
Reasoning about Order Errors in Interaction

Paul Curzon and Ann Blandford

School of Computing Science, Middlesex University, London, UK
fp.curzon,a.blandfordg@mdx.ac.uk

Abstract. Reliability of an interactive system depends on users as well as the device implementa-
tion. User errors can result in catastrophic system failure. However, work from the �eld of cognitive
science shows that systems can be designed so as to completely eliminate whole classes of user er-
rors. This means that user errors should also fall within the remit of veri�cation methods. In this
paper we demonstrate how the HOL theorem prover [7] can be used to detect and prove the ab-
sence of the family of errors known as order errors. This is done by taking account of the goals and
knowledge of users. We provide an explicit generic user model which embodies theory from the
cognitive sciences about the way people are known to act. The user model describes action based
on user communication goals. These are goals that a user adopts based on their knowledge of the
task they must perform to achieve their goals. We use a simple example of a vending machine to
demonstrate the approach. We prove that a user does achieve their goal for a particular design of
machine. In doing so we demonstrate that communication goal based errors cannot occur.

1 Introduction

People commonly make mistakes when interacting with computer-based devices. Whilst some errors
cannot always be prevented, such as those caused by users behaving randomly and maliciously, there
are whole classes of error that have distinct cognitive causes and are predictable [13]. Furthermore,
changes to the design of systems can eliminate such errors [9, 3]. Formal veri�cation aims to either
detect system errors or show their absence. If user errors can be eliminated using appropriate design
then their detection ought to be within the remit of formal veri�cation methodologies. However, formal
veri�cation is generally done in a machine-centered way. A consequence is that avoidable user errors are
not detected or corrected as part of the veri�cation process.

In this paper, we describe a veri�cation methodology for detecting user errors. Our approach is to
formally model rational users as part of the system being veri�ed. We focus here on errors resulting from
a mismatch between the device design and the order a user expects to supply information or objects.
This extends earlier work concerning a di�erent class of errors known as post-completion errors [5].
Our veri�cation approach is capable of detecting both classes of error simultaneously. The veri�cation
described has been fully machine-checked using interactive proof with the HOL theorem prover [7].

We de�ne a generic user model that can be instantiated for di�erent machines. This user model de-
scribes rational user behaviour based on established results from cognitive science [11]. The veri�cation
approach therefore detects rational user errors. This di�ers from similar approaches in which the envi-
ronment of the machine is speci�ed to provide the input required (treating users as logical as opposed to
rational agents). With such an approach user errors are treated as never occurring. Our approach is also
di�erent from assuming that the environment could perform any action at any time (users as \monkeys
at keyboards"). That would amount to saying that whatever the user's goal and whatever actions they
perform, they will eventually achieve the goal. This is not appropriate for interactive systems as the
functionality of such a system would need to be trivial for it to be considered \correct". Instead, our
approach recognises that users are important but do not act randomly. The user is described in terms
of the things they wish to achieve; the actions they may perform in order to achieve those goals and in
terms of the device-independent knowledge they have about the task. We are interested in eliminating
errors from systems that occur when users act in this way as such errors are liable to be persistent.



2 Formal User Modelling

There are, broadly speaking, two main approaches to formal reasoning about the usability of systems.
One approach is to focus on formal speci�cation of the user interface; Campos and Harrison [4] review
several techniques that take this approach. However, such techniques do not support reasoning about
errors. The alternative, which we take in this work, is based on formal user modelling. This involves
generating a formal speci�cation of the user in conjunction with one of the computer system, in order
to support reasoning about their conjoint behaviour. It should be noted that a formal speci�cation of
the user is a description of the way the user is, rather than one of the way the user should be, since
users cannot be designed in the way that computer systems can [1]. Examples of formal user modelling
include the work of Duke et al [6], Butterworth et al [2], Moher and Dirda [10] and Paterno' and
Mezzanotte [12]. Each of these approaches takes a distinctive focus. Duke et al [6] use a mathematical
notation to express constraints on the channels and resources within an interactive system; this makes
their `syndetic modelling' technique particularly well suited to reasoning about multi-modal interaction
(such as that combining the use of speech and gesture). Butterworth et al [2] use Lamport's [8] TLA to
reason about behaviour traces and reachability conditions within an interaction; this approach describes
behaviour at an abstract level that does not support re-use of the user model from one computer system to
another, so while it can support reasoning about errors, each model has to be individually hand-crafted.
Moher and Dirda [10] use Petri net modelling to reason about users' mental models and their changing
expectations over the course of an interaction; this approach supports reasoning about learning to use
a new computer system { which, in turn may be an important source of errors, but focuses on changes
in user belief states rather than proof of desirable properties. Finally, Paterno' and Mezzanotte [12] use
LOTOS and ACTL to specify intended user behaviours and hence reason about interactive behaviour;
their approach corresponds closely to that which is done in state space exploration veri�cation, but
because their user model describes how the user is intended to behave, rather than how users might
actually behave, it does not support reasoning about errors.

