Automating the Verification of Parameterized Hardware
using a Hybrid Tool

Paul Curzon' and Sofiene Tahar?

1School of Computing Science, Middlesex University, UK.
2Dept of Electrical and Computer Engineering, Concordia University, Canada.

Email: p.curzon@madx.ac.uk, tahar@ece.concordia.ca

Abstract— We outline how a hybrid formal hardware ver-
ification tool that links an interactive theorem prover and
an automated hardware verification tool, can verify parame-
terized circuits containing replicated components. We show
that the approach integrates well with the hierarchical proof
approach embodied in the hybrid tool.

I. INTRODUCTION

There are many techniques available to the hardware de-
signer to verify a given design meets its specification. Tra-
ditionally, simulation and testing have been used. More
recently formal approaches to hardware verification have
become significant [6]. In these approaches mathematical
techniques are used to prove facts about the correctness of
the design. Such work is based on mathematical descrip-
tions of the design and the specification it should meet
or properties that should be true of it. Formal reason-
ing about the design, specification and properties can then
be performed. Rather than just verifying that the design
meets the specification for a set of values tested, a proof
can be conducted that the design meets the specification
for all input values.

There are two broad approaches to formal verification:
automated decision diagram techniques and interactive de-
ductive proof techniques [6]. In the former, decision dia-
grams are used to represent the design and specification.
By utilizing the fact that the decision diagrams have a
canonical form, the equivalence of two circuit descriptions
can be determined. State-space exploration techniques can
also be used to automatically enumerate all possible behav-
iors, and so check, for example, that particular properties
always hold. In contrast, in the deductive proof approach
descriptions of the design and specification are given in
some logic such as higher-order logic. A mathematical
proof within that logic is then constructed of a theorem
that the design implements the specification. A theorem
prover is used both to construct the proof and to provide
automation of proof steps. This approach is well-suited to
performing hierarchical verification where each submodule
in the design is verified independently, with the resulting
theorems combined to give a correctness theorem for the
whole design. This allows the approach to scale to arbi-
trarily large circuits, at least in theory.

Automated decision diagram based formal hardware ver-
ification is fast and convenient, but does not scale well [6].
A particular problem is that only concrete circuits can be

This work was funded by EPSRC Grant GR/M45221 and NSERC
Grant OGP0194302.

verified: all details of the design must be fully specified
before a verification can be performed. Parameterized cir-
cuits, which contain n replicated components where the
value of n is unspecified, cannot be verified directly within
the tool. A new verification would need to be performed for
each possible value of n, or informal reasoning performed
outside the tool. In contrast, parameterized verification is
easily performed using interactive proof systems. Here a
theorem that the circuit is correct for all n can be proved.
However, much more user intervention is required to do
the verification. Rather than minutes of automated proof,
hours might be spent constructing an interactive proof.
Ideally the advantages of both approaches would be ob-
tained. The bulk of the low-level verification would be
performed quickly and automatically, but parameterized
aspects of the proof still need to be done.

The contribution of this paper is not to introduce the
idea of verifying parameterized circuits which is well known
within the theorem proving community (see for exam-
ple [1]). Rather we show how such techniques can be used
to extend the capabilities of a particular automated deci-
sion diagram based verification system that is combined
in a hybrid tool [7] with a theorem prover. In particular,
we show how such techniques can be integrated seamlessly
with a hybrid tool designed to explicitly support hierarchi-
cal verification. In this paper we first overview the hybrid
tool, we then describe how a proof of a parameterized cir-
cuit can be performed semi-interactively using the hybrid
tool.

II. THE HYBRID ToOL

Work to combine the advantages of automated and in-
teractive tools falls generally into two areas: hybrid tools
in which two existing, stand-alone verification systems are
linked such as the Voss-ThmTac System [2] and the SMV-
HOL linkage [10] and systems where external proof pack-
ages are tightly integrated as decision procedures for some
subset, of the logic by an interactive system [9]. One focus
of work is on proof management tools [1][8] used to break
down and recombine subgoals in the interactive prover to
give to the hybrid tool. Such tools have not previously
provided direct support for hierarchical proof.

In this paper we discuss how a hybrid tool linking
HOL [5], a higher-order logic theorem prover, and MDG [4],
a decision diagram based system, can be used to verify
parameterized circuits. We have previously demonstrated
that this tool can be used to verify concrete circuits much



Apply MDG tactics

MDG
ificati no . yes
succeeded v

no

Hierarchical
block

no

Anayze MDG
counterexample

Correct design

Fig. 1.

Make HOL
theorem

Apply Hierarchy tactic

Using the hybrid tool

faster than in either tool alone [7].

