
Using a Veri�cation System

to Reason about Post-Completion Errors

Paul Curzon and Ann Blandford

School of Computing Science, Middlesex University, London, UK
fp.curzon,a.blandfordg@mdx.ac.uk

Abstract. Faults in the way a system works are often attributed to user
error. Formal veri�cation is one approach advocated to help avoid errors.
Previous work has concentrated on ensuring that implementations meet
speci�cations or that safety or liveness properties hold of a speci�ca-
tion. However, systems veri�ed in this way are still prone to catastrophic
user errors. The designs of computer systems can often provoke certain
classes of user errors. Indeed such problems are ubiquitous in every-day
life. An example is the post-completion error where the user omits some
necessary termination action. Work from the �elds of cognitive psychol-
ogy and human computer interaction suggest that such user errors are
avoidable if systems are designed appropriately. We demonstrate that,
by adopting a user-centric approach to system veri�cation, formal proof
methods can both detect and prove the absence of such system design
errors. Furthermore, this approach can be integrated with traditional
system veri�cation methods. In particular, we show how the HOL proof
system can be used to verify the absence of post-completion errors within
the framework of a traditional hardware veri�cation.

1 Introduction

Formal veri�cation tools are, in general, either used to prove that an implementa-
tion meets a formal speci�cation, or that particular safety or liveness properties
hold of the system. The aim is to analyse the computer system; users are periph-
eral to the veri�cation. A consequence of this is that errors made by users are
not seen as being within the scope of veri�cation tools. Similarly it is assumed
that mistakes made by users are not the concern of the system designer. Such an
approach can give a false sense of security in the infallibility of the system. If the
system is designed without human users in mind, system failures may occur due
to human error. Many such classes of error have distinct cognitive causes and
are predictable [13]. Furthermore, changes to the design of systems can eliminate
such errors [1, 8, 4]. A corollary of this is that veri�cation tools can be designed
to detect the presence of such intrinsic usability problems in a system design.

In this paper, we investigate a veri�cation methodology for catching user
errors. We show how a generic user model can be de�ned which incorporates
cognitive psychology theory. In particular, we build into the model a single well-
studied [4] cognitive property which results in a class of user errors known as



post-completion errors. We illustrate this by instantiating the model for a simple
interactive device: a chocolate machine. We show how this concrete chocolate
machine user model can be used in conjunction with a traditional system speci�-
cation to detect, or show the absence of, post-completion errors. We �rst attempt
to verify a machine design for which post-completion errors can occur. We show
that this attempt fails. We then successfully prove that such errors are absent
from a modi�ed design. Finally, we demonstrate how such results can be inte-
grated with traditional system veri�cation results.

The user model described here is capable of detecting only post-completion
errors. However, the approach is much more general. In ongoing work we are
extending the user model so that the same approach can be used to detect a
range of other classes of user errors. This is not done by explicitly modelling
the errors, but instead by modelling rational user behaviour: the errors then
are emergent properties. Example errors that can be caught using this approach
include order errors due to the device imposing an order on actions that is not
enforced by the nature of the task; order errors due to mismatches between the
user's communication goals and those assumed by the device design, and errors
due to a lack of feedback. Whilst it is beyond the scope of this paper to discuss
such errors in detail, we discuss in general terms how the user model could be
extended to detect them in the �nal section.

A feature of our approach is that it is not probabalistic. Errors are considered
to either be possible or impossible with a given device. If there is any chance of a
class of error being made, our model allows its possibility. We do not include any
information in the model of the frequency of errors. A consequence of this is that
the only design changes that the methodology will accept are essentially struc-
tural ones that completely eliminate the possibility of an error ever manifesting
itself as a result of the speci�c cognitive cause modelled.

2 Formal User Modelling

Various general approaches have been suggested as the basis of formal tools
to aid in the veri�cation of the usability of systems. One approach is to work
with a formal speci�cation of the user interface. Campos and Harrison [5] review
various approaches of this kind. An alternative approach is that of formal user

modelling: generating and reasoning about a formal speci�cation of the user in
conjunction with one of the computer system, rather than concentrating on the
interface. Formal user modelling has emerged from interactions between cogni-
tive scientists, who are concerned with producing rigorous descriptions of user
cognition based on results of empirical research, and formal methods specialists.
Examples include the work of Duke et al [6], Butterworth et al [3], Moher and
Dirda [9] and Paterno et al [11] [12]. Each of these approaches takes a distinctive
focus. Duke et al concentrate on channels and resources, Moher and Dirda look
at users' mental models and their changing expectations whilst Butterworth et

al focus on user knowledge and goal-based behaviour. The latter work of Paterno
corresponds closely to that which is done in state space exploration veri�cation.



a ^ b both a and b are true
a _ b either a is true or b is true
a � b a is true implies b is true
8n. P(n) for all n, property P is true of n
9n. P(n) there exists an n for which property P is true of n
f n the result of applying function f to argument n
a = b a equals b
if a then b else c if a is true then b is true, otherwise c
x : t x has type t
` P P is a de�nition or proven theorem in the logic

Table 1. Higher-order Logic notation

The user model corresponds to the environment machine used to give a closed
system. The user model in this approach describes how users are intended to
behave. Consequently it does not support reasoning about possible sources of
error in the interaction.

