
Detecting Multiple Classes of User Errors

Paul Curzon and Ann Blandford

Interaction Design Centre, Middlesex University, London, UK
fp.curzon,a.blandfordg@mdx.ac.uk

Abstract. Systematic user errors commonly occur in the use of inter-
active systems. We describe a formal reusable user model implemented
in higher-order logic that can be used for machine-assisted reasoning
about user errors. The core of this model is a series of non-deterministic
guarded temporal rules. We consider how this approach allows errors of
various speci�c kinds to be detected by proving a single theorem about
a device. We illustrate the approach using a simple case study.

1 Introduction

In this paper, we present an approach to the veri�cation of interactive systems
that allows the detection of systematic user errors. The approach extends stan-
dard hardware veri�cation techniques based on machine-assisted proof to this
new domain. Human error in interactive systems can be just as disastrous as
device errors. Whilst it is impossible to eradicate all human error without triv-
ializing system functionality, there are whole classes of persistent user errors
whose presence is predictable due to their distinct cognitive cause [11]. Their
possibility can be removed completely with appropriate design [8, 2]. If meth-
ods for detecting such errors are available system reliability can be improved.
It is therefore important that any veri�cation approach used considers a range
of errors in a systematic way. Designing devices so that a single class of error
is absent is relatively straight forward. However, there are many di�erent rea-
sons for users making mistakes. Design principles used to avoid such errors can
conict, so that without care, in eliminating one class of error, other errors are
introduced.

People do not normally behave randomly. Neither do they behave completely
logically. However, it is a reasonable, and useful, approximation to say that they
behave rationally. They enter an interaction with goals and some knowledge of
the task they wish to perform. They act in ways that, given their knowledge,
seem likely to help them achieve their goals. It is precisely because users are
behaving rationally in this way that they make certain kinds of persistent errors
with certain device designs. For example, with the early designs of cash machines,
users would frequently forget to take back their card. Most current cash machines
have been redesigned so that this no longer occurs.

We investigate a method based on a generic user model speci�ed in higher-
order logic. This contrasts, for example, with an approach based on formulating
properties corresponding to user errors and checking that those properties do not



hold of the system. In our approach rational user behavior is speci�ed within a
reusable, generic user model. This model is based on theory from the cognitive
sciences and requires validating only once, not for each new device considered.
The user model is treated as a component of the system under veri�cation.
A single theorem is proved using the HOL proof system [7] that the task under
consideration is guaranteed to be completed by this combined system. By taking
this approach, rather than considering what could go wrong with each system
we concentrate on what the desired outcome of interacting with the system
is. The occurrence of systematic user errors is a side e�ect of the user behaving
rationally. Our reasoning is based directly on the underlying behavior that causes
the problems to arise. We then check a single positive property (that the task is
completed) not a whole range of negative properties (that various situations do
not arise). We are concerned here with the detection of user errors. It is not our
aim that our user model explain other aspects of behaviour.

We build here on our previous work. In [4] we demonstrated how our approach
of a generic user model combined with formal proof could be used to detect
the possibility of user errors. We also demonstrated how we could prove their
absence. We used a very simple user model, however. It took user goals into
account in only a limited way. It could therefore only detect one class of error:
the post completion error [2]. This is the situation where once the goal has
been achieved completion tasks are forgotten. This work did however show the
feasibility of our approach. In [5] we introduced a more accurate generic user
model that took user knowledge into account and allowed for a wider range of
rational behaviour. We demonstrated how, by proving a di�erent theorem, this
more accurate model can be used to detect in isolation a second class of user
errors. This class of error is related to communication goals and includes order
errors and errors where the device design assumes the user knows they must
perform a device speci�c (as opposed to task speci�c) action.

