237

Embedding and Verification of an MDG-HDL Translator in
HOL

Haiyan Xiong!, Paul Curzon!, Sofiene Tahar?, and Ann Blandford!

! School of Computing Science, Middlesex University, London, UK
{h.xiong, p.curzon, a.blandford}@mdx.ac.uk
2 ECE Department, Concordia University, Montreal, Canada.
tahar@ece.concordia.ca

Abstract. We investigate the verification of a translation phase of the Multiway Decision Graphs
(MDG) verification system using the Higher Order Logic (HOL) theorem prover. In this paper, we
deeply embed the semantics of a subset of the MDG-HDL language and its Table subset into HOL.
We define a set of functions which translate this subset MDG-HDL language to its Table subset.
A correctness theorem for this translator, which quantifies over its syntactic structure, has been
proved. This theorem states that the semantics of the MDG-HDL program is equivalent to the
semantics of its Table subset.

1 Introduction

The application of BDD (Binary Decision Diagram) [3] based tools in digital circuit synthesis and verifi-
cation has been a breakthrough for the use of formal verification by industry. However, many questions
remain about whether they work effectively or not. Ideally verification systems should themselves be
formally verified using a verification system with a different architecture. Based on this consideration,
we investigate the verification of aspects of the Multiway Decision Graphs (MDG) verification system [6]
using the Higher Order Logic (HOL) theorem prover [9].

A variety of technologies have been used to ensure the correctness of verification systems. In a sense,
which method is appropriate depends on the architecture of the verification system. The Edinburgh LCF
(Logic of Computable Functions) [8] family of theorem provers (including HOL) uses an abstract data
type (Thm) to represent theorems. The type checker ensures the theorems can be constructed only by
applying a small number of primitive inference rules. There is no method to construct a theorem except
by carrying out a proof based on the primitive inference rules and axioms. It effectively increases the
reliability of the system. In this way if we guarantee the primitive inference rules correct then invalid
theorems can be avoided. Moreover, the LCF approach permits proofs to be recorded. Proofs can be
stored in files and be represented by lists of inferences. It allows us to make use of the availability of the
sequence of inferences and to check the consistency of each inference automatically.

The architecture of a symbolic state enumeration based verification system is different. In this kind
of system, higher level languages such as hardware description languages are used to describe the speci-
fications and implementations. The specifications and implementations are then translated into decision
diagrams. A series of algorithms in the system is used to efficiently and automatically deal with the
decision diagrams and obtain the correctness results. The following two aspects of the system need to
be verified:

1. the correctness of translation from the higher level languages into decision diagrams, and
2. the correctness of algorithms that are used to manipulate the decision diagrams.

In this paper, we prove the correctness of the translation phase of the MDG system. We need to verify
that the semantics of a program is preserved in the semantics of its translated form. In this sense, it is a
similar problem to that of compiler verification [4]. The contribution of this paper is to demonstrate how

238

compiler correctness work can be applied to a hardware verification system. In doing such a verification,
we do more than just prove the correctness of the system, but also build a solid foundation to combine
the HOL and MDG systems in a trusted way. Because we use a deep embedding semantics, the compiler
correctness theorem can be combined with theorems converting MDG results into a form that can be
easily reasoned about in HOL [16]. We thus obtain theorems that convert low level results actually
proved in the core of the hardware verification systems (e.g., about decision graphs) to results about
circuits in high level languages in a form that can be reasoned about in a theorem prover. We are thus
able to import the MDG results into HOL based on a trusted MDG system.

The structure of this paper is as follows. In Section 2, we review related work. In Section 3, we
overview the MDG verification system. In Section 4, we give the formal syntax and semantics of the
subset of the MDG-HDL language we use. Here a set of functions for translating this subset language
to their Table equivalent is given. Furthermore, the correctness theorem we have proved about the
translation, which quantifies over its syntactic structure, is described. Finally, our conclusions and ideas
for further work are presented in Section 5.

