
Providing a Formal Linkage between MDG and

HOL Based on a Veri�ed MDG System

Haiyan Xiong1, Paul Curzon1, So��ene Tahar2, and Ann Blandford1

1 School of Computing Science, Middlesex University, London, UK
fh.xiong, p.curzon, a.blandfordg@mdx.ac.uk

2 ECE Department, Concordia University, Montreal, Canada.
tahar@ece.concordia.ca

Abstract. We describe a methodology which can provide a formal link-
age between a symbolic state enumeration system and a theorem prov-
ing system based on a veri�ed symbolic state enumeration system. The
methodology has been partly realized in a simpli�ed version of the MDG
system (a symbolic state enumeration system) and the HOL system (a
theorem proving system) which involves the following three steps. First,
we have veri�ed aspects of correctness of the simpli�ed version of the
MDG system. We have made certain that the semantics of a program
is preserved in those of its translated form. Secondly, we have provided
a formal linkage between the MDG system and the HOL system based
on importing theorems. The MDG veri�cation results can be formally
imported into HOL to form the HOL theorem. Thirdly, we have com-
bined the translator correctness theorems with importing theorems. This
combination allows the MDG veri�cation results to be imported in terms
of a high level language (MDG-HDL) rather than a low level language.
We have also summarized a general method which is used to prove the
existential theorem for the speci�cation and implementation of the
design. The feasibility of this approach is demonstrated in a case study:
the veri�cation of the correctness and usability theorems of a vending
machine.

1 Introduction

Formal veri�cation techniques can be classi�ed into two categories: deductive
theorem proving and symbolic state enumeration. In deductive theorem prov-
ing systems, the correctness condition for a design is represented as a theorem
in a mathematical logic, and a mechanically checked proof of this theorem is
generated using a general-purpose theorem prover. In symbolic state enumer-
ation systems, the design being veri�ed is represented as a decision diagram.
Techniques such as reachability analysis are used to automatically verify given
properties of the design or machine equivalence. Much of this work is based on
Binary Decision Diagrams (BDD) [2].

Deductive theorem proving systems use interactive proof methods. The user
interactively constructs a formal proof which proves a theorem stating the cor-
rectness of this implementation.Theorem proving systems allow a hierarchical

2

veri�cation method to be used to model the overall functionality of designs with
complex datapaths. They are very general in their applications. The theorems
can not only be used to formalize a speci�c design but also can be abstracted
as a general situation of this class of design. Theorem proving systems are semi-
automated. To complete a veri�cation, experts with good knowledge of the in-
ternal structure of the design are required to guide the proof searching process.
This enables the designer to gain greater insight into the system and thus achieve
better designs. However, the learning curve is very steep and modeling and ver-
ifying a system is very time-consuming. This is a major problem for applying
theorem proving systems in industry.

In contrast, symbolic state enumeration systems are automated decision dia-
gram approaches. In this kind of approach, an implementation and its behavioral
speci�cation are represented as decision diagrams. A set of algorithms is used to
eÆciently manipulate the decision diagrams so as to get the correctness results.
The symbolic state enumeration veri�cation approach can be viewed as a black-
box approach. During the veri�cation, the user does not need to understand
the internal structure of the design. The strength of this approach is its speed
and ease of use. However, it does not scale well to complex designs since it uses
non-hierarchy state-based descriptions of the design. An increase in the number
of design components can result in the state space growing exponentially.

Recently, there has been a great deal of work concerned with combining
theorem proving and symbolic state enumeration systems to gain the advantages
of both. A common approach to combining proof tools is to use a symbolic
state enumeration system as an oracle to provide results to the theorem proving
system. The issue in such work is to guarantee that the results provided by
external tools are theorems within the theory of the proof system. In other
words, an oracle is used to receive problems and return answers. For example,
the HOL system provides approaches for tagging theorems that are dependent
on the correctness of external veri�cation tools. An oracle can be built in the
HOL system and viewed as a plug-in. This process brings about two questions.

1. Can we ensure the automated veri�cation system produces correct results?

2. Have the veri�cation results from an automated veri�cation system been
correctly converted into a valid theorem in the current theory of the theorem
proving system?