In this paper we extend this work by proving a single theorem that detects the
presence or absence of both classes of error previously considered together with
a third class of user error related to device delay. This ability to simultaneously
detect multiple classes of errors is important because design guidelines to avoid
such errors can contradict. For example post-completion errors can be eliminated
if the order of user actions is carefully dictated by the device. However, devices
dictating the order of user actions is precisely what causes the second class of
errors we examine.

Formal user modeling is not new. Butterworth et al [1] use TLA to describe
behavior at an abstract level that does not support re-use of the user model
between devices. While it can support reasoning about errors, each model has
to be individually hand-crafted. Moher and Dirda [9] use Petri net modeling
to reason about users' mental models and their changing expectations over the
course of an interaction; this approach supports reasoning about learning to use
a new computer system but focuses on changes in user belief states rather than
proof of desirable properties. Paterno' and Mezzanotte [10] use LOTOS and
ACTL to specify intended user behaviors and hence reason about interactive



behavior. Because their user model describes how the user is intended to behave,
rather than how users might actually behave, it does not support reasoning about
errors. Duke et al [6] express constraints on the channels and resources within an
interactive system; this approach is particularly well suited to reasoning about
interaction that for example combines the use of speech and gesture. Our work
complements these alternative uses of formal user modelling. It also complements
traditional hardware veri�cation approaches where a device implementation is
veri�ed to meet a machine-centered speci�cation, or where liveness and safety
properties of a device are checked. Such approaches are concerned with the
detection of device errors, rather than user errors as here. This is discussed
further in [4].

2 The HOL Theorem Prover

The work described here uses the HOL system [7]. It is a general purpose, inter-
active theorem prover that has been used for a wide variety of applications. A
typical proof will proceed by the veri�er proving a series of intermediate lemmas,
that ultimately can be combined to give the desired theorem. Proofs are written
in the meta-language of the theorem prover { Standard ML. Each proof step is
a call to an ML function. The proof script is developed by calling such functions
interactively. The resulting ML proof script can later be rerun in batch mode
to subsequently generate the theorems proved. If modi�cations are made to the
system under veri�cation then much of the proof script is likely to be reusable
to verify the new design.

The HOL system provides a wide range of de�nition and proof tools, such as
simpli�ers, rewrite engines and decision procedures, as well as lower level tools
for performing more precise proof steps. The architecture of the system means
that new, trustable proof tools for speci�c applications can easily be built on
top of the core system. Such proof tools are just Standard ML functions that
call existing proof functions.

All speci�cations, goals and theorems in HOL are written in higher-order
logic. Higher order logic treats functions as �rst class objects. Speci�cations are
thus similar to functional programs with logical connectives and quanti�cation.
The notation used in this paper is summarized in Table 1.

Our work is based on the speci�cation of a generic user model. The use of
higher-order logic allows us to do this in an elegant way. As we will see the generic
user model is a higher-order relation that takes various functions as arguments.
Instantiation of the user model just involves providing concrete arguments to
this relation.

3 A Generic User Model and Task Completion Theorem

Our user model is based on a series of non-deterministic (disjunctive) temporally
guarded action rules. Each describes an action that a user could rationally make.
The rules are grouped corresponding to the user performing actions for speci�c



a ^ b both a and b are true
a _ b either a is true or b is true
a � b a is true implies b is true
8n. P(n) for all n, property P is true of n
9n. P(n) there exists an n for which property P is true of n
f n the result of applying function f to argument n
a = b a equals b
if a then b else c if a is true then b is true, otherwise c
` P P is a de�nition or theorem

Table 1. Higher-order Logic notation

related reasons. Each such group then has a single generic description. Random
behavior is explicitly excluded. Thus the model can only be used to detect errors
that occur as a result of users acting rationally. If such errors are possible they are
liable to occur persistently, if not predictably. Their eradication will thus improve
the reliability and usability of the system greatly. The model does not describe
what a user does do, just what a user could do rationally. Our model makes
no attempt to describe the likelihood of particular actions: a user error is either
possible or not. Since we consider classes of error that can, by appropriate design,
be completely eliminated, this strict requirement is in our view appropriate.