3 Classes of User Error

A common form of error made by humans in a wide variety of situations is the Post-completion Error [3].
Examples include taking the cash but leaving a bank card in an Automatic Teller Machine and leaving
the original on the platen and walking away with the copies when using a photocopier. Most ATM
machines have been redesigned to force users to remove their cards before cash is delivered to avoid this
problem, but the phenomenon persists in many other environments. There are of course other situations
where a user does not complete all the sub-tasks associated with a main goal. For example, if a �re alarm
went o� whilst a person was using a photocopier, they might not take their original. However, such an
error would not be a post-completion error in our sense as it would have a di�erent underlying cause. A
design that eliminated post-completion errors would not necessarily guarantee the user would not make
the same surface level \mistake" for other reasons.

Post-completion errors are interesting because they are not predictable (i.e. they do not occur in every
interaction) but they are persistent. They are not related to missing knowledge so cannot be eliminated
by increased user training. They can, however, be eliminated with careful system design. Curzon and
Blandford [5] illustrate the use of HOL to reason about such errors by considering alternative device
designs. Here we develop that approach by extending the generic user model to identify a new class
of errors with a distinctive cognitive cause. In particular, we look at errors that occur when there is a
mismatch between the design of a device and the knowledge that a user has about the task (independent
of the particular device used to complete that task). A user will often know of speci�c information that
must be communicated to any such device for the task to be completed. They may not know precisely
how or when the information must be imparted to a particular machine. They thus maintain a mental
list of communication goals: information that they must communicate at some point. If the order that
the information must be imparted to the machine is not known, or the user's mental model of the task



suggests a di�erent order then order errors can result. The user attempts to ful�ll their goals in an order
di�erent to that required by the machine.

Order errors can also arise due not to information that must be communicated, but to objects that
must be supplied: an ATM card, coins, etc. For example, with a vending machine, the user will know
they must make a selection of chocolate and that they must supply money, but for a given machine they
will not necessarily know the order. If they know exactly what they want but not the price, they may be
inclined to press the selection �rst (some machines would display the price at this point). Alternatively,
they may have the coin in their hand and so insert it �rst before working out exactly which buttons to
press to make their selection.

Each of the above classes of errors have distinct cognitive causes. We provide a veri�cation approach
that detects such errors in a structured way. Whilst we cannot eliminate all user errors, we can eliminate
whole classes of error that have such speci�c cognitive causes.

4 Proving Usability

A proof of usability, in the sense that particular classes of errors cannot occur, involves proving a theorem
of the form

` 8(ustate: ustate type) (mstate: mstate type).

MACHINE USER ustate mstate ^ MACHINE SPEC s mstate �
MACHINE USABLE ustate mstate

MACHINE SPEC is a traditional machine speci�cation: a relation over an internal state s and inputs
and outputs mstate. The latter represents the interface between the device and its users. States and
signals are represented by history functions: functions from time to the value at that time. MACHINE USER

is also a speci�cation of a component of the system: the user of the device. It describes the actions a
rational user might take based on their knowledge and goals. It is a relation on an internal user state
ustate and the inputs and outputs of the device. We will look at in more detail in the next section.
The conjunction of these two relations provides a speci�cation of the system as a whole: both device and
user. The conclusion we prove about this combined device is not phrased in terms of what the device
can do, or explicit properties of it. Instead it is a speci�cation of whether the user achieves their goal in
interacting with the device.

Note that the above usability theorem is of the basic form

` implementation � specification

It can thus easily be combined with a traditional correctness theorem that an implementation of the
machine meets the given speci�cation [5].

