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Abstract. We describe a hybrid formal hardware veri-

�cation tool that links the HOL interactive proof system

and the MDG automated hardware veri�cation tool. It

supports a hierarchical veri�cation approach that mir-

rors the hierarchical structure of designs. We obtain ad-

vantages of both veri�cation paradigms. We illustrate

its use by considering a component of a communications

chip. Veri�cation with the hybrid tool is signi�cantly

faster and more tractable than using either tool alone.

1 Introduction

Automated decision diagram based formal hardware ver-

i�cation is fast and convenient, but does not scale well,

especially where datapaths and control circuitry are com-

bined. Details of the version of the design veri�ed need

to be simpli�ed, e.g., considering 1-bit instead of 32-

bit datapaths. Finding a model reduction and appropri-

ate abstractions so that veri�cation is tractable with the

tool can be time-consuming. Moreover, signi�cant detail

can be lost. An alternative is interactive theorem prov-

ing. The veri�cation can be done hierarchically allow-

ing large designs to be veri�ed without simpli�cation.

Furthermore, it is possible to reason about high level

abstractions of datatypes. It can however be very time-

consuming, requiring signi�cant user interaction and skill.

The contribution of our work is to implement a hy-

brid tool combining HOL [12] and MDG [5] which pro-

vides explicit support for hierarchical hardware veri�-

cation. In particular, we have provided an embedding of

the MDG input language in HOL, implemented a linkage

between HOL and MDG using the PROSPER toolkit [9]

and implemented a series of HOL tactics that automate

hierarchical veri�cation. This means that a hierarchical

proof can be performed as it might be done using a pure
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HOL system. However, the MDG tools can be called to

perform veri�cation of components that are within its

capabilities. We have veri�ed a component of a commu-

nication switch using the tool. Veri�cation is shown to be

signi�cantly faster and more tractable using the hybrid

tool than with either tool individually.

The remainder of this paper is organized as follows.

In Section 2 we overview brie
y the two tools being

linked. We present our hybrid tool and the methodology

it embodies in Section 3. A case study using the tool to

verify a component of an ATM (Asynchronous Transfer

Mode) switch is described in Section 4. Finally, we dis-

cuss related work in Section 5 and draw conclusions in

Section 6.

2 The Linked Tools

Our hybrid tool links the HOL interactive theorem prover

and the MDG hardware veri�cation system. HOL [12] is

based on higher-order logic. The user works interactively

with the system calling ML functions [19] that imple-

ment inference rules to apply proof steps. New theorems

are created in HOL by applying inference rules|derived

rules call a succession of primitive rules, thus the user

can have great con�dence in the derived theorems. How-

ever, HOL also provides functions to create theorems

directly without proof. This feature can be used to im-

port results produced by external tools into HOL. Our

hybrid tool uses the PROSPER/Harness Plug-in Inter-

face of HOL [9]. This gives a uniform way of linking

HOL with external proof tools. It provides the low level

client-server communication interface from HOL to var-

ious languages within which other tools are integrated.

A range of di�erent external proof tools (such as MDG)

can act as servers to a HOL client. The interface re-

moves the burden of writing low-level communication

tools, leaving the hybrid tool designer to concentrate on

higher-level issues. It also tags theorems produced by

plug-ins with a label indicating their source. These la-

bels are propagated to any theorem generated from the

imported result allowing the pedigree of any result to be

later determined.

The MDG system, which is primarily designed for

hardware veri�cation, provides veri�cation procedures

for equivalence and property checking. The former pro-

vides the veri�cation of two combinational circuits or

the veri�cation of two state machines. The latter allows

veri�cation through invariant checking or model check-

ing. The strength of the MDG system is its automation

and ease of use. It has been used in the veri�cation of

signi�cant hardware examples [23,4,25]. The MDG sys-

tem is a decision diagram based veri�cation tool based

on Multiway Decision Graphs (MDGs) [5] rather than

on binary decision diagrams. MDGs overcome the data

width problem of Reduced-Order Binary Decision Dia-

gram (ROBDD) based veri�cation tools. An MDG is a

�nite, directed acyclic graph (DAG). MDGs essentially

represent relations rather than functions. They are much
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more compact than ROBDDs for designs containing a