Our approach is to build a generic user speci�cation based on established
results from cognitive science [10], and to use that user speci�cation with a device
speci�cation to prove properties of the system. In particular we prove that the
task will be completed if the user behaves rationally in the sense given by the
user speci�cation. The user is described in terms of their goals (i.e. things they
wish to achieve - such as having a chocolate bar) and in terms of the actions
they may perform in order to achieve those goals. Generic user behavioural
properties are formalised as de�nitions within the logic, so that we work in a
common framework to that used for traditional system veri�cation. The two
activities are thus uni�ed.

3 The HOL System

The work described here uses the HOL system [7]. It is a general purpose, inter-
active proof tool that has been used for a wide variety of applications. A typical
proof will proceed by the veri�er proving a series of intermediate lemmas, that
ultimately can be combined to give the desired theorem. The system provides
a wide range of de�nition and proof tools, such as simpli�ers, rewrite engines,
and decision procedures, as well as lower level tools for performing more pre-
cise proof steps. The architecture of the system means that speci�c proof tools
can be built on top of the core system, combining the general proof procedures
with ones speci�cally written for a given application. All speci�cations, goals
and theorems in HOL are written in higher-order logic. Higher order logic treats
functions as �rst class objects. The notation used in this paper is summarised
in Table 1.



1. Insert Coin

3. Push for Change

CHOCOLATE - 50p

.2 Push for Chocolate

£1 ONLY

Fig. 1. The Chocolate Machine

4 The Chocolate Machine

To demonstrate the approach we use a very simple example: a chocolate machine
(see Figure 1). It takes pound coins only, returning 50p change. To release the
chocolate and change, corresponding buttons must be pressed. The machine uses
lights next to the coin slot and buttons to indicate the order things should be
done. The order of operation is that a coin is inserted, the chocolate button is
pressed and the chocolate removed, and then �nally the change button is pressed
and the change removed. If the user does not press the appropriate button the
machine does nothing until the correct button is pressed. We assume for the sake
of simplicity that the chocolate machine always contains su�cient chocolate and
change.

Whilst this machine is simpli�ed, its elements appear in real machines. It
contains su�cient features of real interactive machines to be representative of
a class of walk-up and use machines including vending machines and cash ma-
chines. The user must give up possessions to the machine and make selections
and requests of the machine. The machine gives information about the task in
hand to the user and feedback over the success of actions. All of these actions
have been reduced to the simplest form, whilst still preserving their essence.
Most importantly, it is complex enough that user errors would occur. We do not
however consider explicit user knowledge here, though ongoing work is extending
the model in this way.



¬PushChoc ¬PushChange

T

¬InsertCoin
PushChange

CoinLight

PushChocInsertCoin

ChocLight

CHOCCOINRESET CHANGE

ChangeLight GiveChoc GiveChange

Fig. 2. Finite State Machine Speci�cation of the Chocolate Machine

Including more features in the device such as multiple choice would not a�ect
the veri�cation methodology greatly. In large part this is because the approach
is user-centric rather than device-centric. The device is essentially a �nite state
machine and is described as such in the veri�cation methoddology. Applying
the approach to a more complex example would simply require more veri�cation
work considering the increased number of states. Of course the more complex
the design, the greater range of errors possible, and the harder it would be to
provide a design that �xed the problems. Our concern, however is with whether
the problems exist or not.

We formally specify the chocolate machine using a traditional �nite state
machine description (see Figure 2) within higher order logic. The speci�cation is
represented by a relation on the machine's inputs and outputs. We group these
inputs and outputs into a tuple to represent the machine state. The machine will
have as outputs 3 lights and 2 signals to release change and chocolate. Inputs
correspond to the buttons being pressed and a coin inserted. This gives a total
of 8 components. Each is represented by a history function. This is a function
from time (a natural number) to a value of the signal at that time: it thus gives
a full history of the values on the signal. For the chocolate machine the values
at each time are booleans. We de�ne a new type mstate type to represent
this. It is essentially just an abbreviation for the type of tuples of 8 boolean
history functions. We de�ne a series of accessor functions to obtain the values
of particular components of the state. For example the function InsertCoin

extracts from a machine state the history function representing the coin slot.

We de�ne a new enumerated type ChocState to represent the 4 �nite state
machine states (as opposed to the state representing the values input and output
discussed above).

ChocState = RESET STATE j COIN STATE j CHOC STATE j CHANGE STATE

The RESET state is the initial state. Each of the other states represent the
corresponding action having been done: in the COIN state a coin has been



accepted; in the CHOC state the chocolate is dispensed and in the CHANGE
state, change is dispensed.

For each state we de�ne two relations. The �rst speci�es the outputs in that
state, and the second gives the state transition function. Each takes as arguments
the history function representing the machine state and the time of interest. The
second takes the internal abstract state as an additional argument.