Full details of the model are given in [5]. Here, for clarity of explanation we
use a semi-formal higher-order logic notation to give an overview.

3.1 Reactive behavior

The �rst group of non-deterministic rules we consider is that of reactive behavior,
where a user reacts to a light (for example) coming on, that clearly indicates
that a particular action should be taken. For example, if a light comes on next to
a button, a user might, if the light is noticed, react by pressing the button. All
the rules have the basic form below. If at a time t some condition, here light,
is true then the NEXT action taken by the user, at an unspeci�ed later time, out
of the list of possible actions may be the given action, here pressing button.

(light t) ^ NEXT user actions button t

Note that the relation NEXT does not require that the action is taken on the
next cycle, but rather that it is taken before any other user action. A relation is
recursively de�ned that, given a list of such pairs of inputs and outputs, asserts
the above rule about them, combining them using disjunction, so that they are
non-deterministic choices. To target the generic user model to a particular device,
it is applied to a concrete version of this list containing speci�c signals:

[(light1, button1); ... (lightn, buttonn)]

People do not interact with devices purely in a reactive way, however. They
may ignore reactive stimuli for very rational reasons. In subsequent sections



we show how the model is extended to take into account some such rational
behaviour.

3.2 Communication Goals

People enter an interaction with some knowledge of the task that they wish to
perform. In particular, they enter the interaction with communication goals: a
task dependent mental list of information the user knows they must communicate
to the device. For example, on approaching a vending machine, a person knows
that they must communicate their selection to the machine. Similarly, they know
they must provide money before they will obtain their selection. While inserting
coins is not strictly a communication goal in cognitive science terms, for the
purposes of this paper we treat it in the same way. Communication goals are
important because a user may take an action as a result not of some stimulus
from the machine but as a result of seeing an apparent opportunity to discharge
a communication goal. For example, if on approaching a rail ticket machine the
�rst button seen is that with the desired destination on, the person may press
it, irrespective of any guidance the machine is giving. No �xed order can be
assumed over how communication goals will be discharged if their discharge is
apparently possible.

Communication goals can be modeled as guard-action pairs. The guard de-
scribes the situation under which the discharge of the communication goal can
be attempted. The action is the action that discharges the communication goal.
They form the guard and action of a temporally guarded rule. We include an
additional guard to this rule, stating that the action will only be attempted if
the user's main goal has not yet been achieved. Strictly a similar guard ought to
be added to the reactive rules. Currently they describe purely reactive behavior.

�(goalachieved t) ^ (guard t) ^ NEXT user actions action t

As for reactive behavior a list of guard-action pairs is provided as an argument
to the user model rather than the rules being written directly. The separate rules
are combined by disjunction with each of the other non-deterministic rules.

As the user believes they have achieved a communication goal, it is removed
from their mental list. This is modeled by a daemon within the user model. It
monitors the actions taken by the user on each cycle, removing any from the list
used for the subsequent cycle.

3.3 Completion

In achieving a goal subsidiary tasks are often generated. Examples of such tasks
include replacing the petrol cap after �lling a car with petrol, taking the card
back from a cash machine and taking change from a vending machine [2]. One
way to specify these tasks would be to explicitly describe each such task. Instead
we use the more general concept of an interaction invariant. The underlying rea-
son why these tasks must be performed is that in interacting with the system



some part of the state must be temporarily perturbed in order to achieve the
desired task. Before the interaction is completed such perturbations must be un-
done. For example, to �ll a car with petrol the petrol cap must be removed, and
later restored. A condition on the state that holds at the start of the interaction,
must be restored by the end. We specify the need to perform these comple-
tion tasks indirectly by supplying this interaction invariant as a higher-order
argument to the user model.