The research describe here investigates the answers to the above two ques-
tions. Some symbolic state enumeration based systems such as MDG [6] consist
of a series of translators and a set of algorithms. Higher level languages such as
hardware description languages are used to describe the speci�cation and imple-
mentation of the design. The speci�cation and implementation are then trans-
lated into the decision diagrams via intermediate languages. The algorithms in
the system are used to eÆciently and automatically deal with the decision dia-
grams so as to obtain the correctness results. We need to verify the translators
and algorithms in order to get the answer of the �rst question. For solving the
second question, we need to formally justify the correctness results, which are

3

obtained from a symbolic state enumeration system, into a theorem prover, to
ensure the correctness of the theorem creation process.

In this paper, we will describe a methodology, which can provide a formal
linkage between a theorem proving system and a symbolic state enumeration
system based on a veri�ed symbolic state enumeration system, to ensure the
correctness of the theorem creation process. We will partly realize the method-
ology in the HOL system and a simpli�ed version of the MDG system. We will
prove the correctness of aspects of the simpli�ed version of the MDG system
and provide a formal linkage between the HOL system and the simpli�ed ver-
sion of the MDG system. Lessons from the research can be applicable to other
related systems. We chose HOL and MDG because this research is part of a
large project in collaboration with the Hardware Veri�cation group at Concor-
dia University. They are developing a hybrid system (MDG-HOL) [16] which
combines the MDG system and the HOL system. Our aim is di�erent to theirs.
We are not developing a practical tool. We are doing theoretical research about
how to verify the MDG system and provide a formal linkage between the HOL
system and the MDG system. Our deep embedding semantics is in terms of the
speci�cation of the MDG system.

The structure of the rest of this paper is as follows: in Section 2, we review
related work. In section 3, section 4, we will brie
y introduce the MDG system,
the HOL system. The main work of the research will be given in section 5.
Finally, our conclusion and ideas for further work are presented in Section 6.

2 Related Work

Many di�erent technologies have been used to link two di�erent systems. Joyce
and Seger [15] presented a hybrid veri�cation system: HOL-Voss. Several pred-
icates were de�ned in the HOL system, which presented a mathematical link
between the speci�cation language of the Voss system (symbolic trajectory eval-
uation) [13] and that of the HOL system. Aagaard et al developed the Forte
veri�cation system [1]. Forte is a combined model checking (in Voss via symbolic
trajectory evaluation) and theorem proving system (ThmTac)1. Both speci�ca-
tion and implementation language are fl which has been deeply embedded in
itself so as to be lifted. In other words, the system can execute fl functions in
Voss and reason about the behavior of fl functions in ThmTac.

The PROSPER toolkit [9] provides a uniform way of linking HOL with ex-
ternal proof tools. The speci�cation of its integration interface has been imple-
mented in several language allowing components written in these languages to
be used together. A range of di�erent external proof tools can access to the
toolkit and act as servers to a HOL client. It also tags theorems produced by
its plug-in with a label which can be used in the HOL system. The MDG-HOL
system [16] used PROSPER/Harness Plug-in Interface to link the HOL system
and the MDG system.

1 ThmTac is written in fl and is an LCF style implementation of a higher order
classical logic.

4

Gordon [11] integrated the BDD based veri�cation system BuDDY into HOL
by implementing BDD-based veri�cation algorithms inside HOL building on top
of primitives provided. Since \LCF-Style" general infrastructure was provided,
by implementing BDD primitives in HOL - as long as they are correct, not
only could the standard state algorithms be eÆciently and safely programmed
in HOL, but it also made it possible to achieve the advantages of both theorem
proving tools and state algorithms.

Hurd [14] used a di�erent method to combine the strengths of two theorem-
prover systems { Gandalf and HOL. He wrote functions to simulate the Gandalf
proof according to the Gandalf logged �le so reconstructing the proof in HOL
to form the HOL theorems. As a result, the Gandalf proof results need not be
tagged into HOL and the degree of trust is high.