For example, initially the machine is in the RESET state with the insert coin
light lit, waiting for a new user to insert a coin. The insert coin history function
has value true (T) to indicate it is lit. None of the other outputs are set - their
history functions have value false (F) at the time of interest.

` RESET OUTPUTS (mstate: mstate type) t =

(GiveChoc mstate t = F) ^
(GiveChange mstate t = F) ^
(ChocLight mstate t = F) ^
(ChangeLight mstate t = F) ^
(CoinLight mstate t = T)

If a coin is entered it moves to a COIN state in the next cycle, otherwise it
remains in the RESET state.

` RESET TRANSITION s (mstate: mstate type) t =

if InsertCoin mstate t then (s(t+1) = COIN STATE)

else (s(t+1) = RESET STATE)

These two relations are combined in a relation RESET SPEC (omitted here).
Similar de�nitions are given for each state. These de�nitions are bound together
in the top level relation for the speci�cation which decodes the state and indicates
the appropriate relation that should hold in that state:1

` CHOC MACHINE SPEC s (mstate: mstate type) =

8t. if (s t = RESET STATE) then RESET SPEC s mstate t

else if (s t = COIN STATE) then ...

5 A Generic User Model

Our aim is to detect, or verify the absence of, user errors. To do so we treat
the user as an explicit component of the system being veri�ed. We therefore
introduce a formal de�nition of the user: a formal user model. We could take
the approach that a new user model be provided for each machine to be veri�ed.
However, we do not wish the model to be ad hoc but based on general cognitive
psychology and HCI theory. Such theory applies to all users and is machine
independent. We therefore provide a single generic user model that captures that
theory once and for all, and provide machine speci�c information as parameters.
Here we concentrate on one universal psychological property to illustrate the

1 We omit detail from this and later de�nitions for the sake of clarity of exposition.



idea. Furthermore, a generic user model opens the possibility of building general
proof tools around it.

However, for purposes of exposition, rather than immediately describing the
generic user model, we �rst sketch a machine-centric speci�cation. That is, we
specify that the user provides inputs as expected by the designer of the machine.
We then examine how such a naive user model can be extended to take into
account the way real people behave based on results from cognitive science.

5.1 User Options

When confronted with a machine, at any given time, a user will have a series of
options open. We describe this formally as a series of disjunctive clauses, each
describing a possible action of the user at a given time instance. If we wished to
model a user acting totally at random (pressing buttons, etc) then all possible
actions would be given a disjunct. This would allow anything to be done at any
time. However, we assume that some options are not sensible in a given context.
Some actions will only be made if particular observations are made. We thus
combine observations with actions, and only include those combinations that a
\typical" user would make. In particular we specify a reactive strategy in which
a user is guided in their actions by output from the machine. Thus, for example,
if the only light lit on the machine is the one next to the coin slot, then a typical
user who requires chocolate would take that as an indication that a coin should
be inserted. We therefore formally specify inserting a coin as a user option under
these circumstances. More speci�cally we specify that if the coin light is on, the
user may after some time delay insert the coin. We do not, on the other hand,
explicitly give an option for pushing the chocolate button when the insert coin
light is lit. We assume there is no reason in general for a user to do this. We thus
restrict the behaviour from the totally random by omitting possible behaviours.

Note that we are treating the user as a reactive agent. It is assumed that
users who have a goal that pertains to the chocolate machine will react to the
outputs of the machine. In a richer model of knowledge-based rationality, a user
would only perform actions that they believe make progress towards the goal
state [2]. We intend to introduce such a richer goal oriented model in the future.
However, it is beyond the scope of the present paper.

To formally specify this reactive strategy we could give a series of de�nitions
such as that below. It states that a possible behaviour is that the coin light is
on at the current time t and after some delay the user inserts a coin.

` USER COIN (mstate: mstate type) t =

(CoinLight mstate t = T) ^ EVENTUALLY (InsertCoin mstate) t

EVENTUALLY is a temporal operator, stating that there exists a time in the future
(i.e. after the given time t), that its �rst argument (a relation) is true.

We could give a similar speci�c de�nition for each light on the machine.
However, we are assuming that the user is following a general strategy guided
by the machine interface: if lights are placed in close proximity to the inputs



of a machine, and they have a visual design that pairs them, then a user will
use the lights to guide them over the next action to take. We can formalise this
generically using a recursive de�nition which takes as a parameter the list of
pairs of lights and inputs.

We �rst give a non-recursive de�nition LIGHT that corresponds to the de�ni-
tions such as USER CHOC (which it replaces):

` LIGHT light action (mstate: 'm) t =

(light mstate t = T) ^ EVENTUALLY (action mstate) t

It takes a single light and action pair as parameters and asserts that a possible
event is that if the light is on, the user may consequently eventually take the
action. We then give a recursive de�nition LIGHTS (not included here) that ap-
plies this de�nition to each of the pairs in a list of light-action pairs, specifying
that each is a possible behaviour.