2 Related Work

There have been several previous projects concerned with the validation of results from verification
systems.

Wong [15] developed a proof checker to examine the correctness of proof files-lists of inferences
generated by the HOL system. The proof checker first took a proof file as an argument and then checked
whether the proofs were correct or not. A log file was then produced that contained the hypotheses,
lemmas used by the proof and the resulting theorem of the proof. Von Wright [13] formalised the
specification of a proof checker in HOL. He also demonstrated how the HOL system could be used to
formally verify the specification of a proof checker for higher-order logic proofs [14]. Another method of
using refinement to verify the proof checker had been suggested by von Wright [12]. The proof checker
also provided an independent means of ensuring the validity and consistency of proofs. Some other
theorem provers such as Nqthm, Nuprl and Coq already store proof trees upon which a proof checker
could work in the system. Boyer and Dowek [2] specified and implemented a proof checker in Nqthm
logic.

Homeier and Martin [10] used the HOL system to verify a verification system called a verification
condition generator (VCG) for a simple programming language. The proof of correctness of the VCG can
be considered as an example of a compiler correctness problem, since the VCG translated the annotated
programs to the lists of verification conditions. The semantics of the annotated programs and verification
conditions were formalised in HOL. The correctness theorems showed that the truth of the verification
conditions implied the truth of the annotated programs.

Chou and Peled [5] used the HOL system to verify a non-trivial algorithm—implementing a Partial-
Order reduction technique, used in the protocol verification tool SPIN, which cuts down the state-space
exploration performed by model checkers. They built up the groundwork of a formal infrastructure that
included the mathematical support for proving various automatic verification algorithms. Their results
not only gave more confidence in the algorithm but also demonstrated formal verification is a practical
and useful tool.

In this paper, we verify the translation phase of the MDG system by using HOL. We need to verify
that the compiler preserves the semantics of a program through the translation between languages
as suggested for Homeier and Martin’s work [10]. They used compiler verification methods to verify
a software verification system. We use a similar method to verify a hardware verification system—the
MDG system using HOL. In our study, we deeply embed a subset of the MDG-HDL language and its
Table subset in HOL and verify the correctness of the translation between these two languages. Curzon
et al. [7] did some basic work which verified the MDG components library in HOL. In their work, the
semantics of the TABLE was first formalised in HOL. The TABLE construct is one of the basic hardware
components used to define both behavioral specifications and structural specifications. Other components

239

such as logic gates can be defined in terms of it. They verified the Table implementations of each of the
hardware components that were implemented in terms of tables in the MDG system. They used a shallow
embedding semantics [1]-only the semantics is represented in the HOL logic not the syntax. Whilst this
can be used to prove that each individual component implementation meets its specification, it cannot
be used to give a general correctness theorem about the whole MDG-HDL language. We verify that the
translation process is correct based on a deep embedding semantics [1] (i.e., we represent the abstract
syntax of HDL programs by terms then define within the logic semantic functions that assign meanings
to the programs). This allows us to prove a theorem that quantifies over the syntactic structure of the
MDG-HDL language. That is we can prove “for all MDG-HDL programs, the semantics of a program is
preserved in the semantics of its translated form”.

3 The MDG System

MDG-HDL [17] is a Prolog-style hardware description language, which allows the use of abstract variables
for representing data signals. In MDG, a circuit description file declares signals and their sort assign-
ment, components network, outputs, initial values for sequential verification and the mapping between
state variables and next state variables. In the components network, there is a large set of predefined
components such as logic gates, flip-flops, registers, constants, etc. Among the predefined components
there is a special component called a table which is used to describe a functional block in the implemen-
tation and specification. The table constructor is similar to a truth table but allows first-order terms in
rows. It also allows the description of high-level constructs as ITE (If-Then-Else) formulas and CASE
formulas.