We use another way to make the linkage more natural and trustworthy. we
emphasize on the veri�cation of a symbolic state enumeration system (the MDG
system) and provide a theoretical underpinning to the formal linkage of a sym-
bolic state enumeration system and a theorem proving system (MDG and HOL).
We verify the correctness of translators of the MDG system by using the HOL
system and prove theorems that formally convert the MDG veri�cation results
of MDG's di�erent applications into the traditional HOL hardware veri�cation
theorems. By combining the translator correctness theorems with the importing
theorems, the MDG veri�cation results can be imported into HOL in terms of
the MDG input language (MDG-HDL).

3 The MDG system

The MDG system is a hardware veri�cation system based on Multiway Decision
Graphs (MDGs). MDGs subsume the class of Bryant's Reduced Ordered Bi-
nary Decision Diagrams (ROBDD) [3] while accommodating abstract sorts and
uninterpreted function symbols. The system combines a variety of di�erent hard-
ware veri�cation applications implemented using MDGs [23]. The applications
developed include: combinational veri�cation, sequential veri�cation, invariant
checking and model checking.

The input language of MDG is MDG-HDL [23], which is a Prolog-style hard-
ware description language and allows the use of abstract variables for represent-
ing data signals. In MDG, a circuit description �le declares signals and their
sort assignment, components network, outputs, initial values for sequential ver-
i�cation and the mapping between state variables and next state variables. In
the components network, there is a large set of prede�ned components such as
logic gates,
ip-
ops, registers, constants, etc. Among the prede�ned compo-
nents there is a special component constructor known as a table which is used to
describe a functional block in the implementation or speci�cation. The TABLE
constructor is similar to a truth table but allows �rst-order terms in rows. It
also allows the description of high-level constructs as ITE (If-Then-Else) formu-
las and CASE formulas. A table is essentially a series of lists, together with a
single �nal default value. The �rst list contains variables and cross-terms. The

5

last element of this �rst list is the output of the table which must be a variable
(either concrete or abstract). The other variables in the list must be concrete
variable. For example, a two input AND gate can be described as

table([[x1, x2, y], [0, *, 0], [1, 0, 0]|1]) (1)

where *" means \don't care". It states that if x1 is equal to false and x2 is
DON'T CARE then the output y is equal to false, if x1 is equal to true and x2 is
equal to false then the output y is equal to false, otherwise the output y is
equal to true.

4 The HOL System

The HOL system [12] is an LCF [10] (Logic of Computable Functions) style proof
system. It uses higher-order logic to model and verify a system. There are two
main proof methods used: forward and backward proof. In forward proof, the
steps of a proof are implemented by applying inference rules chosen by the user,
and HOL checks that the steps are safe. All divided inference rules are built on
top of a small number of primitive inference rules. In backward proof, the user
sets the desired theorem as a goal. Small programs written in SML [18] called
tactics and tacticals are applied that break the goal into a list of subgoals. Tactics
and tacticals are repeatedly applied to the subgoals until they can be proved. A
justi�cation function is also created mapping a list of theorems corresponding
to subgoals to a theorem that solves the goal. In practice, forward proof is often
used within backward proof to convert each goal's assumptions to a suitable
form.

Theorems in the HOL system are represented by values of the ML abstract
type thm. System allows mk thm to construct a theorem. However, in a pure system
(mk thm is not allowed to be used), a theorem can be only obtained by carrying
out a proof based on the primitive inference rules and axioms. More complex
inference rules and tactics must ultimately call a series of primitive rules to do
the work. In this way, the ML type system protects the HOL logic from the
arbitrary construction of a theorem, so that every computed value of the type-
representing theorem is a theorem. The user can have a great deal of con�dence
in the results of the system provided mk thm or new axioms are not used.

HOL has a rudimentary library facility which enable theories to be shared.
This provides a �le structure and documentation format for self contained HOL
developments. Many basic reasoners are given as libraries such as mesonLib,

simpLib, decisionLib and bossLib. These libraries integrate rewriting, conver-
sion and decision procedures that automate a proof. They free the user from
performing low-level proof.

6

Traditional HOL theorems

Results (Yes/No)

Verify the translator

Conversion

1.