5.2 Considering Real Users

So far we have developed the simple user model in a machine-centric way. By
taking into account results from cognitive science we can give a more accurate
user model. We initially consider a simple model that is prone to just one class
of general user error, the post-completion error, to illustrate the point.

If our chocolate machine were put into use, a signi�cant number of user errors
would actually be made. In particular, HCI theory and usability studies predict
that a type of error known as a Post-completion Error would frequently be made
by users of the machine. This is a common form of error made by humans in a
wide variety of situations. Examples of the phenomenon include taking the cash
but leaving a bank card in an Automatic Teller Machine, entering information
in the wrong window on a windows system, and leaving the original on the
platen and walking away with the copies when using a photocopier. Most ATM
machines have been redesigned to force users to remove their cards before cash
is delivered to avoid this problem, but the phenomenon persists in many other
environments.

Byrne and Bovair [4] have developed the most convincing and sophisticated
explanatory model of post-completion errors so far, based on working memory
load. Other researchers (e.g. Young [16] and Rieman et al [14]) give alterna-
tive accounts of the underlying cognitive mechanism. However, several things
are clear. Post-completion errors are not predictable (i.e. they do not occur in
every interaction) but they are persistent. They are not related to missing knowl-
edge so cannot be eliminated by increased user training. They can, however, be
eliminated with careful system design. For our purposes, the details of the mech-
anism are unimportant; what matters is that we should be able to specify user
behaviour in su�cient detail to support reasoning about interactive behaviour
when using a particular device.

When entering an interaction, a user does so with a main goal such as to
obtain a chocolate bar from the machine. Achieving this will involve some pre-
condition which is not currently satis�ed. For example, for the chocolate machine



inserting a coin is a precondition to obtaining chocolate. The user therefore iden-
ti�es a way to achieve that precondition. However, achieving it will perturb the
state of the machine (too much money has been inserted so change is due). The
outcome will depend on the design of the machine. If the user achieves their
main goal before the perturbation has been corrected, the user is liable to forget
about the perturbation as they have achieved what they entered the interaction
to achieve. In the case of the chocolate machine, if the user has taken their choco-
late, they may forget that change is due and consequently leave with just the
chocolate bar. If the change were automatically and noisily dispensed, then the
user would probably notice and take both. If the change were delivered before
the chocolate bar, then the user would almost certainly take both.

Post-completion errors occur due to the goals of the user; we thus need to
introduce the concept of a goal into our user model. We can formalise post-
completion error behaviour in terms of whether the user has achieved their goal
and whether they believe they have �nished. This gives a further choice (i.e.
disjunct) to add to those speci�ed by our machine-centric user model: the goal
is achieved, and the user leaves. This suggests users might still leave without
change even from a machine that gives change automatically and noisily, if they
had achieved their goal before this occurred.

The naive (reactive) user model given earlier was only concerned with the
machine state and machine signals. Post-completion error behaviour could be
speci�ed in terms of the GiveChoc button in a similar way. However, it is more
natural to consider the user as having their own state, ustate, which keeps
track of, amongst other things, their possessions. We will describe a concrete
user state in more detail in a subsequent section. For the purposes of our generic
user model we just assume we have accessor functions to the state goal and
finished. The former indicates when the user has achieved their goal and the
latter indicates when the user has terminated the interaction.

` COMPLETION finished goal (ustate: 'u) t =

(goal ustate t = T) ^ EVENTUALLY (finished ustate) t

We give a type variable 'u as the type of the user state in our generic user
model. This means it can apply to a wide range of di�erent possible user states
for di�erent machines. We only specify those details of it that are speci�cally
required for the general cognitive properties we are describing (for example, one
�eld indicates whether the user has �nished).

We add the completion clause as a new disjunct to our user model: it is
another possible behaviour of a user. We do not assert here that all users in
all circumstances will make the post-completion error. We give a single generic
de�nition, USER CHOICES describing the user's options. It takes as parameters
the list of light-action pairs, the signals indicating when the user has �nished
and achieved their goal and both the user and machine state.

USER CHOICES lights actions finished goal (mstate:'m) (ustate:'u) t =

(LIGHTS ... t) _ (COMPLETION finished goal ustate t)



For the chocolate machine, goal would be set to a signal indicating the points
in time when the user has chocolate. Leaving will be an option once the user has
taken the chocolate. This now means that there are two alternatives once the
user has taken the chocolate: leaving, or pushing the change button.

Super�cially this appears to be a small change to the user model. How-
ever, the point is that it has only been introduced because we have shifted to a
human-centric modelling approach. In doing so we have opened the possibility of
verifying that a whole class of \user errors" are absent or, conversely, to discover
them, before a device is manufactured.

5.3 The Full Generic User Model

We must add some other infrastructure to our user model. First we consider
how to give a general description of the behaviour of a user terminating the
interaction normally. The user leaving is tied up with them having achieved
their goals. However, simply specifying that a user leaves on achieving their goal
would suggest that a post-completion error would always be made. In practice
this is not so.