Most of the components have their own tabular code and are compiled into their tabular code first.
Tabular code can then be compiled into an internal MDG decision graph. Some components such as
registers are implemented directly in terms of MDGs. However, in theory these components also could
be implemented as tables. In this paper, we defined corresponding Tables for these components (register,
fork, etc.). Since we are considering only a boolean subset of the language here, the Table representation
of these components can be defined in terms of the corresponding input values (true or false). These
definitions can be implemented in the MDG package. Non-boolean sorts could be handled by introducing
an additional variable into the table. We assume the MDG-HDL program is firstly translated into a Table
program and then the Table program is translated into MDG. In this situation, the MDG system could
be specified as indicated in Figure 1:

MDH-HDL —— = TABLE ———= MDGs

Fig. 1. Overview of the MDG Translation Phases

Adopting this approach makes the translation phase more amenable to verification. We are not ver-
ifying the actual MDG implementation. Rather our formalisation of the translator is a specification of
it. Once combined with a translator from Tables to MDGs, it would be specifying the output required
from the implementation. This would be used as the basis for verifying such an implementation. Ef-
fectively we split the problem of verifying the translator into the two problems of verifying that the
implementation meets a functional specification, and that the functional specification then meets the
requirement of preserving semantics. We are concerned with the latter step here. This split between
implementation correctness and specification correctness was advocated by Chirica and Martin [4] with
respect to compiler correctness.

240

4 MDG Translator Verification

The intention of our research is to explore a way of combining the MDG system and the HOL system
in a trusted way as shown in Figure 2. This work can be divided into two steps. We first must verify
the correctness of the MDG system using the HOL system (1) based on the semantics of the MDG
input language. This part of the work consists of two phases—(1a) verification of the translator and (1b)
verification of the algorithms. (2) We then must verify the HOL theorem generator which formalises
the MDG verification results of different MDG applications and then converts them into the traditional
HOL hardware verification theorems. All of these are based on the deep embedding of the semantics. By
combining the separate correctness theorems from these two steps, we obtain a result that justifies the
use of “theorems” imported from MDG [17].

(MDG-HDL)
la.

w ~ 7 7 7] Verify the translator
[MDG decision graphs)

MDG verif. algorithms)— — — —
[Results (Yes/No)]

HOL
theorem generatol

[Traditional HOL theoren}

Fig. 2. Combining MDG and HOL in a Trusted Way

1b.
Verify the algorithms

2.
Verify the generator

During this study, we considered a subset of the MDG-HDL language that did not contain two MDG
predefined components (Multiplexer and Drivers) and nor do we consider the Transform construct used
to apply functions. These components were omitted from our initial subset as they have non-boolean
inputs or outputs. We also assume that the inputs and outputs of each component had Boolean sorts. We
keep the subset simple here since we want to explore the feasibility of this method. However, we could
extend our formalisation to accommodate different types as explained in [7]. As a result, the syntax of
this language will be more complex. To distinguish between our subset of the MDG-HDL language and
the Table subset, in the rest of this paper we will refer to the Table subset as the Table language.

In this paper, we concentrate on the verification of the translation phase of the MDG system (step
(1a) from Figure 2) based on the semantics of the MDG input language using the HOL theorem prover.
Step 2 is described elsewhere [16]. We first define the syntax and the semantics of the subset MDG-HDL
and Table language. We then define a set of functions, which translate the program from the MDG-HDL
language to the Table languages. For each component in MDG-HDL, a compilation operator is defined as
a function, which returns its Table code. A translation function TransGT is applied to each MDG-HDL
program p so that the corresponding Table code is established. In other words,

241

MDG-HDL TABLE
Syntax Syntax
(P) TransGT (TransGT p)
MDG-HDL Table
Semantics Semanti
MDG-HDL TABLE
Semantics (p) Semantics (TransGT p)

