
HOL-MDG : A Hybrid Tool for Formal Veri�cation
S. Kort1, S. Tahar1, P. Curzon2 and X. Song3

1 ECE Dept., Concordia University, Canada
2School of Computing Science, Middlesex University, UK

3 IRO Dept., Universit�e de Montreal, Canada

ABSTRACT We describe a hardware veri�cation tool called
HOL-MDG. This tool combines the HOL theorem prover with an
automated veri�cation package, namely MDG. The aim of such a
combination is to bring together the strength of theorem proving and
the automation of MDG. Moreover, the presented hybrid tool o�ers
facilities for a hierarchical veri�cation approach.

I. Introduction

Formal veri�cation methods fall in one of three cate-
gories: theorem proving, decision diagrams based methods
and symbolic simulation. In this work, we focus on combin-
ing the �rst two categories. In theorem proving methods,
the design's behavior as well as its structure are described
in some formal logic. Then the design structure is proved
to conform to the expected behavior using a set of ax-
ioms and inference rules. Theorem provers generally pro-
vide very powerful reasoning and abstraction mechanisms.
This makes it possible to deal with complex designs. Nev-
ertheless, theorem provers require a deep understanding of
their underlying logic. They also involve a lot of interac-
tions with the user. Decision diagrams based tools include
equivalence and model checkers. These tools are easy to
use since the veri�cation is performed automatically. How-
ever, they fail to verify complex designs due to the state
explosion problem. Therefore, combining both categories
should enable verifying complex designs with much less in-
teraction with the veri�cation tool. Another way to cope
with complex designs is to apply a hierarchical veri�cation
approach. In such an approach, the design consists of a
block hierarchy. Individual blocks are veri�ed separately,
then their correctness results are combined to verify the
next level blocks.

II. The Hybrid Tool

We describe in this presentation a hybrid tool combining
the HOL theorem prover [5] and a hardware veri�cation
package, namely MDG [2]. The integration of both tools
was performed using the PROSPER toolkit [4].
Many integration methodologies have been investigated

recently. In [1], a tool combining the ThmTac prover
and the VOSS symbolic trajectory evaluation system has
been presented. In [8], Schneider and Ho�mann have used
PROSPER to link the SMV model checker with HOL. Hurd
[6], have integrated the Gandalf prover and HOL using
PROSPER.
Our hybrid tool is provided with a hierarchical struc-

tural speci�cation of the design to be veri�ed as well as
a behavioral speci�cation for every block. The structural
speci�cation is expressed using an embedding of the MDG
built-in components in HOL. The behavioral speci�cations
are expressed using an embedding of MDG tables in HOL
[3]. MDG tables are a generalization of truth tables. The

veri�cation follows the HOL goal-oriented proof style [5].
Figure 1 shows a typical session with the hybrid tool. Ini-
tially, a goal stating that the design's structural speci�ca-
tion implies its behavioral speci�cation is set. This goal
could be resolved in three di�erent ways. The �rst way
is to invoke the MDG equivalence checker using either
MDG SEQ TAC or MDG COMB TAC tactics[7]. In case
of success, a theorem stating the correctness of the design
is generated. Though, the equivalence checking may fail
because of state explosion or because the structural spec-
i�cation is not equivalent to the behavioral speci�cation
(i.e. only the implication holds). As a second alternative,
the user may apply hierarchical veri�cation by invoking
the HIER VERIF TAC tactic. This tactic generates a cor-
rectness sub-goal for every sub-block. It also generates a
proof for the whole design assuming the correctness of its
sub-blocks. The third veri�cation alternative is to perform
a conventional HOL proof. Figure 2 shows the structure
of the hybrid tool. The tool includes a parser (Parsing),
a module for 
attening hierarchical speci�cations (Extrac-
tion), a module to support hierarchical veri�cation (Hier-
archicalVeri�cationSupport), a module to generate all the
�les needed by MDG and a module to manage the interac-
tion between HOL and MDG (MDGInteraction). The tool
was implemented in SML. The Parsing module was gen-
erated automatically from a grammar speci�cation. The
MDGInteraction module is based on the PROSPER plug-
in interface.