In one sense the user model �lls a similar role to an environment machine in traditional model-
checking based veri�cation. It provides inputs to the device being veri�ed. The di�erence is not in the
fact that such an environment is provided but in the kind of environment provided. Rather than providing
values based on what the machine speci�cation requires, or on other devices connected to the device, it
is modelling the way people behave based on results from cognitive science. The user of course may not
be providing all the inputs to the device. Thus unlike with an environment machine, the combined user-
device system is not necessarily closed. We are treating the user as part of the system under veri�cation,
rather than just a test rig to verify the system. The kind of errors we are looking for are those that
result from the user component of the system, but which can be eliminated by modifying the device
component of that system.

5 A Generic User Model

We could adopt the approach of providing a separate user model for each distinct device that we wish
to verify. However, this approach could lead us back into a machine-centered speci�cation approach,



specifying users that do exactly what the speci�c device requires of them. Moreover, we wish to detect
classes of user error that are widespread and not just con�ned to speci�c devices. It therefore makes sense
to provide once-and-for-all a generic user model that incorporates cognitive science theory about the way
people behave in general. Such a generic model can then be targeted to speci�c machines, simply by
providing details about the machine state, the user's knowledge of the task and their goals. Higher-order
logic provides an elegant framework in which to specify such a generic model. It allows functions and
relations providing details of a speci�c interaction to be an argument to the generic user model. For
example to support reasoning about post-completion errors the user model contains general machinery
regarding termination conditions. This is de�ned in terms of a variable representing an interaction

invariant: a relation indicating the part of the state that should be restored for the task to be considered
completed. The user model takes a speci�c instance of such an invariant as an argument.

The generic user model is given as a relation USER over the user and machine states as described
above. In addition however, it takes a series of other arguments representing the details of the speci�c
machine. To instantiate the user model for a given machine, we must provide:

{ concrete types for the state of the machine and of the user,

{ a list of actions a user might take (inserting coins, pushing buttons, etc),

{ a history function to record the communication goals of users of the device at each instant in time,

{ a list giving the user's initial communication goals,

{ a list pairing device outputs with user inputs, indicating relationships where the output is intended
to make the user react by taking the action resulting in the input (for example, a light might be
located next to a button, with the light being on indicating the button should be pressed),

{ history functions recording the possessions of the user and how they change over time as the inter-
action progresses,

{ a history function recording when the user terminates the interaction (by leaving the device) together
with that signal's position in the list of possible actions,

{ the goal users of the device are trying to achieve, and

{ a history function describing an interaction invariant that should hold both at the start and end of
the interaction.

We will discuss each of these in more detail below as we describe the de�nition of the user model.

The core of the user model is a series of temporally guarded statements about possible actions
a rational user might take. For example, one disjunct is associated with each of the paired lights and
actions, re
ecting the fact that a rational user could react to a light coming on by pressing the associated
button. This is speci�ed by:

` LIGHT user actions light action ppos (mstate:'m) t =

(light mstate t = T) ^
NEXT user actions (action mstate) ppos t

This states that if the light is on at a time t then the next action performed by the user from the list of
possible actions user actions will be the one paired with the light (action). Since this is just one clause
of a list of disjuncts, it is not guaranteed that the action will be taken. A recursive de�nition LIGHTS

forms a disjunct of all the pairs in the given list of lights and actions. Note that mstate (similarly ustate)
has a polymorphic type in this and the other de�nitions of this section representing the fact that we are
de�ning a generic user model that can apply to machines and users with di�erent states.

The relation NEXT speci�es the next action to occur. To de�ne it we �rst de�ne relations LSTABLE
and LF. The former is used to specify that the signals do not change in some interval. The latter then
states that at the end of that interval all but one of the signals remains false.

More formally, LSTABLE is a temporal operator that states that all the history functions in the given
list have a value v between the start and end time.



` (LSTABLE [] t1 t2 v = T) ^
(LSTABLE (CONS a l) t1 t2 v =

(8t. t1 <= t ^ t < t2 � (a t = v)) ^
(LSTABLE l t1 t2 v))

LF states that all but one of the actions in the list (that indicated by position ppos) are false at a
given time. This is de�ned recursively on the action list.

` (LF n [] P ppos t = T) ^
(LF n (CONS a l) P ppos t =

(((n = ppos) _ �(a t)) ^ (* miss the numbered signal *)

LF (n+1) l P ppos t))

Note that we can not simply use a list MEMBER function here as it would check whether the values in
the list were equal to one being checked. We wish to identify a speci�c action, not the value of an action.
In the absence of a syntax for user actions, we use the position in the list to identify the action.

NEXT uses the above de�nitions to specify that there is a time later than that given when the action
identi�ed by the position occurs (its history function is true), the other actions do not occur (their history
functions are false), and for which all the actions do not occur in all the intervening time instances.