Fig. 3. Compilation Correctness

F V p. TransGT p = CorrespondingTablecode

The standard approach to proving a translator between two languages, is in terms of the semantics
of the languages, as shown in Figure 3. Essentially the translation should preserve the semantics of
the source language, which has the traditional form of compiler specification correctness used in the
verification of a compiler [4]. The analogous method can be used to specify and verify the MDG system.
For the translation to Table the correctness theorem has the form

FV p. Semantics (p) = Semantics (TransGT p)

4.1 MDG-HDL Syntax

In an MDG-HDL program, there is much information that is used in the MDG algorithm. When we

write the syntax and semantics of programs, we can ignore this part of the information. Following the

approach taken in other compiler correctness work, we abstract the useful information from the MDG-

HDL program and work with an abstract syntax rather than the concrete syntax of the language. It

would be straightforward to write a parser that translates the MDG-HDL into the form that we want.
For example, the MDG-HDL file of three NOT gates connected in series is given below.

signal (ip,bool).

signal (op,bool).

signal (u_B,bool).

signal (v_B,bool).

component (u_comp_B,not (input (ip) ,output(u-B))).
component (v_comp_B,not (input (u_B) ,output (v_B))) .
component (op_comp_B,not (input (v_B) ,output (op))) .
outputs ([opl) .

The abstract syntax of this file is

INTERNAL v_B (INTERNAL u_B (SEQ (NOT ip v.B
(SEQ (NOT v.B uB) (NOT uB op)))))

where INTERNAL, SEQ and NOT are syntactic constructors of the subset of the MDG-HDL language.
More details will be given later.

The full abstract syntax of the subset of the MDG-HDL language is given in Figure 4. The MDG-
HDL commands consist of predefined MDG-HDL components, an operation to set the initial value

242

of a variable, a next state variable command, a composition operation and a localisation operation.
The syntax of this language introduces a specially-defined recursive data type mdg_hdl to provide an
explicit representation in logic of the MDG-HDL commands. We define a recursive type mdg_hdl with 35
constructors. The first 28 constructors are gates, flip-flops and registers. For example, the circuit term
‘NOT ip op’ represents a NOT gate with one input labelled ip and one output labelled op.

The constructor CONST1 declares a constant in a circuit. The constructor FORK represents the e-
quality checker. The constructor INIT represents the initial value of a state variable. ‘INIT(v,T)’ declares
that the initial value of the variable v is true. The SNXT constructor maps between a state variable
and a next state variable. ‘SNXT v nv’ states that nv is the next state variable of the state variable v.
The SEQ constructor represents the composition operation. If ¢ and ¢2 are two values of type mdg hdl,
then the term ‘SEQ cI ¢2 represents the composition of the two terms represented by c¢1 and c¢2. The
INTERNAL constructor represents the localisation operation. If ¢ is a term representing a circuit and
x is a string (internal wire), then the circuit ‘INTERNAL z ¢ represents the circuit obtained by hiding
the wire labelled z in the circuit represented by c. -

The constructor TABLESYN represents the syntax of the MDG table component which has five
arguments. The first argument is a list of inputs. The second argument is the single output. Its output
could be either a current state variable or a next state variable. We define a new HOL type out type to
represent these options:

out_type = NOWV of stringl
NEXTV of string

The third argument to a table is a list of table rows. Each row is a list itself, giving one allocation of
values to the inputs. The entries in the list can be either actual values or a special don’t care marker.
This is realised by defining a new type (as given in [7]).