HOL is a general purpose theorem prover that has been
used in a wide variety of application areas, not just hard-
ware verification. Specifications and goals are written in
higher-order logic. The user works interactively with the
system calling proof functions, called tactics, that imple-
ment the inference rules of the logic to apply proof steps
and so create theorems. A subgoal manager keeps track
of so far unproven subgoals required to prove the original
goal. Results produced by external tools can be imported
into HOL.

The MDG hardware verification system provides verifi-
cation procedures for equivalence and property checking.
The former provides the verification of two combinational
circuits or of two state machines. The latter allows verifi-
cation through invariant checking or model checking. The
strength of the MDG system is its automation and ease
of use. It has been used in the verification of significant
hardware examples (e.g., [11], [3]). The MDG system is
a decision diagram based verification tool using Multiway
Decision Graphs (MDGs) [4]. An MDG is a finite, directed
acyclic graph (DAG). The MDG tools combine some of the
advantages of representing a circuit at more abstract lev-
els with the automation offered by other decision-diagram
based tools. The input language for MDG, MDG-HDL,
supports structural descriptions, behavioral descriptions or
a mixture of both. A structural description is usually a
netlist of components connected by signals, and a behav-
ioral description is given by a tabular representation of the
transition/output relation of the component.

The hybrid tool links these systems in a way that directly
supports hierarchical verification. Figure 1 outlines the use
of the tool. HOL is used as the proof manager. To perform
a verification, a goal that the implementation implies the
specification is set using the HOL subgoal manager. The
MDG automated verification tools can then be called to
prove the goal. Such use of MDG is essentially seamless in
the sense that MDG is treated like any other tactic within
the HOL system as far as the user is concerned. If MDG
fails to prove the goal due to state-space explosion, then
a specially written HOL hierarchical verification tactic can
be called. This uses the hierarchy explicit in the implemen-

tation to break down the original goal to goals about the
components of the circuit. A correctness subgoal is auto-
matically generated for each immediate submodule of the
circuit. These subgoals can be verified in the same way
using the MDG tactics or further hierarchical verification.
The HOL subgoal manager automatically keeps track of
unproved goals. Once the subgoals are proved, the hier-
archy tactic combines the resulting theorem into the cor-
rectness theorem of the original goal. Thus HOL proof is
used to manage the hierarchical aspects of a proof, whereas
MDG is called to automatically deal with low level proof.
In this way much larger verification can be performed than
in either tool on its own.

The hybrid tool must be supplied with a behavioral spec-
ification written in higher-order logic for each block in the
design that is verified independently. Structural specifica-
tions are similarly written in higher-order logic. However,
the structural specification of a block differs from a behav-
ioral specification in that its body consists of a network
of components. These components (registers, logic gates,
etc.) are predefined in the logic.

III. PARAMETERIZED CIRCUIT DESCRIPTIONS

A parameterized circuit description describes a family of
similar circuits. For example it might contain some repli-
cated part where the number of times that part is repli-
cated is specified as a variable. By providing different val-
ues for the variable, different circuits within the family are
obtained. We will examine two simple classes of param-
eterized circuit to show how such circuits can be verified
using our hybrid tool.

A. Parallel Composition

A very simple form of parameterized circuit consists of
a component that is replicated in parallel. Each compo-
nent takes similar input and produces similar output, but
there is no interconnection between the replicated parts
(see Figure 2). In essence, this kind of replication alters
the datapath width. A simple example of its use would
be in specifying a register constructed from 1-bit delays.
However, it also occurs where much larger components are
replicated. A common form of simplification used when us-
ing automated decision diagram systems (needed to make
a verification tractable) is to verify such circuits as though
they consisted only of a single component—simplifying the
datapath from say 32-bits to 1-bit. It is then deduced in-
formally that the full circuit is correct. MDG provides an
alternative way of dealing with this simple situation using
abstract variables. However, the current implementation
of the hybrid tool does not make such variables available.
We therefore look at a more general approach.

Using the hybrid tool, specifications are written in HOL
and then exported to MDG. Submodules of the circuit that
are to be verified by calls to MDG must therefore be in a
standard syntax. However high level modules that are not
going to be verified in MDG do not need to stick to this lim-
ited form. They can use the full power of higher-order logic
specification. This does not preclude their submodules (if



ip[0] ip[1] ip[n-1]
R R e o o R
op[0] op[1] op[n-1]

Fig. 2. The Parallel Circuit Pattern

in the appropriate form) from being verified using MDG. In
particular, we can give parameterized specifications to the
hybrid tool, provided we only export non-parameterized
modules to MDG to verify.

The following is a general description of the circuit of
Figure 2.

PARALLEL.I (n, ip, op) =
Vk (0 <k <n). I(ipk], op[k])

This defines a parameterized circuit implementation
called PARALLEL_I that is parameterized by n. It has
inputs, ip, and outputs, op. The implementation is then
specified as consisting of a series of instances of hardware
component I: one for each value of k between 0 and n — 1.
Each instance takes as input the kth bit of ip and generates
as output the kth bit of op. We assume here that I is some
component, defined elsewhere, that can be verified using
MDG.