` NEXT al P ppos t1 =

9t2. t1 <= t2 ^ (LSTABLE al t1 t2 F) ^ (LF 0 al P ppos t2) ^ (P t2)

If the temporally guarded statements that make up the user model were based only on the pairs
of lights and actions as de�ned above, we would be specifying a reactive user who did exactly what
was required. However, other clauses are included to re
ect rational behaviour based on user goals and
knowledge. The �rst such disjunct describes the fact that a rational user may terminate the interaction
on achieving their goal. If this action is taken, before the user's interaction invariant is restored, a
post-completion error is made.

` COMPLETION user actions finished finishedpos goalachieved ustate t =

(goalachieved ustate t = T) ^
NEXT user actions (finished ustate) finishedpos t

In this paper we are primarily concerned with errors that result from devices not taking communication
goals of users into account. For more detail of veri�cation of designs with respect to post-completion
errors see [5].

As discussed earlier, a user of a device generally enters into an interaction with some knowledge about
the task. Speci�cally they are likely to know of some of the information that must be communicated to the
device, because they know the task cannot be completed, whatever the device design, unless it receives
this information. They will not necessarily know the order the information must be communicated,
however.

We model this using a list of actions, corresponding to the communication goals. We �rst extract the
communication goal list from the user state for the time of interest. This allows COMMGOALS to be de�ned
recursively on that argument.

` COMMGOALER user actions actions goal ustate mstate t =

COMMGOALS user actions (actions ustate t) goal ustate mstate t

This gives a list of communication goals with their position in the list of all possible actions the user
could perform. We recurse on this list to produce a list of action disjuncts based on the communication
goals.



` (COMMGOALS user actions [] goal ustate mstate t = F) ^
(COMMGOALS user actions (CONS a actions) goal ustate mstate t =

((COMMGOALS user actions actions goal ustate mstate t) _
(COMMGOAL user actions (FST a) (SND a) goal ustate mstate t)))

COMMGOAL describes a temporally guarded action similar to LIGHT and COMPLETION given earlier. A
separate relation is de�ned for this for consistency throughout the user model: each guarded action is
given by a similar de�nition. Provided the user's main goal has not yet been achieved, the next action
they will take if this disjunct is activated (i.e. true) is the given communication goal.

` COMMGOAL user actions action n goal ustate mstate t =

�(goal ustate t) ^
NEXT user actions (action mstate) n t

Since all the communication goals are disjuncts and all have the same guard, no ordering of them is
prescribed by these de�nitions. The user may attempt to complete them in any order. Once a commu-
nication goal related action has been completed, it will cease to be a communication goal. We examine
how this is speci�ed below.

Each of the actions that a rational user might make when confronted with the machine are combined
in a single de�nition GENERAL USER CHOICE. It contains a �nal default disjunct, ABORTION. It asserts that
if none of the guards of the other disjuncts hold (and so no rational action is available) then the user
will terminate the interaction without having achieved their goal.

` GENERAL USER CHOICE user actions commgoals lights actions

finished finishedpos goalachieved mstate ustate t =

COMMGOALER user actions commgoals goalachieved ustate mstate t _
LIGHTS user actions lights actions 0 mstate t _
COMPLETION user actions finished finishedpos goalachieved ustate t _
ABORTION user actions finished finishedpos goalachieved commgoals

lights actions ustate mstate t

This relation describes the series of options that a user has open to them on any given cycle. There
are other conditions that must apply at every instance in time, however. For example, we assume it is
always the case that if the user terminates the interaction then they cannot then continue with it.

8t. finished ustate t � finished ustate (t+1)

We similarly assume various rules about the possessions of a user. For example, we assume it is always
the case that if a user gives up a possession then they have one less of that possession. These rules are
encapsulated into a relation POSSESSIONS. We omit the details of this relation here.

We also assert universal properties of the communication goal list. It is not a constant over time.
As the user performs the actions associated with a communication goal, that goal is discharged and
so is removed from the user's internal list of things to do: it ceases to be a communication goal. This
behaviour is modelled by asserting that if an action that appears on the communication goal list occurs
at a time t, then that action will be removed from the communication goal list on the subsequent cycle.