Table_Val = TABLE_VAL of « | DON’T_CARE

TableVal_to_Val (TABLE_VAL (v:a)) = v

The fourth argument is a list of output values thaf correspond to the values in input rows. The final
argument is the default value, taken by the output if the input values do not match any row. The default
value could be an arbitrary value, a current state variable or a next state variable. Again we define a
new HOL type default_type in terms of the type out type.

default_type = DENORMAL of num->booll|
DEOUT of out_typel

For example, the syntax of a NOT gate table is given below:

TABLESYN [ip] (NOWV op) [[TABLE VAL F];
[TABLE VAL T]]
[TSIG;FSIG] (DENORMAL ARB)

where “ARB” is the predefined HOL term representing an arbitrary value of a given type. The syntax
of the MDG-HDL program can be any mdg_hdl term.

program = PROG of mdg_hdl

4.2 Table Syntax

The MDG Table language is a subset of the MDG-HDL language. It only consists of five of the con-
structors that we mention above— INIT, SNXT, TABLESYN, SEQ and INTERNAL. We do not define
a new type for the MDG Table language. However, when we translate the MDG-HDL program into the
MDG Table program, the Table program only consists of those five constructors. For example, the Table
code of the three NOT gates is

243

out_type = NOWV of string |
NEXTV of string

default_type = DENORMAL of num->bool |
DEOUT of out_type |
DECONST of string

Table_Val = TABLE_VAL of « | DON’T CARE

mdg_hdl = NOT of string =>string |
AND of string=>string=>string |
OR of string=>string=>string |
NAND of string=>string=>string |
XOR of string=>string=>string |
NOR of string=>string=>string |
AND3 of string=>string=>string=>string |
OR3 of string=>string=>string=>string |
NAND3 of string=>string=>string=>string |
NOR3 of string=>string=>string=>string |
AND4 of string=>string=>string=>string=>string |
OR4 of string=>string=>string=>string=>string |
NAND4 of string=>string=>string=>string=>string |
NOR4 of string=>string=>string=>string=>string |
AND5 of string=>string=>string=>string=>string=>string |
OR5 of string=>string=>string=>string=>string=>string |
NAND5 of string=>string=>string=>string=>string=>string |
NOR5 of string=>string=>string=>string=>string=>string |
AND6 of string=>string=>string=>string=>string=>string=>string |
OR6 of string=>string=>string=>string=>string=>string=>string |
NAND6 of string=>string=>string=>string=>string=>string=>string |
NOR6 of string=>string=>string=>string=>string=>string=>string |
JKFF of string=>string=>string |
RSFF of string=>string=>string |
JKFFE of string=>string=>string=>string |
AD of string=>string=>string=>string=>string |
REGCON of string=>string=>string |
REG of string=>string |
FORK of string=>string |
CONST1 of bool=>string |
INIT of (string#bool) |
SNXT of string=>string | _
TABLESYN of (string list)=>out_type=>((bool Table_Val list) list)
=>((num->bool) list)=>default_type |
SEQ of mdg hdl=>mdg hdl |
INTERNAL of string => mdg hdl

program = PROG of mdg hdl

Fig. 4. The Syntax of the MDG-HDL Program

244

INTERNAL v B (INTERNAL u B
SEQ (TABLESYN [ip] (NOWV uB) [[TABLE VAL F];
[TABLE_VAL TI11
[TSIG;FSIG] (DENORMAL ARB)
SEQ (TABLESYN [u_B] (NOWV v_B) [[TABLE_VAL F];
[TABLE VAL T]1]
[TSIG;FSIG] (DENORMAL ARB)
TABLESYN [v_B] (NOWV op) [[TABLE_VAL F];
[TABLE VAL T]1]
[TSIG;FSIG] (DENORMAL ARB))))

4.3 The Semantics of the MDG-HDL Program

We have defined the syntax of the MDG-HDL language. In this section, we will show how to define the
semantics of an MDG-HDL program. First of all, the semantics of the MDG-HDL program is in terms of
environment [11]. An environment is a function that has type :string —4. This function maps a variable
name (modeled by strings) to the value of that variable. In our language, the environment s is for state
variables and signals. Its value is a history function and has a type :num—bool that represents functions
from time (natural number) to the value at that time.