III. Conclusions and Future Directions

We have described a hybrid tool combining the HOL the-
orem prover and the MDG system. The tool is intended
to deliver the veri�cation engineer from the cumbersome
of theorem proving yet allowing him/her to deal with com-
plex designs. Furthermore, the tool o�ers some facilities
for a hierarchical veri�cation approach. Indeed, it gener-
ates automatically the correctness sub-goals for lower-level
sub-blocks as well as a correctness proof for the upper-level
blocks assuming the correctness of their constituants. We
are planning to use the tool in the veri�cation of real world
designs to assess the e�ectiveness of the suggested method-
ology. The tool can also be extended with a temporal prop-
erty checker. Ongoing research focuses on interfacing the
tool with VHDL in the aim of integrating the hybrid veri-
�cation methodology in the design 
ow.

References

[1] M.D. Aagaard, R.B. Jones, and C-J.H. Seger. Lifted-FL: A Prag-
matic Implementation of Combined Model Checking and Theo-
rem Proving. In TPHOL, LNCS 1690, France, 1999.

[2] E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, and
Z. Zhou. Automated Veri�cation with Abstract State Machines



Using Multiway Decision Graphs. In Formal Hardware Veri�ca-
tion: Methods and Systems in Comparision, LNCS 1287. Springer
Verlag, 1997.

[3] P. Curzon, S. Tahar, and O. Ait-Mohamed. Veri�cation of the
MDG Components Library in HOL. In Theorem Proving in
Higher Order Logics: Emerging Trends, Canberra, Australia,
1998.

[4] L. A. Dennis, G. Collins, M. Norrish, R. Boulton, K. Slind,
G. Robinson, M. Gordon, and T. Melham. The PROSPER
Toolkit. In Proceedings of the Sixth International Conference
on Tools and Algorithms for the Construction and Analysis of
Systems, LNCS, Berlin, Germany, March/April 2000. Springer
Verlag.

[5] M.J.C. Gordon and T.F. Melham. Introduction to HOL: A The-
orem Proving Environment for Higher-Order Logic. Cambridge
University Press, Cambridge, U.K., 1993.

[6] J. Hurd. Integrating Gandalf and HOL. In TPHOL, LNCS 1690,
Nice, France, 1999.

[7] V. K. Pisini, S. Tahar, P. Curzon, O. Ait-Mohamed, and X. Song.
Formal Hardware Veri�cation by Integrating HOL and MDG.
In Proc. ACM 10th Great Lakes Symposium on VLSI (GLS-
VLSI'00), LNCS, pages 23{28, Chicago, USA, March 2000. ACM.

[8] K. Schneider and D.W. Ho�mann. A HOL Conversion for Trans-
lating Linear Time Temporal Logic to !-Automata. In TPHOL,
LNCS 1690, Nice, France, 1999.

goal

State Explosion

HOL proof

Analyze MDG

Counterexample

Error

detected

Correct design

yes

no

yes

no

Apply MDG_SEQ_TAC

or MDG_COMB_TAC

MDG verification

yes

Make correctness

theorem

succeeded

no

block

Hierarchicalno

Apply MDG_HIER_VERIF

yes

Fig. 1. The Veri�cation Methodology.

TypesParser

SpecParser

ImpParser

GoalParser

BlockExtractor

Flattner

SubgoalGenerator

CorrectnessThmGenerator

AlgGenerator OrdGenerator InvGenerator
DescGenerator

MDGInteraction

Goal

SpecFile

ImpFile

BlockSpecId, BlockImpId

Specification

Implementation

BlockSpec

BlockImp

FlatBlockImp

Types

AlgFile

OrdFile

SpecDescFile

CorrectnessThm

CorrectnessThm

Parsing

HierarchicalVerificationSupport

Code

Generation

Extraction

MDG_SEQ_TAC

MDGInteractionMDG_COMB_TAC

InvFile

ImpDescFile

Fig. 2. The Hybrid Tool's Structure.