We assume that a user, on completing the task in this sense, will terminate
the interaction, irrespective of any other possible actions. Rather than specifying
it as a non-deterministic rule we model it using an if-then-else construct, so
that it overrides all other actions. A special user action finished indicates that
the user has terminated the interaction. If the interaction had been terminated
previously then it remains terminated.

if (((invariant t) ^ (goalachieved t)) _ finished (t-1))

then NEXT user actions finished t

else non-deterministic rules

Cognitive psychology studies, however, have shown that users also sometimes
terminate interactions when only the goal itself has been achieved [2]. This can
be modeled as an extra non-deterministic rule.

(goalachieved t) ^ NEXT user actions finished t

The model also allows a user to terminate an interaction when no rational
action is available. We assume that the user aborts in this situation. This non-
deterministic rule acts as a �nal default case in the user model. Its guard states
that none of the other rules' guards are true.

The user model is described by a relation that combines these separate rules.
It takes a series of arguments corresponding to the details relevant to a speci�c
machine: the list of possible user actions, the list of communication goals for
the task, the list of reactive stimuli and actions they might prompt, the relevant
possessions, the goal of the user and the interaction invariant. By providing
these speci�c details as arguments to the relation, a user model for the speci�c
interaction under investigation is obtained automatically. The important point
is that the underlying cognitive model does not have to be provided each time,
just lists of relevant actions and so on. The way those actions are acted upon by
the model is modeled only once.

3.4 Correctness Theorem

We now consider the theorem to be proved about a device. The usability property
we are interested in is that if the user interacts rationally with the machine, based
on their goals and knowledge, then they are guaranteed to complete the task for
which they started the interaction. As noted earlier, task completion is more
than just goal completion. In achieving the goal, other important sub-tasks may
result that must then be done in addition to completing the goal. The property



that we thus require to hold is that eventually both the goal has been achieved
and all other sub-tasks have been completed. The latter can be formalized in
terms of the interaction invariant as in the user model. It must be guaranteed
that the goal will be achieved and the interaction invariant restored.

The user model and the device speci�cation are both described by relations.
The device relation is true of its inputs and output arguments if they describe
consistent input-output sequences of the device. Similarly, the user model re-
lation is true if the inputs (observations) and outputs (actions) are consistent
sequences that a rational user could perform. The combined system can then be
described as the conjunction of the instantiated user model and the speci�cation
of the system. The task completion theorem we wish to prove thus has the form:

` 8 state traces .

initial state ^
device specification ^
user model

� 9t. (invariant t) ^
(goalachieved t)

If a theorem of this form can be proved then even if a user is capable of making
the rational errors considered, then that potential will not a�ect the completion
of the task: the errors will never manifest themselves.

The theorem is reusable in the same way as the user model. The same in-
formation must be provided: notably the users goal and the interaction invari-
ant, together with the device speci�cation and specialized user model. Thus
the correctness theorem does not need to be completely reformulated for each
veri�cation.

4 User Errors Detected by the User Model

Though the user model is simple, it describes a user who is capable of making a
range of persistent but rational errors. The model does not imply that mistakes
will always be made, just that the potential is there. The errors are consequences
of describing the way results from cognitive science suggest people act in trying
to achieve their goals. The errors are detected by attempts to prove the task
completion theorem. If a device design is such that users can make errors then
it will be impossible to prove that the task can be completed in all situations. It
should be noted that we de�ne classes of errors not by their e�ects but by their
cognitive cause. We do not claim that in proving the absence of a particular
error that a similar e�ect might not happen due to some other cause such as a
�re alarm ringing in the middle of an interaction.

4.1 Post-completion errors

One kind of common, persistent user error that emerges from the user model
is the post-completion error [2]. This is the situation where a user terminates



an interaction with outstanding completion tasks remaining. For example, with
old cash machines users persistently, though unpredictably, took cash but left
their card. Even in laboratory conditions people have been found to make such
errors [2]. This behavior emerges as a consequence of there being a rule in the
model allowing a user to stop once the goal has been achieved. If a system is to
be designed so that such errors do not manifest themselves, then the goal must
not be achievable until after the invariant has been restored. If this is so, the rule
will only become active in the safe situation when the task is fully completed.
Note that such errors could still occur (less frequently) if the system is designed
so that the goal is achieved �rst but that warning messages are printed or beeps
sounded to remind the user to do the completion tasks. Such designs do not
remove all possibility of the error being made, they just reduce its probability.
In our framework such a device is still considered erroneous.