datapath. Furthermore, sequential circuits can be ver-

i�ed independently of the width of the datapath. The

MDG tools combine some of the advantages of repre-

senting a circuit at more abstract levels with the au-

tomation o�ered by decision-diagram based tools. The

input language for MDG is MDG-HDL, a simple hard-

ware description language (HDL) supporting structural

descriptions, behavioral descriptions as Abstract State

Machine (ASM) or a mixture of both. A structural de-

scription is usually a netlist of components connected

by signals, and a behavioral description is given by a

tabular representation of the transition/output relation

of the ASM. This is done using the Table construct of

MDG-HDL: essentially a case statement that allows the

value of a variable to be speci�ed in terms of the values

of inputs and other expressions

3 The Hybrid Tool and Veri�cation

Methodology

In a pure MDG veri�cation, structural and behavioral

descriptions are given for the top level design. An au-

tomated veri�cation procedure is then applied. If the

problem is suÆciently tractable, the veri�cation is com-

pleted automatically. If not, ideally the problem would

be attacked in a hierarchical fashion by verifying the sub-

blocks independently. However, the management of this

process cannot be done within the tool, though could be

done informally outside it.

In a pure HOL hardware veri�cation, the proof is

structured according to the design hierarchy of sub-blocks

within the implementation. For each block, including the

top level block of the design, a structural speci�cation

and behavioral speci�cation are given. Each block's im-

plementation (apart from those at the bottom of the hi-

erarchy) is veri�ed against its speci�cation in three steps.

Firstly, an intermediate veri�cation result is obtained

about the block based on the behavioral descriptions of

its sub-blocks. Essentially, the sub-blocks are treated as

primitive components in this veri�cation. Secondly, the

process is repeated recursively on the sub-blocks to ob-

tain correctness theorems for them. Finally, the correct-

ness theorems of the sub-blocks are combined with the

intermediate correctness theorem of the block itself to

give the actual correctness theorem of the block. This

is based on the full structural description of the block

down to primitive components. The veri�cation follows

the natural design hierarchy. If this process is applied to

the top level design block, a correctness theorem for the

whole design is obtained. The integration of the veri�-

cation results of the separate components that would be

done informally (if at all) in an MDG veri�cation is thus

formalized and machine-checked in the HOL approach.

Our hybrid tool supports hierarchical veri�cation,

automating the process discussed above, and �ts the use

of MDG veri�cation naturally within the HOL frame-
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work of compositional hierarchical veri�cation. The HOL

system is used to manage the proof, with the MDG sys-

tem called to verify those design blocks that are tractable.

This removes the need to provide behavioral speci�ca-

tions for sub-blocks and the need to verify them sep-

arately. In particular, if the design of any sub-block is

suÆciently simple, then the hierarchical approach can be

abandoned for that block and the whole block veri�ed

in one go in MDG. Furthermore, verifying a block under

the assumption that its sub-blocks are all primitive com-

ponents may also be done using MDG if tractable. If not,

a normal HOL proof can still be performed. No informa-

tion is lost in using MDG via the hybrid tool. We use

MDG-style behavioral speci�cations within HOL. This

means the speci�cations must be in the form of a �-

nite state machine or table description. If a higher level

abstraction, unavailable in MDG, is required then a sep-

arate HOL proof is performed that an MDG style spec-

i�cation meets this abstraction.

3.1 The Hybrid Tool

Our Hybrid tool was written in SML (Standard ML).

It consists of �ve modules: a parsing module, an extrac-

tion module, a hierarchical veri�cation support module,

a code generation module and an MDG interaction mod-

ule (cf. Figure 1). Subgoal management is done using

the HOL subgoal manager. This is an advantage of the

hybrid approach { the existing HOL infrastructure aug-

TypesParser

SpecParser

ImpParser

GoalParser

BlockExtractor

OrdGenerator

Goal BlockSpecId, BlockImpId

BlockSpec

FlatBlockImp

Types

CorrectnessThm

Parsing
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Code

Extraction

CorrectnessThm

Generation MDGInteraction

SpecDescFile

ImpDescFile
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SubgoalGenerator

Implementation BlockImp
SpecFile

ImpFile

OrdFile InvFile

Flattener

MDGInteraction
MDG_TAC

Specification

AlgFile

Fig. 1. The Hybrid Tool's Structure.

ments MDG providing a much more powerful interface

to MDG.