One way to describe the termination condition in user terms is as an invariant
that they wish to maintain, but that the system has perturbed. When using a
vending machine the user ultimately wishes to leave with at least the same value
of money and chocolate as they came with. Similarly, when using a photocopier,
the user wishes to leave with the original they came with. In interacting with
the machine this invariant is temporarily disrupted, and they will generally only
wish to leave when it is restored. This can be speci�ed generically by treating
the invariant as a history function. It returns a boolean indicating whether the
invariant property is true or false at each instance in time. Rather than make
this an option we specify that the interaction always �nishes once both the goal
is achieved and the invariant holds. Otherwise the user's behaviour is governed
by the options previously speci�ed.

8t. if ((invariant ustate t = T) ^ (goal ustate t = T))

then (finished ustate t = T)

else (USER CHOICES ... t)

In addition to specifying options open to the user, we also need to specify
some universal laws. In particular we give laws about the giving and taking of
possessions; we also need to specify that once an interaction has been terminated
it cannot be restarted. We combine these universal truths about a user into
a single de�nition USER UNIVERSAL. It is generic, and must be provided with
the finished history function as above. Details must also be supplied of the
possessions of the user, including signals indicating when they are obtained and
given up, their value and a count of the number of each possession held.

The complete behaviour of a user is the combination of the things we assume
always to be the case together with the normal termination condition and the
set of options that a user may take given the input signals. It is speci�ed by a
relation USER.



` USER lights actions possessions invariant finished goal

(ustate:'u) (mstate:'m) =

(USER UNIVERSAL possessions finished ustate) ^
(8t. if ((invariant ustate t = T) ^ (goal ustate t = T))

then (finished ustate t = T)

else (USER CHOICES ... t))

Each of the generic parameters to the previous de�nitions, such as goal, become
parameters to this one. By providing concrete values for those parameters and for
the state types we obtain user models for a range of machines, all incorporating
the same general cognitive theory.

6 Speci�c User Models

To target the generic user model to a given machine we must provide:

{ concrete types for the machine and user state, to instantiate the type vari-
ables 'm and 'u;

{ a list of pairs of lights and the actions associated with them;
{ history functions that represent the possessions of the user;
{ functions that extract the part of the user state that indicates when the user
has �nished and has achieved their main goal, and

{ an invariant that indicates the part of the state that the user intends to be
preserved after the interaction.

The machine state is just that used in the machine speci�cation, given by the
type mstate type, de�ned earlier, for our machine. For the user state we must
provide a state consisting of a tuple of 7 elements. Each element is a history
function that indicates a given property of the user at each time point: having
chocolate, having change, having a coin, �nishing and counts of the amount of
chocolate, change and pound coins. Actions and observations directly related to
the machine, such as seeing lights, are equated with the machine state so are not
needed in the user state. Accessor functions are de�ned to access each element of
this tuple. For example, the �rst element of the tuple holds the signal recording
details of when the user possesses chocolate. The function UserHasChoc is there-
fore de�ned to extract the �rst element of the tuple. These functions provide the
abstract interface to the state.

On our chocolate machine, the coin light is positioned with the coin slot,
and the chocolate and change lights with the chocolate and change buttons. We
therefore give a list that pairs the corresponding state accessor functions:

[(CoinLight,InsertCoin); (ChocLight,PushChoc); (ChangeLight,PushChange)]

We also give details of the possessions. A user of the chocolate machine can
have three kinds of possession: chocolate, change (i.e. 50p pieces) and pound
coins. A tuple is associated with each of these. Consider chocolate, for example.
The �rst element of the tuple is a signal indicating when the user has possessed



chocolate: here given by the accessor function from the user state UserHasChoc,
mentioned above. Similar accessor functions to either the user or machine state
are given as the other elements of the tuple. In addition the value associated
with the possession is given { for chocolate 50p.

We specify which accessor functions to the user state indicate when the user
has terminated the interaction, UserFinished and the user's main goal in taking
part in the interaction, UserHasChoc.

Finally we must provide the invariant. For vending machine applications,
this can be based on the value of the user's possessions. After interacting with a
vending machine a user does not wish to have lost money, in the sense that the
value of their total possessions should be no less than they were at the start. We
give a relation, POSS VAL, that formally de�nes the user's total worth based on
the possessions speci�ed. It takes as arguments, the details about the possessions,
the user state and the time of interest. It simply multiplies the possession count
by its value, summing the results for each possession. The invariant for the
chocolate machine is speci�ed in terms of this de�nition. The invariant is true
at a point in time if the value of all the possessions at that time is greater than
or equal to the value of the possessions at time 0.

VALUE INVARIANT possessions (ustate:'u) t =

(POSS VAL possessions ustate t >= POSS VAL possessions ustate 0)

The general model for the chocolate machine is speci�ed by providing each
of the arguments discussed above to the generic user model and restricting the
types of the states to be the concrete types for the chocolate machine.

` CHOC MACHINE USER (ustate:ustate type) (mstate:mstate type) =

USER

[(CoinLight,InsertCoin);(ChocLight,PushChoc);(ChangeLight,PushChange)]

...