We define a semantic function SemMdghdl for MDG-HDL programs. The first 28 components are
mainly logic gates and flip-flops. Traditional hardware semantics can be given. The semantics of a
component is then a relation between the input values and the output values. For example, the NOT
gate can be expressed by

SEM_NOT ip op (s:string->num->bool) =V t. (s op t) = ~(s ip t)
SemMdghdl (NOT ip op) s = SEM NOT ip op s

The semantics of CONSTI represents a constant in a circuit which takes a constant const as its value.
The output value does not change at any time.

SEM_CONST const op (s:string->num->bool) =
(V t. s op t = const)

The semantics of FORK represents the equality of two state variables. On each cycle, the output’s value
‘s op’ and input’s value ‘s ip’ are identical at that time.

SEM_FORK ip op (s:string->num->bool) =V t. ((s op) t = (s ip) t)

The constructor INIT has two arguments. They are represented as a pair whose first component is a
state variable and whose second component is a Boolean value. The semantics of INIT assigns an initial
value (at time zero) to the value of the variable.

SEM_INIT (y:string#bool) (s:string->num->bool) =
(s (FST y)) O = SND y

The semantics of SNXT represents a relation between a state variable y and a next state variable ny. It
declares that the next state variable of y is ny. In other words, the value of the variable y at the time ¢
is equal to the value of the variable ny at the following time.

SEM_SNXT ny y (s:string->num->bool) = (V t. s ny (t+l1) = s y t)

Sequencing is defined inductively in terms of the component commands. The semantics of SEQ is the
conjunction of the corresponding semantics of each sub-command.

SemMdghdl (SEQ cl c2) s =
((SemMdghdl c1 s) A (SemMdghdl c2 s))

245

The semantics of INTERNAL uses existential quantification to hide the local variable from the environ-
ment. It adds another entry to environment s. s is still the environment for the external wires. However,
the extra entry for the new internal wire is first checked. This effectively hides the internal wires in
circuit term ec.

SemMdghdl (INTERNAL x c) s =
3 z. SemMdghdl c¢ (Ay.(if (y = x) then z else s y))

The semantics of TABLESYN follows the semantics of the table that was given by Curzon et al [7]. They
firstly defined a predicate Table_match to check if the input values match the table values.

Tablematch inputs [1 t =T A
Table match inputs (CONS v vs) t =
(((HD (inputs) t) = TableVal_to_Val (v: « Table Val)) V
(v = DON’T_CARE)) A
(Tablematch (TL inputs) vs t))

The function table checks if there is a match on each row. If there is then the output has the corresponding
value. Otherwise, the output equals the default value.

(table ip (op:num ->B) ([]: «a Table_Val list) list) V_out default t =
(op t = default t)) A
(table ip op (CONS v vs) V_out default t =
((Tablematch ip v t) =>
(op t = (HD V_out) t) |
(table ip op vs (TL V_out) default t)))

The semantics of the table is

TABLE ip (op:num ->8) (V_outs:(« Table_Val list) list) V_out default =
V t. table ip op V_outs V out default t

The semantics of TABLESYN is defined in terms of the function TABLE

SemMdghdl (TABLESYN ip (op:out_type) y3 y4 y5)) s =
TABLE (MAP s ip) (SEM_OUTVAR op s) y3 y4 (SEM_DEFAULTVAR y5 s)

For example, the semantics of the Table code of the NOT gate is

SemMdghdl (TABLESYN [ip] (NOWV op) [[TABLE.VAL F];[TABLE_VAL TI]
[TSIG;FSIG] (DENORMAL ARB)) s =
TABLE (MAP s [ip]) (SEM_OUTVAR (NOWV op) s)
[[TABLE_VAL F]; [TABLE_VAL T1]
[TSIG;FSIG] (SEM_DEFAULTVAR (DENORMAL ARB) s)

Finally, the semantics of a whole MDG-HDL program is expressed as a function SemMdghdl inside the
logic:

(SemMdghdl (NOT ip op) s = SEM.NOT ip op s) A
(SemMdghdl (FORK ip op) s = SEM_FORK ip op s) A
(SemMdghdl (TABLESYN ip op y3 y4 y5) s =
TABLE (MAP s ip) (SEM_OUTVAR op s) y3 y4
(SEM_DEFAULTVAR y5 s)) A

(SemMdghdl (SEQ codel code2) s =

((SemMdghdl codel s) A (SemMdghdl code2 s))) A
(SemMdghdl (INTERNAL x code) s =

3 z. SemMdghdl code (Ay. (if (y = x) then z else s y)))

246

4.4 Compiling MDG-HDL into the Table Language

The first step in specifying a compiler for MDG-HDL is to define a set of functions for compiling the
MDG-HDL program into the Table language. For each component in MDG-HDL, a compilation operator
is defined as a set of functions that return its table code. For example, a NOT gate is compiled into

TRANS_NOT (ip:string) op =
TABLESYN [ip] (NOWV op) [[TABLE VAL F];
[TABLE_VAL T1]
[TSIG;FSIG] (DENORMAL ARB)

For the MDG-HDL program, we define a function TransGT inductively over the syntactic structure
and this function translates the MDG-HDL program into the equivalent Table language.

(TransGT (NOT ip op) = TRANS_NOT ip op) A
(TransGT (SEQ (codel:mdg-hdl) code2) =

SEQ (TransGT codel) (TransGT code2)) A
(TransGT (INTERNAL x code) = INTERNAL x (TransGT code))

For example, the following theorem obtained by rewriting with the definitions illustrates the trans-
lation of the MDG-HDL program of three NOT gates discussed above

F TransGT (INTERNAL v_B (INTERNAL u_B
(SEQ (NOT ip v_B (SEQ (NOT v.B uB) (NOT uB op)))) =
INTERNAL v_B (INTERNAL u_B B
SEQ (TABLESYN [ip] (NOWV u.B) [[TABLE_VAL F1;
[TABLE_VAL TI1]
[TSIG;FSIG] (DENORMAL ARB)
SEQ (TABLESYN [u.B] (NOWV v_B) [[TABLE VAL F];
[TABLE VAL T]]
[TSIG;FSIG] (DENORMAL ARB)
TABLESYN [v_B] (NOWV op) [[TABLE VAL F];
[TABLE VAL T1]
[TSIG;FSIG] (DENORMAL ARB))))

4.5 Compiler Correctness Theorem

To verify the correctness of a translator as we suggested in the beginning of this section, we have to
obtain a theorem that quantifies over its syntactic structure stating that the semantics of the MDG-
HDL program is equivalent to the semantics of the Table program used in MDG implementation. For
our subset language, we have proved a theorem by using HOL:

FV p. SemMdghdl p s = SemMdghdl (TransGT p) s

where p represents any MDG-HDL program and TransGT is the function defined earlier which trans-
lates the MDG-HDL program to its Table code. s is the environment disscussed earlier for variables,
respectively. The correctness theorem is proved by structural induction on the syntax domain of the
MDG-HDL program.

5 Conclusions and Further work

In this paper, we prove the correctness of the translation phase of a decision diagram system (the MDG
system) using a theorem proving system (the HOL system). We have defined the syntax of a subset of
the MDG-HDL language and the Table language in higher-order logic. The semantic function is defined

247

by structural induction over their syntactic structure. A set of functions that translate the syntax of an
MDG-HDL program to the syntax of the Table language has been defined. The correctness theorem,
which quantifies over its syntactic structure, has been verified. This theorem states that the semantics of
the original MDG-HDL program is equivalent to the semantics of the Table program used in the MDG
implementation.