The hybrid tool supports the hierarchical veri�cation

process by providing a HOL embedding of the concrete

subset of the MDG input language to allow MDG-style

speci�cations to be written in HOL. Several high-level

proof tactics that manage and automate the proof pro-

cess are also provided. A hierarchy tactic, HIER VERIF TAC,

automates the creation of subgoals from the correctness

goal of a block by analyzing its structure as outlined in

the previous section. It later combines the proven sub-

goals to give the desired correctness theorem. Where a

non-primitive component occurs several times within a

block, the tactic avoids duplication, generating a single

subgoal that once proved is automatically instantiated

for each occurence of that component to prove the cor-

rectness of the block. Another tactic, MDG TAC, auto-

mates the link to the MDG tools by verifying a given
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Fig. 2. Using the Hybrid Tool

correctness theorem for a block using MDG combina-

tional or sequential equivalence veri�cation. This is done

after analysis of the implementation or speci�cation de-

scription. A HOL tactic, BLOCK VERIF TAC, has also

been developed as part of the hybrid tool that can also

verify simple low level blocks automatically, performing

Boolean case analysis according to a user-supplied order.

Veri�cation using the hybrid tool proceeds as shown

in Figure 2. An initial goal is set that the top level de-

sign's implementation meets its behavioral speci�cation.

If the design can be veri�ed using MDG, the appropri-

ate MDG tactic, determined by whether the circuit is

sequential, is called. Otherwise, the hierarchy tactic is

called to break the design into smaller parts, and the

process is repeated. At any point, a HOL proof can be

performed directly to prove a goal. In generalm MDG

can fail to terminate due to state-space explosion leading

to the system running out of memory or due to certain

abstract variables or functions being uninterpreted. This

is handled manually within the MDG tool using one of

the heuristics described in [3].

3.2 Speci�cations

The hybrid tool must be supplied with a behavioral spec-

i�cation for each block in the design that is veri�ed.

This is not necessary for sub-blocks within blocks veri�ed

by calls to MDG. The speci�cations are intended to be

complete speci�cations covering all aspects of the blocks

rather than just partial properties corresponding to some

high level property of the whole circuit being veri�ed.

The speci�cations are provided as a normal �le of HOL

de�nitions. However, as these de�nitions must be ana-

lyzed by the tool and ultimately converted into MDG,

they must follow a prescribed form: they must consist of

a conjunction of tables, functional blocks (black-box op-

erations using uninterpreted functions), and input and

output arguments must both be explicitly typed and be

in a given order. The tables are an embedding of MDG

tables in HOL originally de�ned by Curzon et. al. [6] to

verify the MDG components in HOL. The veri�cation

of these components increases con�dence that the MDG

tools can be trusted when used in the HOL system.

Structural speci�cations are written in a subset of the

HOL logic similar to that for behavioral speci�cations.

However, the descriptions are not limited to tables but

can include any component of the MDG component li-

brary. The structural speci�cation of a block thus di�ers

from a behavioral speci�cation in that its body consists
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HA i (x, y) (z, cout) =

(MDG XOR (x,y) z) ^ (MDG AND (x,y) cout)

FA i (x, y, cin) (z, cout) =

9 z0 cout0 cout1.

(HA i (x,y) (z0,cout0))

(HA i (z0,cin) (z,cout1))

(MDG OR (cout0,cout1) cout)

Fig. 3. A Structural Speci�cation of an Adder

z TAB (x, y) z =

TABLE [x;y] z [[F; F]; [T; T]] [F;F] T

cout TAB (x, y) cout =

TABLE [x;y] cout [[F; DONT CARE];

[T; F]] [F;F] T

HA (x, y) (z, cout) =

(z TAB (x,y) z) ^ (cout TAB (x,y) cout)

Fig. 4. A Behavioural Speci�cation of a Half-Adder

of a network of components. A component may be an

MDG built-in component, a functional block, a table or

a component previously de�ned by the user. The MDG

built-in components are an embedding in HOL of the

actual MDG components.

3.3 The Veri�cation Process

The hybrid tool is intended to provide automated sup-

port for hierarchical veri�cation and to enable the user

to verify some blocks using MDG. We will illustrate this

by refering to the veri�cation of a simple adder circuit.