` (FILTER [] mstate t = []) ^
(FILTER (CONS a actions) mstate t =

if (FST a) mstate t then (FILTER actions mstate t)

else (CONS a (FILTER actions mstate t)))

` FILTER HLIST mstate hlist = 8t. hlist (t+1) = FILTER (hlist t) mstate t

` FILTER USER HLIST ustate mstate hlist = FILTER HLIST mstate (hlist ustate)

The separate relations describing universal properties are cojoined together into a single relation
GENERAL USER UNIVERSAL.



` GENERAL USER UNIVERSAL commgoals possessions finished ustate mstate =

(8t. finished ustate t � finished ustate (t+1)) ^
(POSSESSIONS possessions ustate mstate) ^
(FILTER USER HLIST ustate mstate commgoals)

We need two further elements to our generic user model, however. We must assert that at the start
of the interaction, the user's communication goals are in fact those supplied as the initial list.

` USER INIT cgoals init cgoals ustate = (cgoals ustate 0 = init cgoals)

Finally we must describe the situation where the user terminates the interaction normally. We have
considered the situation where a user completes their goal and leaves. However, we argued that this may
lead to post-completion errors. Normal, non-erroneous termination involves leaving not just when the
goal is completed, but also when any necessary house-keeping tasks have been completed. A non-device
speci�c way of describing this is by using the notion of an interaction invariant that the user wishes to
maintain. The invariant may be perturbed in the course of the interaction, but must be reinstated by
the time the interaction is terminated.

If the goal is achieved and the interaction invariant satis�ed, then we assume that the rational user
will always terminate the interaction as the next action. If either condition is not ful�lled, the user will
take some action from the set of options. This is combined with the initialisation and universal relations
to give the complete generic user model.

` USER user actions commgoals init commgoals lights actions possessions

finished finishedpos goalachieved invariant ustate mstate =

(USER INIT commgoals init commgoals ustate) ^
(GENERAL USER UNIVERSAL commgoals possessions finished ustate mstate) ^
(8t.
if ((invariant ustate t = T) ^ (goalachieved ustate t = T))

then NEXT user actions (finished ustate) finishedpos t

else GENERAL USER CHOICE user actions commgoals lights actions

finished finishedpos goalachieved mstate ustate t)

This user model, instantiated with the details of a speci�c machine, speci�es aspects of a general
rational user of that machine. Because all the options are modelled as guarded disjuncts, the model does
not specify that users always make mistakes, just that they are capable of making mistakes of speci�c
kinds. To verify that the modelled user always achieves their goal, the device speci�cation must be such
that the opportunities for such errors are not present. For example, if a chocolate machine design always
gives out change before chocolate, the guard on the COMPLETION disjunct will only be activated when
the interaction invariant has already been restored. In this way we have provided a facility which can be
used to verify that whole classes of errors cannot occur with a given design.

6 Case Study: A Chocolate Machine

To demonstrate how our user model can be used to verify the absence of classes of errors we will look at a
simple case study. In [5] we used an earlier, less sophisticated version of the user model to investigate the
veri�cation of simple vending machines with the potential for post-completion errors. Here we consider
a similar example, but instead concentrate on communication goal related errors. The design consists of
features that appear in real machines. However, it has been reduced to the simplest form with which to
demonstrate our approach.

Our chocolate machine takes exact money only and it is assumed it will only take a single coin of that
value. To release the chocolate a button must be pressed (this is intended as a simpli�ed version of the
selection that most machines would o�er). The design of the machine could require a speci�c ordering:
coin inserted, then button pressed, or button pressed then coin inserted. In either case order errors could



T

RESET

GiveChoc

CHOC

PushChoc

COIN
PushChocInsertCoin

DONE

¬PushChoc

¬InsertCoin and
¬PushChoc

¬InsertCoin

InsertCoin

Fig. 1. Finite State Machine Speci�cation of the Chocolate Machine

result. The problem can be eliminated if either order is allowed. We verify here a machine that does
allow either ordering. We will also discuss the e�ect of trying to verify faulty designs. We assume for the
sake of simplicity that the chocolate machine always contains chocolate.

We formally specify the chocolate machine using a traditional �nite state machine description (see
Figure 1) within higher order logic. The speci�cation is represented by a relation on the machine's
inputs and outputs. We group these inputs and outputs into a tuple of history functions to represent
the machine state. We de�ne a new type mstate type to represent this. The machine has two inputs
indicating that the button has been pressed and that the coin has been inserted. It has a single output
that releases chocolate. Each of the history functions is a function from time (a natural number) to
booleans indicating the value of the signal at that time. We de�ne a series of accessor functions to obtain
the values of particular components of the state. For example the function InsertCoin extracts from a
machine state the history function representing the coin slot.