4.2 Communication-goal errors

A further class of errors that can be detected are those based on communication
goals. Where there is no task-related, rather than device-related, restriction on
the order that communication goals must be discharged, di�erent users may
attempt to discharge them in di�erent orders. This will occur even in the face
of the device using messages to indicate the order it requires. As with post-
completion errors this problem is persistent but occurs unpredictably. It can
be avoided if the device does not require a speci�c order for communication
goal actions. In the model this error is a consequence of the communication goal
rules activating in any order provided their guard is active, and that if the action
is done that communication goal is removed. This means that the user model
may be left at a later time with no rational action to take. The abort rule is
then activated and the user model terminates the interaction before the task
is completed. Similarly if a design assumes device-speci�c knowledge of a task
that is not a communication goal, without giving reactive stimuli, then the user
model will abort: a user error occurs.

4.3 Device Delay Errors

The user model can also detect some errors related to device delay. If there is no
feedback during delays users often repeat the last action, for example. In the user
model if there is no light to react to and the user has no outstanding communi-
cation goals then only the abortion rule is active. If such a situation can occur,
then the task completion theorem cannot be proved. If there are outstanding
communication goals active, the model would force one of those actions to be
scheduled. The action could be taken before the device is ready, thus having no
e�ect. The communication goal would be removed from the communication goal
list however, so would not necessarily be repeated. At a later point this would
lead to only the abortion rule being possible. Again it would not be possible
to prove task completion. The device would need to be redesigned so that the



delay occurred when the user had no opportunity to discharge outstanding com-
munication goals, and a \wait" message of some form displayed. This would be
reactive in the sense that whilst displayed the user would react by doing noth-
ing. Erroneous systems could still escape detection, however. In particular, if the
light indicating the previous action remained lit during the computation time,
then task completion could be proved though the reasoning would require the
user repeating an action. The problem here is that our current user model is
not su�ciently accurate. In particular, humans do not react to stimulus unless
they believe that it will help them achieve their goal. In future work we will add
additional guards to the reactive rules to model rational reactive behavior.

5 Case Study

To illustrate the use of the model we consider a vending machine. We use a simple
example here to demonstrate the approach. However, any device that could be
described in terms of a �nite state machine and for which speci�c user actions
and goals can be formulated could in principle be treated in a similar way. This
includes not only walk-up-and-use machines such as cash machines but also, for
example, safety critical systems such as Air Tra�c Control Systems.

The vending machine we consider requires users to supply a pound coin and
gives change. The user must insert the coin and make a selection (we simplify this
here to the pressing of a single button). Processing time is needed once the money
is inserted before change is released (without loss of generality we assume there
is just a single cycle of processing). We assume for the sake of simplicity that
the chocolate machine always contains chocolate. Despite its simplicity, without
careful design, such a machine has the potential for users making communication
goal errors - the speci�c order that the coin is inserted and the selection made is
not forced by the task so a user could do them in any order. On the other hand
if chocolate is given out before the change, a post-completion error could be
made. Delay errors might also occur due to the processing time. Indeed, vending
machines with such design problems are widespread. Here we consider a design
that overcomes these problems.

Our design accepts coin and selection in any order. Once both have been
completed it releases the change. A light ashing by the change slot indicates
this. However this only occurs after the delay. A \wait" light indicates to the user
that the machine is busy. Note that this processing is scheduled after all com-
munication goals are ful�lled. A sensor on the change slot ap releases chocolate
when the change is taken. A �nite state machine description of the machine is
given in Figure 1. We use a relational version of this �nite state machine as the
behavioral speci�cation. Our approach is not restricted to �nite state machine
speci�cations however.