2.

3.

MDG_HDL

MDG verif. algorithms

Translator

MDG decision graphs

Verify the algorithms

Verify the conversion

Fig. 1. Overview of the Research

5 Providing a Formal Linkage between MDG and HOL

Based on a Veri�ed MDG System

The intention of our research is to explore a way of increasing the degree of trust
of the MDG system and provide a formal linkage between the HOL system and
the MDG system in terms of the MDG input language as shown in Figure 1. This
work can be divided into three steps. (a) We must verify the correctness of the
MDG system using the HOL system. It consists of two phases: (1) veri�cation of
the translators [21] and (2) veri�cation of the algorithms. (b) We then must prove
theorems (step 3), which formally convert the veri�cation results of di�erent
MDG applications into the traditional HOL hardware veri�cation theorems [20].
(c) By combining the correctness theorems (theorems obtained from step 1 and
2) of the veri�cation of the MDG system with the importing theorems (theorems
obtained from step 3), the MDG veri�cation results can be formalized in terms
of MDG-HDL.

During this study, we concentrate on the veri�cation of the translation phase
of the MDG system (see 1, Figure 1) using the HOL theorem prover and import-
ing the MDG results into HOL to form the HOL theorems (see 3, Figure 1) [20].
Step 2 is similar to Chou and Peled's work [5] which veri�es a partial-order re-
duction technique for model checking. Verifying the algorithms is beyond the
scope of this paper. As we are primarily concerned with the linkage and how
it could be combined with the correctness theorems and importing theorems.

7

We outline the methodology of the whole story and emphasize the importation
process of the hybrid system. We not only verify the correctness of aspects of
the MDG system in HOL, but also formally imports the MDG results into HOL
to form the HOL theorems based on the semantics of the high level MDG in-
put language(MDG-HDL) [23] rather than the semantics of the low level MDG
results. Since we use a deep embedding semantics, the translator correctness
theorems can be combined with themselves and the importing theorems. These
combinations allow the low level MDG results to be converted into a form that
can be easily reasoned about in HOL based on the semantics of MDG-HDL.

In the remainder of this section, we will brie
y introduce the individual steps
that we have undertaken: verifying the translator correctness theorems, proving
the general importing theorems, combining the translator correctness theorems
with the importing theorems in terms of deep embedding semantics, proving the
existential theorem and implementing our method in a case study.

5.1 Verifying the MDG Translators

In the MDG system, most of the components in the MDG-HDL library are com-
piled into their own core MDG-HDL code (tabular codes) �rst. The core MDG-
HDL program can then be compiled into an internal MDG decision graph. Some
components, such as registers, are implemented directly in terms of the MDG
decision graph. However, in theory these components also could be implemented
as tables to provide general speci�cation mechanism. We assume the MDG-HDL
program is �rstly translated into a core MDG-HDL program . The core MDG-
HDL program is then translated into the MDG decision graph. In this situation,
the MDG system could be speci�ed as in Figure 2.

(1) (2)core MDG−HDL MDG decision graphsMDG−HDL

Fig. 2. Overview of the MDG Translation Phases

Adopting this approach makes the translation phase more amenable to ver-
i�cation. We are not verifying the actual MDG implementation. Rather our
formalization of the translator is a speci�cation of it. Once combined with a
translator from core MDG-HDL to the MDG decision graph, it would be speci-
fying the output required from the implementation. This would be used as the
basis for verifying such an implementation. E�ectively we split the problem of
verifying the translator into the two problems of verifying that the implementa-
tion meets a functional speci�cation, and that the functional speci�cation then
meets the requirement of preserving semantics. We are concerned with the lat-
ter step here. This split between implementation correctness and speci�cation
correctness was advocated by Chirica and Martin [4] with respect to compiler
correctness.