We de�ne a new enumerated type ChocState to represent the 4 �nite state machine states (as opposed
to the state representing the values input and output discussed above).

ChocState = RESET STATE j COIN STATE j CHOC STATE j DONE STATE

The RESET state is the initial state. In the DONE state the chocolate is released. The COIN state is
the state in which a coin has been inserted but the button not pressed and vice versa for the CHOC
state.

For each state we de�ne a relation indicating the value on the single output in that state, together with
a relation indicating the next state. These are then combined in a relation giving the full speci�cation
for that state. For a small example such as that considered here, it might be simpler to just have one
de�nition giving the whole automaton. However such an approach would not scale: in particular the
resulting speci�cation would be much less readable.

For example when in the RESET state the machine does not release chocolate so the value of the
output is false.

` RESET OUTPUTS (mstate: mstate type) t = (GiveChoc mstate t = F)

We also give a relation representing the next state for each state. If a coin is entered it moves to
a COIN state in the next cycle, if the button is pressed it moves to the CHOC state and otherwise it
remains in the RESET state.



` RESET TRANSITION s mstate t =

if InsertCoin mstate t then (s(t+1) = COIN STATE)

else if PushChoc mstate t then (s(t+1) = CHOC STATE)

else (s(t+1) = RESET STATE)

For each state these two relations are combined in a relation that gives the whole behaviour (for example
RESET SPEC for the RESET state). A single de�nition then gives the full speci�cation of the machine in
terms of these de�nitions.

` CHOC MACHINE SPEC s mstate =

8t. if (s t = RESET STATE) then RESET SPEC s mstate t

else if (s t = COIN STATE) then COIN SPEC s mstate t

else if (s t = CHOC STATE) then CHOC SPEC s mstate t

else DONE SPEC s mstate t

7 Instantiating the User Model

To target the generic user model to a given machine we must provide values for all the arguments to
USER except for the user state and machine state. For these we provide concrete types to instantiate the
type variables given as their type.

The type of the machine state is just that used in the machine speci�cation de�ned above: a tuple of
history functions. For the user state we must provide a state consisting of a tuple of 6 elements. These
elements are history functions that record for each time instance whether the user has chocolate, whether
they have a coin, whether they have terminated the interaction, a count of the amount of chocolate they
possess, a count of the number of coins they possess, and a list of their communication goals paired with
numbers giving the position of the corresponding action in the full list of actions. An accessor function
for each part of the state is de�ned. For example, UserCommgoals extracts the communication goal list
from the state.

The �rst argument we provide to USER is a list of all the possible user actions indicated by their
history functions: the state extractor applied to the appropriate state tuple.

[InsertCoin mstate; PushChoc mstate; UserFinished ustate]

The second argument is the state extractor for the communication goals, UserCommgoals. We must
also provide the initial communication goal list with which the user enters the interaction. In this case we
assume that the user knows they must insert a coin at some point and that they must make a selection
(push the chocolate button). This would be determined using a device-independent task analysis of the
task of getting chocolate. We use the state extractor function to represent each communication goal.
These are paired with a number giving their position in the full action list.

[(InsertCoin, 0); (PushChoc, 1)]

Note that, strictly speaking, inserting a coin is not a communication goal as it is concerned with
property rather than information about a selection to be made. We intend in a later version of the user
model to deal with these two kinds of knowledge separately. The main rami�cation for the theorem
proved here is that as a communication goal no check is made in the user model as to whether the user
has a coin as one of its possessions. This means the correctness theorem though not explicitly stating it
says nothing about what happens if the user tries to insert a coin that they do not have.

Our particular machine provides no output to the user to indicate what must be done so an empty
list is provided as the next argument for the pairings between outputs and the corresponding reactive
input. A case study concerning post-completion errors where reactive pairings are provided can be found
in [5].

We must also indicate the possessions of the user and how they are a�ected by particular actions. A
relation CHOC POSSESSIONS gathers this information into an appropriate form, given the history functions



for the user having chocolate and coins, the machine giving chocolate, the user inserting a coin and counts
of the number of coins and chocolate bars possessed.

CHOC POSSESSIONS UserHasChoc GiveChoc CountChoc UserHasCoin InsertCoin CountCoin

We specify which accessor functions to the user state indicate when the user has terminated the
interaction, UserFinished, together with the number of its position in the list of actions (as with the
communication goals). We also specify the state accessor specifying the user's main goal in taking part
in the interaction, UserHasChoc.