A typical session with the hybrid tool goes through the

following steps. First, the user supplies the tool with a

speci�cation �le and an implementation �le as part of an

initialization procedure. These are SML �les containing

normal SML de�nitions. The speci�cation �le includes

the behavioral speci�cations of the design blocks. The

implementation �le includes the design structural speci-

�cation and follows the design hierarchy. Both �les may

include user de�ned HOL datatypes. An example of a

structural speci�cation for an adder is given in Figure 3.

The behavioral speci�cation of a half-adder in terms of

tables is given in Figure 4. The speci�cation of the full

adder is similar. In a table speci�cation, the �rst list

gives the inputs of the table, the next argument is the

output. Next is a list of lists giving possible combinations

of input values and then a list giving the output values

resulting from those combinations. The �nal argument

gives the default value for any combination of inputs not

listed. MDG tables are more general than shown in this

example in that general expressions can be used as table

inputs and variables can appear in the rows. We have

ommitted type information from this �gure (that each

variable is a function from time to a Boolean). Strictly,

due to the current version of the implementation of the

front end of the hybrid tool this information must be

provided explicitly, though it would be straightforward

to derive it as is done in pure HOL. The initialization

procedure also involves loading the embeddings of the

MDG tables and the MDG components in HOL as well

as starting a server to the MDG system.
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MDG_SEQ_TAC

HIER_VERIF_TAC
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WHITE BOX = IMPLEMENTATION
HATCHED BOX  = SPECIFICATION

SUBGOAL SUBGOAL

YES/NO YES/NO YES/NO

Fig. 5. Hierarchical Veri�cation using HIER VERIF TAC.

Once the tool is initialized, the user sets the cor-

rectness goal for the whole design using HOL's subgoal

package. This goal states that the design's implementa-

tion implies its speci�cation. For example, for our adder,

we set the goal:

8 x y cin z cout.

FA i (x,y,cin) (z,cout) =) FA (x,y,cin) (z,cout)

This correctness goal could then be resolved directly

through MDG using MDG TAC. Applying this tactic

to complex designs may lead to state explosion. To over-

come this, HIER VERIF TAC is used. The action of this

tactic is summarized in Figure 5. It automatically gener-

ates a correctness subgoal for every immediate sub-block

in the design. Where one sub-block is used in several

places, only one goal is generated: the hybrid tool gener-

ates a general subgoal that justi�es its use in each situa-

tion. A further subgoal states that the lower level spec-

i�cations, connected according to the structural speci�-

cation, imply the current speci�cation.

For example, HIER VERIF TAC generates two sub-

goals for our adder.

8 x y z cout.

HA i (x,y) (z,cout) =) HA (x,y) (z,cout)

8 x y cin z cout.

FA i hl (x,y,cin) (z,cout) =) FA (x,y,cin) (z,cout)

The �rst is a correctness statement for the half-adder

component. Only one such general theorem is generated.

This is used to justify the two slightly di�erent con-

crete subgoals for the two instances of this component in

the design. The second subgoal is a correctness goal for

the adder where the half-adder is treated as a primitive

component. It contains an automatically generated new

structural speci�cation FA i hl, which is in terms of the

behavioral speci�cations of the half-adder submodules

rather than their structural speci�cations:

` FA i hl (x, y, cin) (z, cout) =

9 z0 cout0 cout1

(HA (x,y) (z0,cout0))

(HA (z0,cin) (z,cout1))

(MDG OR (cout0,cout1) cout)

HIER VERIF TAC creates a justi�cation function

that given theorems corresponding to the subgoals cre-

ates the theorem corresponding to the original goal. The

subgoals it produces could be resolved using a conven-

tional HOL proof, by invoking MDG as above or by ap-
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plying HIER VERIF TAC once again. If the subgoals

are proved, then the justi�cation rule of HIER VERIF TAC

will automatically derive the original correctness goal

from them.

When the MDG-based tactics are applied, the hi-

erarchy in the structural speci�cation is automatically


attened to the non-hierarchical form of primitive com-

ponents required by MDG (just the next layer down in

the case of the second subgoal above). The tool currently

generates a static variable ordering for use by MDG

though more sophisticated ordering heuristics could be

included. Alternatively the tool user can provide the or-

dering. Each block veri�ed can use a di�erent variable

ordering.