We must target the generic user model for the device in question. This in-
volves supplying concrete values for each of the model's arguments. We must
provide information about the device inputs and outputs, and the user's inter-
nal state. This involves de�ning tuple types with each �eld corresponding to



GiveChoc

DONE

CHOC
PushChoc

PushChocInsertCoin

InsertCoin

RESET ¬InsertCoin

COIN

¬PushChoc

¬PushChoc

¬InsertCoin
and

TakeChange
BOTH

GiveChange

ChangeLight

¬TakeChange

TRUE

TRUE

WAIT

PleaseWait

Fig. 1. Finite State Machine Speci�cation of a Chocolate Machine

traces of inputs, outputs, states, etc. Accessor functions to the �elds are then
used to represent that event.

The �rst argument that must be supplied to the user model is a list of
the actions a user could ever take that a�ect the interaction. This is used in
the rules to specify that all the other actions do not occur when we specify
that a particular event happens next. For our example the possible actions are
represented by an InsertCoin �eld, a PushChoc �eld corresponding to the user
pushing the selection button, a UserFinished �eld indicating the termination
of the interaction, a TakeChange �eld and a Pause action which means the user
is actively waiting:

[InsertCoin; PushChoc; UserFinished; TakeChange; Pause]

The second piece of information that must be supplied is the initial list of
communication goals together with their guards. Here there are two commu-
nication goals speci�ed. When a user approaches the machine they know they
must insert a coin and that this can only be done if they possess the coin. They
also know they must make a selection. There are no task enforced conditions
on when this can occur, so its guard is TRUE. It can happen at any time. The
communication goal list thus has the form:

[(HasCoin, InsertCoin); (TRUE, PushChoc)]

We must provide a list of reactive signals. This is a list pairing observations
with actions that they prompt the user to make. In our design, there are two such
signals: the ChangeLight prompts the user to take the change and so trigger the
sensor on the change ap; the PleaseWait light prompts the user to wait (i.e
intentionally do nothing).

[(ChangeLight, TakeChange); (PleaseWait, Pause)]

We must also indicate the possessions of the user. A relation POSSESSIONS

in the generic user model gathers this information into an appropriate form. We



supply it with the details of the user having chocolate and coins, the machine
giving chocolate, the user inserting a coin and counts of the number of coins and
chocolate bars possessed by the user.

Finally we must specify the goal of this interaction and the interaction in-
variant. Both are also used to create the concrete task completion theorem. The
goal is to obtain chocolate. Its achievement is given by the �eld of the user state
UserHasChoc. For vending machines the interaction invariant, VALUE INVARIANT,
can be based on the value of the user's possessions. After interacting with a vend-
ing machine the value of the user's possessions should be at least as great as it
was at the start (time 1). The value of a users possessions is calculated from
possession count and value �elds using a relation VALUE.

VALUE INVARIANT possessions state t =

(VALUE possessions state t >= VALUE possessions state 1)

This relation will not hold throughout the interaction. When the coin is inserted
the value will drop and will only return to its initial value once both chocolate
and change are taken. It is only an invariant in the sense that it must be restored
by the end of the interaction.

5.1 Proving the Task Completion Theorem

The task completion theorem we proved about this device has the form:

`8state COINVAL CHANGEVAL CHOCVAL.

(COINVAL = CHANGEVAL + CHOCVAL) ^
(DeviceState state 1 = RESET) ^
(UserHasCoin state 1) ^
�(UserHasChoc state 1) ^
MACHINE USER state ^
MACHINE SPEC state �
9t. (UserHasChoc state t) ^

(VALUE INVARIANT

(POSSESSIONS possessions CHOCVAL COINVAL CHANGEVAL)

state t)

Here MACHINE SPEC is the behavioral speci�cation of the vending machine. The
relation MACHINE USER is the instantiated user model: notice that its only argu-
ment is the state. All the other details required such as communication goals
have been provided in the instantiation. The theorem also contains assumptions
about the initial device state and that the user has a coin but no chocolate at
time 1.