Finally we must provide the invariant that the user wishes to restore by the end of the interaction.
For vending machines this can be based on the value of the user's possessions. After interacting with a
vending machine a user does not wish the value of their total possessions to be less than they were at
the start. This is described by a history predicate VALUE INVARIANT. We omit the de�nition here.

The general model for the chocolate machine is speci�ed by providing each of the arguments discussed
above to the generic user model and restricting the types of the states to be the concrete types for the
chocolate machine.

` CHOC MACHINE USER (ustate:ustate type) (mstate:mstate type) =

USER [InsertCoin mstate; PushChoc mstate; UserFinished ustate]

UserCommgoals [(InsertCoin, 0); (PushChoc, 1)]

... ustate mstate

8 Verifying Usability

The usability correctness theorem we have proved in HOL has the following form:

` 8ustate mstate s.

CHOC MACHINE USER ustate mstate ^ CHOC MACHINE SPEC s mstate �
(s 0 = RESET STATE) ^ �(UserHasChoc ustate 0)

� (9t2. UserHasChoc ustate t2)

This is of the general form discussed earlier. The usability speci�cation part of the theorem states
that if we assume the vending machine starts in its reset state, and the user does not have chocolate but
has communication goals of inserting a coin (paying money) and pushing the chocolate button (making
a selection), then there will exist some time at which the user does have chocolate (i.e., has achieved
their main goal).

This theorem is essentially proved using simulation by proof. An induction principle concerning the
stability of a signal is used repeatedly. This essentially states that:

{ if the value of some boolean signal P is stable over an interval,
{ a second signal, Q, is true at the start of that interval, and
{ if Q is true at some time, but P has the stable value at that time, then Q will be true at the subsequent

time,
{ then Q will be stable over an interval starting at the same point but extending one cycle later.

This is used to step the simulation over periods of inactivity.
In proving the usability theorem we have not proved that users using the machine will never make an

error. We have, however, proved that no user will make the classes of errors with known cognitive causes
speci�ed in the user model. In particular, we have proved that a user will not make order errors due
to communication goal mismatches, provided they start with the stated communication goals. If these
communication goals are identi�ed using a device-independent task analysis then they will be consistent
with the majority of users. Since such errors are both common and persistent as discussed in Section 3
the reliability of the system as a whole is consequently improved.



Consider an attempt to verify a design which requires the coin to be inserted before the button
was pushed. This proof attempt would fail because the user model allows the user to do either of the
communication goals �rst. If they pushed the button �rst, this action would be removed from their list
of goals: they would believe the selection made. On then inserting a coin to complete their other goal,
there would be no longer anything in the user model to compel them to press the button. We thus would
be required to prove that they pushed the button, with no assumptions with which to do this. Of course
a real user would in this case eventually work out the problem and go on to complete the interaction.
However, the user error has already occurred.

9 Conclusions

We have described a formal veri�cation methodology which detects classes of user error. In particular
we have so far considered order errors based on communication goal mismatches and post-completion
errors. These classes of errors are considered because they can be eliminated by appropriate design.

Our approach involves de�ning a generic user model which describes the behaviour of rational users.
As with real users, erroneous behaviour is not speci�ed to occur during every interaction. It is just
speci�ed as a potential behaviour. Given that potential behaviour exists, if it can be proved that the
user does eventually achieve their goal, then it has been proved that the erroneous behaviour cannot
manifest itself with the device under veri�cation.

The use of a generic user model reduces the work required to produce a user model for each new
device considered. More importantly, it reduces the chances that the user model is created in a device-
centered way, specifying that the user behaves as expected by the designer of the device. It is based only
on cognitive science theory that is generally applicable.

As alternative approach would be to write liveness properties corresponding to a list of known user
errors for each system to be veri�ed. However, to do so would require informal reasoning to determine
the manifestation of the error from rational behaviour for every new device considered. For example, the
order errors considered here are errors because the user does not have perfect knowledge of the design.
Post completion errors are errors dependent on the user's goals. It is only by reasoning about the user's
goals and knowledge that we determine the actions for which the ordering is important and determine
what that ordering should be. In our approach, this reasoning is formalised and machine-checked. The
general rational behaviour is speci�ed once and the errors emerge.