7 Verifying Task Completion

Ultimately, we require that if the user arrives at the machine desiring chocolate
when the machine is in its initial state (i.e the coin light is on), then eventually
they will get both chocolate and change. We assume that they do not already
have chocolate (if they do have chocolate then they have already achieved their
goal, so will not need to interact with the machine), do not already have change,
do have a coin to insert, and the invariant is as it was at the base time 0.

` CHOC MACHINE TASK COMPLETION (ustate: ustate type) (mstate: mstate type) =

8t. (UserHasChoc ustate t = F) ^ (UserHasChange ustate t = F) ^
(UserHasCoin ustate t = T) ^ (VALUE INVARIANT ...) ^
(CoinLight mstate t = T) �

9t1. UserHasChoc ustate t1 ^ UserHasChange ustate t1



This states that if at any time, t, a user approaches the machine when its coin
light is on, then they will at some time, t1, have both chocolate and change.
This de�nition is speci�c to the chocolate machine. It would be relatively simple
to give a generic version; however this has not been done at the time of writing.

The task-completion theorem that we wish to prove states that if a user acts
reactively (as speci�ed) and the machine behaves according to its speci�cation,
then our task-completion property above will hold. We are e�ectively taking
the system being veri�ed as the combination of the user and the machine, and
proving that this combined system satis�es the task-completion speci�cation.

8(ustate: ustate type) (mstate: mstate type) s.

CHOC MACHINE USER ustate mstate ^ CHOC MACHINE SPEC s mstate �
CHOC MACHINE TASK COMPLETED ustate mstate

Note that we are proceeding as if the task-completion property were a re-
quirements speci�cation (property). The di�erence is that we incorporate the
user model into the description of the system about which we prove the require-
ment. Furthermore the requirement is stated as a user-centric property rather
than as a property of the machine.

By giving the generic de�nitions to the HOL system and de�ning some spe-
ci�c proof tools, we obtain a tool with which we can verify the task-completion
property essentially by performing a symbolic simulation by proof. We start from
the assumptions about the machine and user state at the initial time. We then
deduce facts about the subsequent state at the next time instance. We can use
these new facts to step on a further time instance, and so on. We use the user
model to deduce facts about the users actions, and the machine speci�cation to
deduce facts about the machine's actions. Our correctness statement is a live-
ness property so we need to step forwards until we come to a state for which the
desired property holds.

This is done using semi-interactive proof in HOL. As the structure of the
speci�cation and user model is very uniform the same proof steps are used to
step between each pair of states. Given the simplicity of the example presented
here, automated state exploration tools could be used for such a veri�cation.
However, we believe that for more substantial systems the additional power of
an interactive proof tool such as HOL will be needed.

For the machine we described, the task-completion property cannot be proved,
however. This is because of the completion disjunct of the universal user model.
On receiving the chocolate, the user has achieved their goal. They may there-
fore leave rather than pushing the change button. The system is 
awed. This
manifests itself as an unprovable HOL subgoal. We must prove that the change
button will be pressed, given a list of known facts about the machine and user.
However, the assumptions we have give us no information to deduce this from.
We know only facts such as the state of each of the lights (only the change light
is on) and that the machine is not giving change. As this goal arises from the
COMPLETION disjunct, its unprovability indicates that the user can leave the
machine without their change due to a post-completion error.



8 A Design Without Post Completion Errors

One way in which we can correct the usability problem of the machine, is to
change its design so that it gives out the change before the chocolate. This ensures
that the main user goal is not achieved until the last step of the interaction. Post-
completion errors are then no longer possible. This is because a post-completion
error can only occur if the device allows the goal to be achieved before the
invariant is restored. The new design does not allow this to happen. It involves
only minor changes to the speci�cation and implementation. The new machine
has the same buttons and lights and the user reacts in the same way to those
signals. Thus the user model for the new machine does not need to be changed.

With the new design, the proof of task-completion can be completed. Now,
when the post-completion error termination clause in the user model is activated,
the invariant has already been restored so the normal termination condition is
triggered.We are therefore able to prove a task-completion theorem of the desired
form:

` 8(ustate: ustate type) (mstate: mstate type).

CHOC MACHINE USER ustate mstate ^ CHOC MACHINE SPEC s mstate �
CHOC MACHINE TASK COMPLETION ustate mstate

This states that provided the machine behaves within the bounds of its spec-
i�cation and the user behaves according to the user model then the user will
obtain both chocolate and change. Note that we have not proved that under
all circumstances this will happen. If the user is distracted by some external
signal, (such as for example a �re alarm going o�), they may leave the machine
with nothing. This would not be a post-completion error but a di�erent form
of termination error [15]. Our claim is that we have proved that a single class
of common errors with a speci�c cognitive cause (post-completion errors) have
been eliminated from the design. By extending the user model other classes of
user errors could similarly be eliminated.