Our motivation for deep embedding the MDG-HDL and Table languages into HOL is not only to verify
aspects of correctness of the MDG system, but also to make use of the semantics to formally import
the MDG results into HOL based on a trusted MDG system (Figure 2). We have formally imported
the correctness results produced by four different hardware verification applications into HOL [16]. We
have in each case proved a theorem that translates them into a form usable in a traditional HOL
hardware verification, i.e., that the structural specification implements the behavioral specification. The
applications considered include combinational verification, sequential verification and invariant checking.
Therefore, we can obtain theorems that justify the conversion of low level results proved in the MDG
system to results about circuits in high level languages in a form that can be reasoned about in the HOL
system.

The work presented in this paper is part of a larger project to verify a combined HOL-MDG system.
We need to prove that the translation from the tabular code to MDG decision graphs is correct. We also
need to prove that the MDG algorithms are correct. We need to extend the subset considered to deal
with, for example, sort declaration for the verified system to be applicable to real designs.

Acknowledgments

We are grateful to Dr. Richard Boulton at University of Glasgow and Dr. Skander Kort at Concordia
University for their help. This work is funded by EPSRC grant GR/M45221, and a studentship from the
School of Computing Science, Middlesex University. Travel funding was provided by the British Council,
Canada.

References

1. R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and J. Van-Tassel. Experience with embedding
hardware description language in HOL. In T. F. Melham and R. T. Boute, editors, Theorem Provers in
Clircuit Design, pages 129-156. North-Holland, 1992.

2. R. S. Boyer and G. Dowek. Towards checking proof checkers. In Workshop on Types for Proofs and Programs
(Type’93), 1993.

3. R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions in Computers,
35(8):677-691, August 1986.

4. L. M. Chirica and D. F. Martin. Toward compiler implementation correctness proofs. ACM Transactions
on Programming Languages and Systems, 8(2):185-214, April 1986.

5. C. T. Chou and D. Peled. Formal verification of a partial-order reduction technique for model checking. In
T. Margaria and B. Steffen, editors, Tools and Algorithms for the Construction and Analysis of Systems,
number 1055 in Lecture Notes in Computer Science, pages 241-257, 1996.

6. F. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny. Multiway decision graphs for automated hardware
verification. Formal Methods in System Design, 10(1):7-46, 1997.

7. P. Curzon, S. Tahar, and O. Ait-Mohamed. Verification of the MDG components library in HOL. In Jim
Grundy and Malcolm Newey, editors, Theorem Proving in Higher-Order Logics: Emerging Trends, pages
31-46. Department of Computer Science, The Australian National University, 1998.

8. M. J. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A mechanised logic of computation.
Number 78 in Lecture Notes in Computer Science, 1979.

9. M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem Proving Environment for Higher-order
Logic. Cambridge University Press, 1993.

10. P. V. Homeier and D. F. Martin. A verified verification condition generator. The Computer Journal,
38(2):131-141, July 1995.

248

11. T. F. Melham. Higher Order Logic and Hardware Verification. Cambridge Tracts in Theoretical Computer
Science 31. Cambridge University Press, 1993.

12. J. von Wright. Program refinement by theorem prover. In Proc. 6th Refinement Workshop, London, January
1994. Springer—Verlag.

13. J. von Wright. Representing higher-order logic proofs in HOL. The Computer Journal, 38(2):171-179, July
1995.

14. J. von Wright. The formal verification of a proof checker. SRI internal report, November 1998.

15. W. Wong. Validation of HOL proofs by proof checking. Formal Methods in System Design, 14(2):193-212,
March 1999.

16. H. Xiong, P. Curzon, and S. Tahar. Importing MDG verification results into HOL. In Y. Bertot, G. Dowek,
A. Hirschowitz, C. Paulin, and L. Théry, editors, Theorem Proving in Higher Order Logics, number 1690 in
Lecture Notes in Computer Science, pages 293-310. Springer-Verlag, September 1999.

17. Z. Zhou and N. Boulerice. MDG Tools (V1.0) User Manual. University of Montreal, Dept. D’IRO, 1996.