The tool analyzes the feedback of MDG in order to

�nd out whether the veri�cation succeeded or failed. If

the veri�cation fails a counter-example is generated. If it

succeeds, the tactic creates the appropriate HOL theo-

rem. For example, for our adder we obtain the theorems:

[MDG] ` 8 x y z cout.

HA i (x,y) (z,cout) =) HA (x,y) (z,cout)

[MDG] ` 8 x y cin z cout.

FA i hl (x,y,cin) (z,cout) =)

FA (x,y,cin) (z,cout)

The theorem is tagged with a label indicating its

pedigree|that it is proved by an external tool. This

tag will be passed to any theorem proved using these

theorems.

The theorem proved can be instantiated for any in-

stance. We e�ectively can prove a single correctness the-

orem for a block and reuse it for any instance of the

block. In our example, there are two instances of the

half-adder, but this single theorem is used for both. This

process is managed formally and machine-checked within

HOL. This contrasts with pure automated tools, where

each instance would need a speci�c theorem to be veri-

�ed separately or non-machine-checked reasoning to be

relied upon. For the half-adder, the subgoals are formally

combined using automatic proof by HIER VERIF TAC

to give the desired theorem about the adder:

[MDG] ` 8 x y cin z cout.

FA i (x,y,cin) (z,cout) =)

FA (x,y,cin) (z,cout)

4 Case Study: The 4� 4 ATM Switch Fabric

We have applied the hybrid tool to a realistic example:

the veri�cation of a block of the Fairisle ATM (Asyn-

chronous Transfer Mode) switch fabric [17]. The Fairisle

switch fabric is a real switch fabric designed and used

at the University of Cambridge for multimedia applica-

tions. It switches cells of data from 4 input ports to 4

output ports as requested by information in header bytes

in each cell.

Curzon [8] formally veri�ed this ATM switching el-

ement hierarchically using the pure HOL system. How-

ever, this veri�cation was very time-consuming. The ver-
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i�cation of the full fabric took approximately two person-

months not including the time to develop the formal

speci�cations. Verifying the fabric can be done hierar-

chically following exactly the same structure as the orig-

inal design using our hybrid tool. However, with the

tool, many of the sub-blocks can be veri�ed automat-

ically using the MDG tool, thus saving a great deal of

time and e�ort. Furthermore, HIER VERIF TAC auto-

mates much of the management of the proof that was

previously done manually. Attempting the veri�cation in

MDG alone would, on the other hand, be barely tractable

taking days of CPU time. This is discussed in more detail

below.

Full details of the speci�cations for the Fabric are

given in [8]. As a result various groups have reveri�ed

aspects of the circuit using a variety of approaches. For

example, Schneider et al [21] veri�ed individual blocks

of the switch fabric using MEPHISTO. It has also been

used as a case study for the Coq system [14]. Garcez [10]

veri�ed some properties of the fabric using HSIS and

Lu et al [18] performed property checking on various

abstracted models of the fabric using VIS.

The fabric is split into three sub-blocks, namely Ac-

knowledgement, Arbitration and Data Switch. Further

dividing the Arbitration sub-module, we have essentially

two blocks: the arbiters that make arbitration decisions

and a preprocessing block that generates the timing sig-

nal and processes the headers of the cells into a form us-

able by the arbiters (see Figure 6). We consider the veri�-

cation of the preprocessor block here (see Figure 7). The

timing block within the preprocessor generates a tim-

ing signal for the arbiters from an external frame signal

and from the data stream. The decoder block (made of

4 independent decoders) takes the four cell headers from

the data stream and extracts the information about the

destinations they are requesting (which is in a binary

encoding). For each destination a unary encoding of the

cells that are requesting that output is created. The pri-

ority �lter takes this information together with priority

information from the cell headers. If any cell has high

priority, then requests from low priority cells are not

forwarded to the arbiters.

Setting as goal the correctness statement for the pre-

processor, we attack it using HIER VERIF TAC1. We

obtain two subgoals corresponding to the timing block

and the �lter-decoder block, together with a subgoal that

the combined preprocessor is correct on the assumption

that its sub-blocks are. We call MDG TAC to automat-

ically prove the timing unit correctness subgoal. This

proves the equivalence of the implementation and its

speci�cation, and so proves the implication in our sub-

goal.

Decoders and Priority Filters are purely combina-

tional circuits. Their speci�cations are the conjunctions

of 32 16-input-tables and 16 32-input-tables, respectively.