The arguments to the predicate POSSESSIONS give signals representing the
details of the counts and values of the user's possessions. An advantage of our
approach is that proofs can be generic. The correctness theorem we proved is
generic with respect to the value of coins, change and chocolate. They are rep-
resented in the POSSESSIONS predicate by variables COINVAL, CHANGEVAL and
CHOCVAL rather than by �xed integers. The correctness theorem contains an
assumption that gives the restriction that the values concerned must satisfy:



COINVAL = CHANGEVAL + CHOCVAL

The correctness theorem holds for any triple of values that satisfy this relation.
We have proved the task completion theorem using symbolic simulation by

proof within the HOL theorem prover [7]. Our veri�cation is fully machine-
checked. An induction principle concerning the stability of a signal is used re-
peatedly to step the simulation over periods of inactivity between a rule activat-
ing and the action actually happening.

For example, the theorem below states that if the machine is in the CHOC

state at some time t1 greater than 0, then eventually state WAIT is entered.
It requires that at time t1 the user has a coin but no chocolate yet, that the
interaction was not terminated on the previous cycle and that inserting a coin
is still an undischarged communication goal. Once the new state is entered (at
some time t2) the user will still not have terminated the interaction, the com-
munication goal will have been discharged, the count of the user coins will have
been decremented but the counts of chocolate and change will be unchanged.

` 0 < t1 ^
(DeviceState state t1 = CHOC) ^
(UserHasCoin state t1) ^
�(UserHasChoc state t1) ^
�(UserFinished state (t1-1)) ^
(UserCommgoals state t1 = [(InsertCoin, UserHasCoin)]) ^
MACHINE USER state ^
MACHINE SPEC state

�
(9t2.

t1 <= t2 ^
(DeviceState state t2 = WAIT) ^
�(UserHasChoc state t2) ^
�(UserFinished state (t2-1)) ^
(UserCommgoals state t2 = []) ^
(CountChoc state t2 = CountChoc state t1) ^
(CountCoin state t2 = CountCoin state t1 - 1) ^
(CountChange state t2 = CountChange state t1))

A similar theorem is proved about each �nite state machine state. The �nal
theorem is proved by combining these separate state theorems.

These theorems are currently proved semi-automatically. A series of lemmas
must be proved for each. They are formulated by hand, but then proved auto-
matically by a set of specially written proof procedures. As the lemmas are of
a very standard form it should be straightforward to automate their formula-
tion. Furthermore, as design changes are made, many of the lemmas proved are
reusable.

6 Conclusions and Further Work

We have presented a veri�cation approach that allows multiple classes of user
errors to be detected or veri�ed absent from designs by proving a single task



completion theorem. The approach is based on the use of a generic user model.
Rather than specify erroneous properties directly, rational behavior is speci�ed.
This means that errors that are the result of that rational behavior are detected.
This is less restrictive than verifying that nothing bad can possibly happen,
whatever the user's goals. An advantage of the approach over specifying proper-
ties directly is that the informal and potentially error-prone reasoning implicitly
required to generate appropriate properties is formalized. To do this reasoning
formally would need a formal user model. By using a generic user model directly,
the cognitive basis of the errors is speci�ed and validated once rather than for
each new design or task. It also does not need to be revalidated when errors are
found and the design subsequently modi�ed.