If the specification for the component I is S, then the
specification of the whole circuit is similar to the above.

PARALLEL-S (n, ip, op) =
Vi (0 < k < ). S (ip[K], op[k])

The correctness theorem we wish to prove has the form:

Vn ip op.
PARALLEL.I (n, ip, op) = PARALLEL.S (n, ip, op)

That is we wish to prove that the implementation of
our parallel circuit implements the specification as defined
above. Using the hybrid tool, the first steps in this proof
can be done interactively in HOL. By rewriting with the
definitions of the parallel components, resolving the as-
sumptions and generalizing we are left to prove a similar
correctness subgoal to that we started with, but about the
submodule rather than the whole circuit.

We have used HOL proof to eliminate references to the
parameter. We now have a concrete correctness goal that
can thus be proved automatically using the hybrid tool
by calling MDG, or by using the hybrid tool’s hierarchical
verification facilities. On proving it, the HOL subgoal man-
ager will automatically use the theorem to prove a theorem
about the original parameterized circuit. Thus by perform-
ing some interactive proof in HOL before switching to using
the hybrid tools facilities for hierarchical verification we can
verify parameterized circuits.

Since this parameterized pattern is common, it is worth
writing a template definition and write a tactic that pro-
cesses it automatically. The definition PARALLEL below

ip[0] ip[1] ip[n-1]
rin R R e o o R rout
r[0] 1] 2] r[n-1] r[n]
op[0] op[1] op[n-1]

Fig. 3. The Ripple Circuit Pattern

embodies the pattern. It now takes the replicated com-
ponent, R, (a specification or implementation) as an addi-
tional argument. Such hardware patterns have been sug-
gested before, for example in [1].

PARALLEL R n ip op =
Vk (0 <k <n). R (ip[k], op[k])

The original correctness theorem could now be stated as
follows.

Vn ip op.
PARALLEL (I, n, ip, op) = PARALLEL (S, n, ip, op)

The hybrid tool could be extended with a HOL proof func-
tion that proves this automatically.

Note that in MDG, inputs to components must be spec-
ified as individual bits. There is no concrete word abstrac-
tion, though an abstract variable could be used for this.
However, in a parameterized circuit, the number of in-
puts and outputs can vary with the parameter. Thus a
list or word abstraction is needed. This can be done in
HOL. The inputs and outputs to PARALLEL are words
of length n rather than a series of independent bit signals.
However, the goals that are sent to MDG are about com-
ponents that have single bit inputs and outputs only. More
generally such word abstractions can appear in other, non-
parameterized specifications. HOL rewriting can be used
to rewrite concrete versions of the specifications using word
inputs and outputs to versions using bit inputs and outputs
that can be processed by MDG.

B. Ripple Carry Composition

A second common pattern for parameterized hardware
is Rippling. This is the pattern embodied in the Ripple-
carry Adder (see Figure 3). Each component still takes
some input and produces some output. However part of
that output (the carry for a ripple-carry adder) is input to
the next component. This pattern can be specified using
the following HOL definition where ¢p and op are inputs
and outputs as before, rin is the input that starts the rip-
ple (eg a carry-in) and rout the output that is the final
ripple output (eg a carry-out) and r is a word that repre-
sents the series of values that are the ripple-in/out for each
component:

RIPPLE R (n, (rin, ip), (op, rout), r) =
Vk (0 <k <n). R (r[k], ip[k], op[k], r[k+1]) A
(rin = r[0]) A (r[n] = rout)
This definition is very similar to that given for the par-
allel circuits. The main difference is in the interconnection



Fig. 4. Transforming a Circuit

pattern used. Now, the component being replicated, R has
two inputs and two outputs. The kth instance, uses the
kth bits of the input and r for its input and the kth bit of
op for its output. However, it uses the k+1th bit of r for
its ripple output. The last line of the definition just state
that the ripple input rin is wired to bit 0 of r and bit n of
r is wired to the ripple output, rout.

A correctness goal for a circuit consisting of such a com-
ponent would have a similar form to that for the PARAL-
LEL circuit:

Vn rin rout ip r op.
RIPPLEI (n, (rin, ip), (r, op, rout)) =
RIPPLE S (n, (rin, ip), (r, op, rout))

As with the parallel circuit, HOL proof can strip it down to
a correctness subgoal about the component which may then
be verified automatically using the hybrid tool by calling
MDG or by hierarchical proof.