MDG takes 16 hours to verify Decoders and it would

1 The speci�cation �les and the proof script are available at:

http://www.ece.concordia.ca/labs/Research/hvg/Tools/Hybrid/ATM
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TIMING

ACK

ackOut0
ackOut1
ackOut2
ackOut3

frameStart

dataIn0
dataIn1
dataIn2
dataIn3 dataOut3

dataOut2
dataOut1
dataOut0

ackIn3
ackIn2
ackIn1
ackIn0

DATASWITCH

PREPROCESSOR

DECODER
FILTER

PRIORITY ARBITERS

FILTER/DECODER

ARBITRATION

RegistersRegisters

Fig. 6. The Fairisle ATM Switch Fabric.

take days to verify Priority Filters. The problem is in

�nding an eÆcient variable ordering given that the way

the sub-blocks are connected means that the best order-

ing for one table is bad for another. In order to over-

come this problem, we move down one level in the de-

sign hierarchy. More speci�cally, the 32 tables in De-

coders' speci�cation were partitioned into four 8-table-

sub-blocks:Decoder IP0 : : : Decoder IP3. Decoder IPi is

a decoder for input port i; i = 0::3. A more eÆcient

variable ordering is then supplied for each of these sub-

blocks. Similarly, the 16 tables in Priority Filters' spec-

i�cation were partitioned into four 4-table-sub-blocks:

Priority OP0 : : : Priority OP3. Priority OPi is a prior-

ity �lter for output port i; i = 0::3. The preprocessor

hierarchy as veri�ed is shown in Figure 7.

We apply HIER VERIF TAC to verify Decoders and

Priority Filters based on this hierarchy. The sub-goals

associated to Decoder IPi and Priority OPi, i = 0::3, are

then proved automatically, in this case using BLOCK VERIF TAC.

Timing

Priority Filters

Preprocessor

Filter/Decoder

Decoders

Decoder_IP3 Decoder_IP2 Decoder_IP1 Decoder_IP0

Priority_OP3 Priority_OP2 Priority_OP1 Priority_OP0

Fig. 7. The Preprocessor Hierarchy.

Note that this still avoids expanding the hierarchy as far

as in the original HOL proof|so lower level behavioral

speci�cations do not need to be written.

Table 1 shows the hierarchical veri�cation statistics,

including the size of each sub-block and the CPU time

in seconds. Using our hybrid tool, the veri�cation of the

preprocessor is faster than proving in HOL that the im-

plementation implies the high-level speci�cation. Given

the formal speci�cations, Curzon [8] originally took sev-
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Block Size (# 2-input gates) CPU Time (sec.)

Preprocessor 186 495:230

Timing 18 0:060

Filter/Decoder 168 488:900

Decoders 88 45:520

Decoder IPi 22 10:050

Priority 80 437:210

Priority OPi 20 107:413

Table 1. Hierarchical Veri�cation Statistics.

eral days to do the proofs of these blocks using interac-

tive proof whereas the veri�cation is done in minutes us-

ing our tool. Veri�cation is also faster than using MDG

alone: splitting the decoder block enabled verifying it

within less than 1 minute using our hybrid tool instead

of 16 hours if only MDG was used. It took a day (ap-

proximately 8 hours) to interactively prove the decoder

block in HOL. Thus veri�cation is faster using the hy-

brid tool than with either system on its own as shown

in Table 2 which gives approximate times for verifying

the decoder block. These times should be treated with

caution, as the pure HOL times are not CPU time but

that for the human to interactively manage the veri�-

cation. Times to develop speci�cations, including those

of sub-blocks veri�ed hierarchically rather than directly

using MDG, are not included in these times. Writing

these speci�cations was straightforward. It therefore is

worthwhile additional work, given the overall time im-

provement. Some extra human interaction time for the

veri�cation part is also needed when using the hybrid

tool over the bare CPU time. This is needed to call the

HOL MDG Hybrid Tool

(Human Proof Time) (CPU Time) (CPU Time)

Interactive Automated Semi-automated

8 hours 16 hours 1 minute

Table 2. Comparison of Veri�cations of the Decoder Blocks

appropriate tactics. However, this is minimal|a matter

of minutes rather than hours, since it involves follow-

ing the existing design hierarchy. The main part that

is time consuming is if unsuccessful automated proofs of

sub-blocks are attempted. This obviously requires judge-

ment over the limitations of the tools, in knowing when

it is worth attempting automated proof, and when it is

better to step down a level in the hierarchy.