To illustrate our approach, we described a small case study concerned with
the design of vending machines. We considered the veri�cation of a design free
of the classes of user errors covered. If we attempted to verify the correctness
of a faulty design, the correctness theorem would not be provable. For example,
suppose the design released the chocolate �rst. We would not be able to prove
from the user model that the change was taken. Instead, we would only be able
to prove that either the change was taken or that the user �nished. This is
because for this design the completion rule becomes active before the task has
been completed. The rule's guard is that the goal has been completed and this is
achieved as soon as the user takes the chocolate. Thus rather than proving a step
theorem such as that given, we would only be able to prove a conclusion that
one of two situations arise, only one of which leads to full task completion. A
case study discussing in more detail the attempted veri�cation of a faulty design
using our approach is given in [4].

The methodology shows promise for use on more complex examples. We
intend to carry out more case studies to test its utility. In particular we are
currently working on an Air Tra�c Control case study. The main di�culty in
verifying more complex systems is the time taken to develop the proof. This
problem will be eased as we automate the proofs. We used interactive proof in
the HOL system to prove the correctness theorem presented here. We intend to
continue to develop tactics to increase the automation in doing this. Currently
tactics have been written that automate the proofs of the main lemmas. Fur-
ther work will automate the formulation of the lemmas and their combination.
The lemmas and proofs are very formulaic so much of this task is likely to be
straightforward. The use of a common user model makes such automation more
tractable.

The current user model by no means covers all aspects of rational user be-
haviour. We will build on it improving its accuracy. In doing so we will increase
the number of classes of error detectable. For example, the rules concerning reac-
tive behaviour need to be made rational so that users only react when it appears
to help them achieve their goals. There is also a delay between a person com-
mitting to an action and actually taking that action. This can be modelled by
linking each external action with an additional internal \commit" action. This
will allow user errors resulting from such delays to be detected.



We do not claim our methodology can prevent all user errors. However, by
providing a mechanism for detecting a series of classes of systematic errors, the
usability of systems in the sense of absence of user errors is improved.

Acknowledgements This work is funded by EPSRC grant GR/M45221. Matt
Jones made useful comments about an early version of this paper.

References

1. R. Butterworth, A. Blandford, and D. Duke. Using formal models to explore display
based usability issues. J. of Visual Languages and Computing, 10:455{479, 1999.

2. M. Byrne and S. Bovair. A working memory model of a common procedural error.
Cognitive Science, 21(1):31{61, 1997.

3. F. Corella, Z. Zhou, X. Song, M. Langevin and E. Cerny. Multiway Decision Graphs
for Automated Hardware Veri�cation. Formal Methods in System Design, 10(1):7{
46, 1997.

4. Paul Curzon and Ann Blandford. Using a Veri�cation System to Reason about Post-
Completion Errors. Presented at Design, Speci�cation and Veri�cation of Interactive
Systems 2000. Available from http://www.cs.mdx.ac.uk/puma/.

5. Paul Curzon and Ann Blandford. Reasoning about order errors in in-
teraction. Supplementary Proceedings of the International Conference on
Theorem Proving in Higher-order Logics, August 2000. Available from
http://www.cs.mdx.ac.uk/puma/.

6. D.J. Duke, P.J. Barnard, D.A. Duce, and J. May. Syndetic modelling. Human-

Computer Interaction, 13(4):337{394, 1998.
7. M.J.C. Gordon and T.F. Melham. Introduction to HOL: a theorem proving envi-

ronment for higher order logic Cambridge University Press, 1993.
8. W-O Lee. The e�ects of skills development and feedback on action slips. In Monk,

Diaper, and Harrison, editors, People and Computers VII. CUP, 1992.
9. T.G. Moher and V. Dirda. Revising mental models to accommodate expectation

failures in human-computer dialogues. In Design, Speci�cation and Veri�cation of

Interactive Systems '95, pp 76{92. Wien : Springer, 1995.
10. F. Paterno' and M. Mezzanotte. Formal analysis of user and system interactions

in the CERD case study. In Proc. of EHCI'95: IFIP Working Conference on Engi-

neering for Human-Computer Interaction, pp 213{226. Chapman and Hall, 1995.
11. J. Reason. Human Error. Cambridge University Press, 1990.