A slightly di�erent class of post-completion error could still occur, however.
The model equates the machine releasing chocolate with the user taking it. We
assume that on pressing the change button the user will not decide to put o�
taking the change. If they made this decision, pressing the selection button and
taking the chocolate before going on to take the change, a post-completion error
could then occur. However, this would, in our terms be a di�erent class of error,
since it is based on the combination of two distinct cognitive causes. To detect
such errors would in the �rst instance require a modi�cation to the user model
to unlink the machine action and the user action.

9 Combining Task-completion and System Veri�cation

Our task-completion speci�cation, user model and system speci�cation have been
given in a single formalism and veri�cation system: higher-order logic within the
HOL proof system. However, we can go a step further. The same framework



can be used to specify the implementation and formally verify that it meets the
speci�cation. Both the HOL system and our speci�cation approach have been
used for system veri�cation [7]. For hardware, we formally specify the behaviour
of each component of the system as a relation on its inputs, and give a structural
description of the implementation, not unlike a hardware description language
description. We then verify a correctness theorem of the form below that the
implementation implements the speci�cation.

More explicitly this states that for any sequence of machine states mstate
that are possible behaviours of the speci�ed implementation, there exists some
abstract state, s, which satis�es the speci�cation.

` 8mstate.
CHOC MACHINE IMPL (mstate: mstate type) � 9s. CHOC MACHINE SPEC s mstate

The task-completion theorem proved above asserts that the task will be com-
pleted when interacting with an abstract version of a chocolate machine. Ulti-
mately we wish to know that the task will be completed when interacting with
the concrete implementation itself. Our implementation correctness theorem al-
lows us to prove that explicitly. Because we have used the same formalism both
in the correctness proof and task-completion proof, it is trivial to prove the
correctness theorem we desire by combining the two theorems.

` 8(ustate: ustate type) (mstate: mstate type).

CHOC MACHINE USER ustate mstate ^ CHOC MACHINE IMPL mstate �
CHOC MACHINE TASK COMPLETION ustate mstate

Note that this theorem no longer refers to the behavioural speci�cation, nor to
the states of the abstract speci�cation, s. Instead it refers only to the machine
implementation and its external state (mstate). It states that if the user behaves
as speci�ed, interacting with a machine with the given implementation, then the
user will eventually obtain both chocolate and change.

10 Conclusions

The fact that a system has been veri�ed to be correct in the traditional way
does not mean that catastrophic user errors will not be made. Traditional formal
veri�cation is machine-centric and so cannot detect such errors. We have shown
that higher-order logic provides an elegant way to provide a generic user model.
A single model can be given that encapsulates general user behaviour. Speci�c
behaviour for a given machine can then be provided as arguments. We have
further demonstrated that this user model can form the basis of a veri�cation
tool with which both correctness and usability in the sense of guaranteed task-
completion can be veri�ed. We have used an interactive proof system, HOL,
in our work. However, the general approach is applicable to other tools and in
particular those based on automated state exploration.

We have presented a simple model of a reactive user augmented with one
result from cognitive science: that users make post-completion errors. We do not



claim to be able to prove that all users will be guaranteed to always successfully
use the machine. We can prove, however, that they will not make post-completion

errors. That is, we have proved that mistakes will not be made due to one
common speci�c cognitive cause concerned with working memory overload.

11 Extending the User Model

We have used a simple example of a chocolate machine to illustrate our approach.
In such an application, formal veri�cation may appear heavyweight; however, it
provides a suitable example for testing the approach. In principle, performing a
more realistic case study would not involve changing the generic user model, only
the arguments supplied to it. In practice some modi�cation is likely to be needed.
For example if the machine did o�er a real choice of chocolate, the lights would
no longer be able to guide the decision of which button to press. This problem
would be solved by adding guards to the light-action rules. These would prevent
an action being taken if it did not appear to contribute towards achieving the
goal. The speci�cation of the machine for a more realistic case study would need
to be more complex, though that is not problematic since similar complex higher-
order logic speci�cations of systems have been used in a variety of applications.
The veri�cation itself would involve proving the same property. This would be
more time-consuming as it would involve the consideration of a greater number
of states. The complexity of the proof in other respects is unlikely to be vastly
greater.

Our ongoing work is concerned with extending the generic user model, not
only to deal with more realistic examples, but also to be able to detect a wider
range of errors. We are experimenting with the addition of other results from
cognitive science such as that user behaviour is rational in the sense that users
deliberately select actions towards achieving goals, that user knowledge is im-
portant, that users need feedback, etc. We discuss in general terms here how
the user model can be extended. Our aim is to convince the reader that the
veri�cation approach is applicable to a much wider range of errors than just
post-completion errors.

Our model essentially involves enumerating the guarded actions that a ratio-
nal user may take as a series of disjuncts. A rational action that leads to an error
will not result in an error only if the device design is such that its guard only
becomes active in a situation that does not correspond to an error. For example,
the post completion disjunct can not lead to a user error if its guard (goal com-
pletion) only becomes true after the interaction invariant has been restored. The
device must not allow the user to complete the goal before this occurs. Extend-
ing the model essentially involves adding new disjuncts. Errors will in general
occur when one of the options available at some point in the interaction is one
that the device is not designed to handle.