5 Related Work

Work to combine the advantages of automated and inter-

active tools falls generally into two areas: hybrid tools in

which two existing, stand-alone veri�cation systems are

linked; and systems where external proof packages are

embedded as decision procedures for some subset of the

logic by an interactive system.

Perhaps the most impressive hybrid veri�cation sys-

tem to date is the combined Voss-ThmTac System [2]. It

combines a simple, specially written LCF style proof sys-

tem, ThmTac with the Voss Symbolic Trajectory Anal-

ysis System. This system evolved out of the HOL-VOSS

System [15]. In that system, Voss was interfaced within

HOL as a tactic that could be called to perform a sym-
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bolic trajectory analysis to verify assertions about se-

quences of states. The Voss-ThmTac System is thus based

on many years of experience combining systems. It has

been used to verify a series of real hardware designs in-

cluding an IA-32 instruction length decoder claimed to

be one of the most complex hardware veri�cations com-

pleted. Much of its power comes from the very tight inte-

gration of the two provers allowing the user to interact

directly with either tool. This is facilitated by the use

of a single language, 
, as both the theorem prover's

meta-language and its object language.

Schneider and Ho�mann [22] linked SMV (a CTL

model checker) to HOL using PROSPER. In this hybrid

tool, HOL conversions were used to transform LTL spec-

i�cations into !-Automata, a form that can be reasoned

about within SMV. These HOL terms are exported to

SMV through the PROSPER plug-in interface. On suc-

cessful model checking, the results are returned to HOL

and turned into tagged theorems. This allows SMV to

be used as a HOL decision procedure. The SMV speci�-

cation language has also been deeply embedded in HOL,

allowing CTL speci�cations to be manipulated in HOL

and the model checker user to return a result about its

validity.

The use of tightly integrated decision procedures is

a major focus of the PVS proof system. Rajan et al [20]

integrated a BDD-based model checker for the propo-

sitional �-calculus within PVS. An extension of the �-

calculus is de�ned within higher-order logic and tem-

poral operators then de�ned as �-calculus �xpoint def-

initions. These expressions are converted into the form

required by the model checker which can then be used

to prove appropriate subgoals generated within PVS.

Such results are treated no di�erently to those created

by proof.

An issue with accepting imported results as theorems

is whether the external system can be trusted to produce

\theorems" that really are host system theorems. This

is more of an issue with fully-expansive proof systems

such as HOL where the integrity of the system depends

on a small core of primitive inference rules. Accepting

results from an external package essentially treats that

package as one of the trusted primitives. The approach

taken by Gordon [11] to minimize this problem in the

BuDDy package when integrating BDD based tools is

to provide a small set of BDD primitives in terms of

which full tools are implemented. In this way only the

primitives need to be trusted not the whole package.

Hurd [13] used PROSPER to combine the Gandalf

prover with HOL. Unlike other approaches, the system

reproves the Gandalf theorems within HOL rather than

just accepting the results. The Gandalf proof script is

imported into the HOL system and used to develop a

fast proof within HOL. The tool is thus used to discover

proofs, rather than directly to prove theorems.

The MEPHISTO system [16] was developed to man-

age the higher levels of a veri�cation, producing �rst-

order sub-goals to be proved by the FAUST �rst order
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prover. The goals of MEPHISTO are similar to ours:

managing the subgoaling of a veri�cation to produce

goals that can be proved by another system. The dif-

ference is the focus of the way the systems do this and

the target system. Our approach is to use the exist-

ing design hierarchy, sending to the automated prover

(here a hardware veri�cation system itself) subgoals that

are correctness theorems about design modules. Thus

HIER VERIF TAC produces subgoals (and results from

failed veri�cation) easily understood by the designer.

This approach avoids the problem of the veri�er having

to inspect goals that bear little relation to the input to

the system. MEPHISTO does give some support for hier-

archical proof providing a library of preproved modules.

However, in our approach such hierarchical veri�cation

is explicitly supported by the tactics.

Aagaard et al [1] proposed a similar hardware veri�-

cation management system. They aimed to complete the

whole proof within the theorem prover (HOL or Nuprl).

