the co
trol path between the Arbitration and Dataswitch unit an
datapath to the Dataswitch unit without loss of any signifi
cant functionality. The verification time taken by both
humanandmachinefor the modified design was much les
than that of the original design as demonstrated in the p
vious section. Based on the above statistics we can concl
that the verification time can be saved if a notion of “desig
for verifiability” is integrated into the design process itse
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Prop.4
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