For example, describing the processing of user communication goals in the
model would allow a range of user errors to be detected. This involves adding as
an argument to the generic user model, the guarded communication goals related



to the task. These are used to generate a series of extra disjuncts, potentially
giving the user more options in a given situation. A daemon would remove the
communication goals from the list as they were completed. An extra abortion
disjunct would also need to be added { stating that if no options were available
the user could terminate the interaction. This could of course occur before the
task had been completed. With these changes to the user model the veri�cation
approach (proving an identical theorem) would then catch order errors related
to communication goals. For example, if there is no task-enforced reason for the
communication goals to be ordered (perhaps as determined by a task analysis),
the user model will allow the related actions to be performed in any order. If the
device then requires those actions to be done in a given order, a user order error

will be possible. No messages presented by the device would completely remove
the possibility of this occurring. However, if the device allows the communication
goals to be performed in any order, such errors will be structurally impossible.

The user model as presented contains an implicit assumption that the device
provides information to the user over the next action to be taken. The user is
never left in a state where they are not being directed what to do until they
have achieved their goal. The addition of the abortion clause described above
would remove this implicit assumption. In doing so it would allow user errors to
be detected that arose due to the user being given no guidance over what to do
next. This would occur, for example, when the action required is device speci�c
and so not one of the user's communication goals.

The above changes to the user model would also allow the detection of some
errors related to lack of feedback. For instance, if the device entered an extended
compute phase without giving the user feedback that they should wait, the task-
completion theorem would be unprovable: seeing no appropriate action to take,
the user could abort the interaction. A solution would be to add an extra light to
the device indicating the user should wait. This is essentially just a further light-
action pair. This latter example, demonstrates an advantage of the approach of
modelling users rather than explicitly modelling errors: errors not considered
when specifying the user model may be detectable.

Ensuring that a single class of user error has been avoided may be straight-
forward. Ensuring that a whole range of such, often con
icting, requirements are
met for a real, complex system is a much greater challenge without tool support.
Thus the integration of formal task-completion veri�cation tools with system
veri�cation tools is of great importance.

Acknowledgements This work is funded by EPSRC grants GR/M45221 and
GR/L00391. The work was done in part whilst the �rst author was visiting
Cambridge University Computer Laboratory.

References

1. A. Blandford. Puma footprints: linking theory and craftskill in usability evaluation.
Submitted to HCI'2000.



2. R.J. Butterworth and A.E. Blandford. The principle of rationality and models
of highly interactive systems. In M. A. Sasse and C. Johnson, editors, Human-
Computer Interaction INTERACT'99. Amsterdam: IOS Press, 1999.

3. R.J. Butterworth, A.E. Blandford, and D.J. Duke. Using formal models to explore
display based usability issues. Journal of Visual Languages and Computing, 10:455{
479, 1999.

4. M. Byrne and S. Bovair. A working memory model of a common procedural error.
Cognitive Science, 21(1):31{61, 1997.

5. J.C. Campos and M.D. Harrison. Formally verifying interactive systems: a review.
In M. D. Harrison and J. C. Torres, editors, Design, Speci�cation and Veri�cation

of Interactive Systems '97, pages 109{124. Wien : Springer, 1997.
6. D.J. Duke, P.J. Barnard, D.A. Duce, and J. May. Syndetic modelling. Human-

Computer Interaction, 13(4):337{394, 1998.
7. M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL: a theorem proving

environment for higher order logic. Cambridge University Press, 1993.
8. W-O Lee. The e�ects of skills development and feedback on action slips. In Monk,

Diaper, and Harrison, editors, People and Computers VII. Cambridge University
Press, 1992.

9. T.G. Moher and V. Dirda. Revising mental models to accommodate expectation
failures in human-computer dialogues. In Design, Speci�cation and Veri�cation of

Interactive Systems '95, pages 76{92. Wien : Springer, 1995.
10. A. Newell. Uni�ed Theories of Cognition. Harvard University Press, 1990.
11. F. Paterno' and A. Leonardi. A semantics-based approach for the design and

implementation of interaction objects. Computer Graphics Forum, 13(3):195{204,
1994.

12. F. Paterno' and M. Mezzanotte. Formal analysis of user and system interactions
in the CERD case study. In Proceedings of EHCI'95: IFIP Working Conference on

Engineering for Human-Computer Interaction, pages 213{226. Chapman and Hall
Publisher, 1995.

13. J. Reason. Human Error. Cambridge University Press, 1990.
14. J. Rieman, M. Byrne, and P.G. Polson. Goal formation and the unselected window

problem. In Proc. CHI94 Basic Research Symposium., 1994.
15. H. Thimbleby. User Interface Design. ACM Press, 1990.
16. R.M. Young. The unselected window scenario: analysis based on the SOAR cog-

nitive architecture. In Proc. CHI94 Basic Research Symposium., 1994.