The fact that a common user model is used means that the proofs for di�erent devices are very
uniform, increasing the possibilities for automation of the proof. For examples as simple as that presented
here to illustrate the ideas it is likely that fully automated model checking/state-space exploration based
veri�cation tools could be used. However, when more realistic devices are considered it is likely that
the additional power of an interactive theorem prover will be required. Furthermore, higher-order logic
provides an elegant way in which a generic user model can be speci�ed. It seems likely that this kind of
proof would be a good application for a combined veri�cation tool. The instantiated user model would
be instantiated in HOL and exported to the automated system. Higher level details of the proof would
be dealt with in HOL, with state exploration conducted in the automated tool. HOL could also be used
to combine the usability correctness theorem with more traditional system veri�cation theorems.

We used a very simple example of a chocolate machine to demonstrate the approach. We instantiated
the generic user model with the details of a speci�c machine designed to avoid order errors. Despite the
machine giving no indication of the steps required, because its design works with the communication
goals of the task, it is usable. We also discussed how the proof would fail if other erroneous designs were
considered. The design works because it has a permissive interface, allowing users to supply information
in any order. It might be argued that such an approach could always be used. However, post-completion
errors occur if the ordering of actions by the user is such that the user can complete their main goal
before other required actions have been completed. Thus to avoid post-completion errors we must do
the opposite of making the interface permissive. We must instead force a speci�c order. For example,
if a machine dispensed change, it would be important that it was not dispensed before the chocolate.



We investigated the veri�cation of post-completion errors in an earlier paper [5]. There we investigated
vending machines with and without post-completion errors. Our present user model has the ability to
simultaneously detect order errors and post-completion errors. In future work we will investigate more
complex machines and other classes of user errors. We will also look at machine designs with the potential
for making multiple classes of errors. When considering a single class of error in isolation, it is relatively
easy to ensure it is not present. When multiple kinds of errors are considered it is very easy to remove one
kind of error, only to introduced another. This is where having a single generic user model is bene�cial,
since it ensures errors are not missed. It is in this situation that our veri�cation approach will be of most
use.

Acknowledgements This work is funded by EPSRC grants GR/M45221 and GR/L00391. The work
was done in part whilst the �rst author was visiting Cambridge University Computer Laboratory.

References

1. R. Butterworth, A. Blandford, and D. Duke. Demonstrating the cognitive plausibility of interactive system
speci�cations. Submitted to FACS journal. Available from http://www.cs.mdx.ac.uk/puma/ as working
paper WP25.

2. R.J. Butterworth, A.E. Blandford, and D.J. Duke. Using formal models to explore display based usability
issues. Journal of Visual Languages and Computing, 10:455{479, 1999.

3. M. Byrne and S. Bovair. A working memory model of a common procedural error. Cognitive Science,
21(1):31{61, 1997.

4. J.C. Campos and M.D. Harrison. Formally verifying interactive systems: a review. In M. D. Harrison and
J. C. Torres, editors, Design, Speci�cation and Veri�cation of Interactive Systems '97, pages 109{124. Wien
: Springer, 1997.

5. Paul Curzon and Ann Blandford. Using a veri�cation system to reason about post-completion er-
rors. Presented at Design, Speci�cation and Veri�cation of Interactive Systems 2000. Available from
http://www.cs.mdx.ac.uk/puma/ as working paper WP31.

6. D.J. Duke, P.J. Barnard, D.A. Duce, and J. May. Syndetic modelling. Human-Computer Interaction,
13(4):337{394, 1998.

7. M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL: a theorem proving environment for higher

order logic. Cambridge University Press, 1993.
8. L. Lamport. The temproal logic of actions. ACM Transactions on Programming Languages and Systems,

16:872{923, 1994.
9. W-O Lee. The e�ects of skills development and feedback on action slips. In Monk, Diaper, and Harrison,

editors, People and Computers VII. Cambridge University Press, 1992.
10. T.G. Moher and V. Dirda. Revising mental models to accommodate expectation failures in human-computer

dialogues. In Design, Speci�cation and Veri�cation of Interactive Systems '95, pages 76{92. Wien : Springer,
1995.

11. A. Newell. Uni�ed Theories of Cognition. Harvard University Press, 1990.
12. F. Paterno' and M. Mezzanotte. Formal analysis of user and system interactions in the CERD case study. In

Proceedings of EHCI'95: IFIP Working Conference on Engineering for Human-Computer Interaction, pages
213{226. Chapman and Hall Publisher, 1995.

13. J. Reason. Human Error. Cambridge University Press, 1990.