As with MEPHISTO, the focus is on producing lem-

mas to be proved by decision procedures. They devel-

oped a series of prototype tactics that could be used to

break down subgoals. However, they do not directly sup-

port hierarchical veri�cation: the �rst step proposed is

to rewrite with the module speci�cations.

As in [2] and [22], we integrate a theorem prover

(HOL) to an existing hardware veri�cation tool (MDG)

rather than embedding a package within the system. We

work within the proof system but using the speci�cation

style of the automated tool. This is done by embedding

the language of the automated veri�cation tool within

the proof system. As is done in pure HOL veri�cation,

the proof follows the natural design hierarchy embodied

in the speci�cations. This process is explicitly supported

by our hierarchy tactic. The subgoals automatically gen-

erated also have a direct relation to the speci�cations

produced by the designer. Thus, the novel aspect of our

work is the emphasis on implementing hierarchical ver-

i�cation explicitly in a hybrid tool. The use of MDG as

the automated tool also opens up interesting possibilities

(not yet fully explored) of making use of its features for

abstraction that allow large datapaths to be dealt with

automatically.

6 Conclusions

We have described a tool linking an interactive theo-

rem prover and an automated decision diagram-based

hardware veri�cation system. This builds on previous

work [24], where we showed formally how anMDG equiv-

alence proof can be imported to an implication-based

correctness theorem in HOL. Our system explicitly sup-

ports the hierarchical compositional veri�cation approach

naturally used in interactive proof systems, when using

an automated tool. The interactive proof system is used

to automatically manage the proof as well as complete

any proof interactively that is beyond the scope of the

automated system. The veri�cation of whole blocks in
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the hierarchy can however be done automatically. The

hybrid tool can be used to verify larger examples than

could be done in MDG alone, and these proofs can be

done faster than in either system alone.

We used the PROSPER/Harness toolkit to perform

the linkage of the two tools. This made providing such

a linkage relatively easy. However, it took the Harness

server minutes to answer requests sent by the proof en-

gine. An alternative implementation that communicated

between the tools directly using �les was quicker. We are

planning to implement the tools' interaction using sock-

ets. This will allow starting multiple instances of MDG

on di�erent machines. The hybrid tool will then be re-

sponsible of dispatching sub-goals to the MDG instances

and collecting veri�cation results back. Load balancing

strategies as well as veri�cation workload estimators will

be needed to ensure better execution times.

We illustrated the use of the hybrid tool by describing

the hierarchical veri�cation of the preprocessing block of

the arbitration unit of an ATM switch. Using the hybrid

tool, a veri�cation that originally required many hours

of interactive proof work, could be done largely auto-

matically using the hybrid tool.

We intend to extend the capabilities of the tool to

increase the automation of the proof management pro-

cess. For example, we will automate di�erent forms of

parameterization. Parameterized circuits must currently

be dealt with interactively. A single instance of the pa-

rameterized circuit is veri�ed using the hybrid tactics

and this theorem used in a pure HOL proof of the param-

eterized circuit|performing the inductive part of the

proof [7]. This process could be automated for a range

of common parameterization patterns (see Aagaard et

al [1]) with a similar tactic to HIER VERIF TAC man-

aging the inductive part of the proof. Common abstrac-

tion techniques to reduce a model say from 32-bits to 1

bit to make automated veri�cation tractable could also

be dealt with in this way. However, MDG provides a

better approach: by making fuller use of the abstrac-

tion facilities in MDG itself we will remove the need

for such abstraction. This removes the need to simplify

datapath widths to make veri�cation tractable and en-

ables the handling of data-dependent circuits automati-

cally. We are also in the process of extending the hybrid

tool to support model checking in MDG. While most of

the infrastruture may be reused, ways of translating and

composing properties in HOL need to be developed. For

practical reasons industrial designers often do not work

to clean hierarchies. Important further work is there-

fore to integrate a transformational design system with

the tool. This would allow non-hierarchical parts of a

design to be transformed to a veri�ed equivalent form

more conducive to veri�cation, or alternatively to opti-

mise a veri�ed correct hierarchical design in ways that

break the veri�ed hierarchy but preserve correctness. Fi-

nally, we will consider the veri�cation of more complex

examples including a full 16 by 16 switch fabric.
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