A variety of other patterns, such as sequential connec-
tions, trees, etc., could be treated in a similar way. Each of
the HOL proofs for such patterns have a very similar form.
A HOL tactic could therefore be written to cope with each.
Also if the pattern definitions such as RIPPLE are used it
would be simple for the tactic to detect which pattern was
being used and do the appropriate proof. This could be
integrated into the current hierarchical verification tactic
so that one tactic would be used whether the circuit was
parameterized or not, to break it down to the next level of
subgoals.

C. Transforming Circuits

A parameterized circuit description may not be given
in a form that would make best use of the hybrid tool.
Ideally, MDG should be called on the largest (so non-
parameterized) circuit that it can verify automatically in
reasonable time. However a parameterized circuit could be
described in two ways (see Figure 4). One slice of the whole
circuit could be described concretely and then it could be
replicated at the top level. Alternatively, the most prim-
itive components could be replicated directly, resulting in
all submodules being parameterized. For example, with the
circuit description on the left of Figure 4 high-level module
C is replicated so it could be verified by MDG and the repli-
cation dealt with by HOL. With the equivalent description
on the right, modules D and E are both parameterized so
cannot be verified using MDG. Pure HOL must be used to
verify the whole circuit. With the hybrid tool this could

be overcome, however. HOL could be used to transform
the description on the right to that on the left allowing
MDG to be used in the verification. A correctness theorem
about the original circuit would be obtained. This could
be automated relatively easily.

IV. CONCLUSIONS

We have described how a HOL-MDG hybrid system can
be used to verify parameterized circuits by using HOL to
deal with the parameterized aspects of the circuit, leaving
a concrete circuit that can be verified automatically by
calling MDG, or if necessary hierarchically. By identifying
particular patterns of generic circuit, such proofs could be
conducted automatically, in a similar way to the way that
the hierarchy tactic currently deals with submodules. The
approach thus integrates with the tool’s current approach
to hierarchical verification. We illustrated the approach by
considering simple parameterized patterns.

REFERENCES

[1] M.D. Aagaard, M. Leeser, and P. Windley. Toward a super
duper hardware tactic. In J.J. Joyce and C.H. Seger, editors,
Higher Order Logic Theorem Proving and Its Applications, Lec-
ture Notes in Computer Science 780, pages 400-413. Springer-
Verlag, 1993.

[2] M.D. Aagaard, R.B. Jones, and C-J.H. Seger. Lifted-FL:A Prag-
matic Implementation of Combined Model Checking and Theo-
rem Proving. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin,
and L. Thery, editors, Theorem Proving in Higher Order Log-
ics, Lecture Notes in Computer Science 1690, pages 323-340.
Springer-Verlag, 1999.

[3] S. Balakrishnan and S. Tahar. A Hierarchical Approach to the
Formal Verification of Embedded Systems Using MDGs. In Pro-
ceedings IEEE 9th Great Lakes Symposium on VLSI, Ann Ar-
bor, Michigan, USA, March 1999, pages 284-287, IEEE Com-
puter Society Press.

[4] F. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny. Mul-
tiway Decision Graphs for Automated Hardware Verification.
Formal Methods in System Design, 10(1):7-46, 1997.

[5] M.J.C. Gordon and T.F. Melham. Introduction to HOL:A The-
orem Proving Environment for Higher-Order Logic. Cambridge
University Press, U.K., 1993.

[6] C. Kern and M. Greenstreet. Formal Verification in Hardware
Design: A Survey. ACM Transactions on Design Automation
of Electronic Systems, 4:123—-193, 1999.

[7] S. Kort, S. Tahar and P. Curzon. Hierarchical Verification using
an MDG-HOL Hybrid Tool. In Proceedings of the IFIP Con-
ference on Correct Hardware Design and Verification Methods
(CHARME’2001), Lecture Notes in Computer Science, Springer
Verlag, September 2001.

[8] R. Kumar, K. Schneider and T. Kropf. Structuring and Au-
tomating Hardware Proofs in a Higher-Order Theorem-Proving
Environment. Formal Methods in System Design, 2:165-223,
1993.

[9] S.Rajan, N. Shankar, and M.K. Srivas. An Integration of Model-
checking with Automated Proof Checking. In Pierre Wolper,
editor, Computer Aided Verification, Lecture Notes in Computer
Science 939, pages 84-97. Springer Verlag, 1995.

K. Schneider and D.W. Hoffmann. A HOL Conversion for Trans-
lating Linear Time Temporal Logic to w-Automata. In Y. Bertot,
G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery, editors, The-
orem Proving in Higher Order Logics, Lecture Notes in Com-
puter Science 1690, pages 255-272. Springer Verlag, 1999.

S. Tahar, X. Song, E. Cerny, Z. Zhou, M. Langevin and O. Ait-
Mohamed. Modeling and Verification of the Fairisle ATM Switch
Fabric using MDGs. IEEE Transactions on CAD of Integrated
Circuits and Systems, 18(7):956-972, 1999.

[10]

(1]