8

The MDG system is based on Multiway Decision Graphs which extend ROB-
DDs with concrete sorts, abstract sorts and uninterpreted function symbols. we
de�ne the deep embedding semantics for a subset of the MDG-HDL language
in this research. This subset does not contain three MDG prede�ned compo-
nents (Multiplexer, Driver and constant) and the Transform construct used to
apply functions. These components are omitted from our subset as they have
non-boolean inputs or outputs. We consider subset since we our aims is to ex-
plore the feasibility of this method. However, this subset allows a program to
contain concrete sorts. In other words, the inputs and outputs of a table could
be boolean sorts and concrete sorts. For coping with di�erent type in one list,
we de�ne a new type Mdg Basic in HOL. The value of the type can be either
a boolean value or a string. As a result, the syntax and the semantics of this
subset are more complex and the complexity of the MDG translator veri�cation
will be increased. In the rest of this paper, we will refer to the simpli�ed version
of the MDG system as `the MDG system'.

In our research, we veri�ed the �rst translation step of the MDG system
(see (1), Figure 2) based on the syntax, semantics of the MDG input language
and the core MDG-HDL language using the HOL theorem prover. The syntax
and the semantics of the subset MDG-HDL and core MDG-HDL are de�ned. A
set of functions, which translate the program from MDG-HDL to core MDG-
HDL is then de�ned. For each program in MDG-HDL, the compilation operators
are de�ned as functions, which return their core MDG-HDL code. Translation
functions TransProgMC is applied to each MDG-HDL program so that the corre-
sponding core MDG-HDL program is established. In other words, the relations
of the translations can be represented as below:

8 p. TransProgMC p = Corresponding core MDG-HDL program

The standard approach to prove a translator between two languages, is in
terms of the semantics of the languages.Essentially the translation should pre-
serve the semantics of the source language. This has the traditional form of
compiler speci�cation correctness used in the veri�cation of a compiler [4]. The
analogous method has been used to specify and verify the MDG system. For the
translation to core MDG-HDL, the correctness theorem has been proved:

`thm 8 p. SemProgram (p) = SemProgram Core (TransProgMC p) (2)

where SemProgram and SemProgram Core are semantic function for the MDG-HDL
program and core MDG-HDL program. This theorem states that the semantics
of the low level core MDG-HDL program is equeal to the semantics of the high
level MDG-HDL (the MDG input language). More detail can be found in [19].

5.2 The Importing Theorems

Generally, when we use HOL to verify a design, the design is modeled as a
hierarchy structure with modules divided into submodules. The submodules are
repeatedly subdivided until the logic gate level is eventually reached. Both the

9

structural and the behavioral speci�cations of each module are given as relations
in higher-order logic. The veri�cation of each module is carried out by proving a
theorem asserting that the implementation (its structure) implements (implies)
the speci�cation (its behavior). They have the very general form:

implementation � specification (3)

The correctness theorem for each module states that its implementation down to
the logic gate level satis�es the speci�cation. The correctness theorem for each
module can be established using the correctness theorems of its submodules. In
this sense the submodule is treated as a black-box. A consequence of this is that
di�erent technologies can be used to address the correctness theorem for the
submodules. In particular, we can use the MDG system instead of HOL to prove
the correctness of submodules.

In order to convert the MDG veri�cation results into HOL, we formalized
the results of the MDG veri�cation applications in HOL. These formalizations
have di�erent forms for the di�erent veri�cation applications, i.e., combinational
veri�cation gives a theorem of one form, sequential veri�cation gives a di�erent
form and so on. However, the most natural and obvious way to formalize the
MDG results does not give theorems of the form that HOL needs if we are to
use traditional HOL hardware veri�cation techniques. Therefore, we are able to
convert the MDG results into a form that can be used. In other words, we proved
a series of translation theorems (one for combinational veri�cation and one for
sequential veri�cation, etc.) that state how an MDG result can be converted into
the traditional HOL form:

Formalized MDG result �

implementation � specification (4)

We have formally speci�ed the correctness results produced by several di�erent
MDG veri�cation applications and given general importing theorems. These the-
orems do not explicitly deal with the MDG-HDL semantics or multiway decision
graphs. Rather they are given in terms of general relations on inputs and out-
puts. The theorems proved could be applied to other veri�cation systems with
similar architectures based on reachability analysis or equivalence checking.

For example, The behavioral equivalence of two abstract state machines (Fig-
ure 3) is veri�ed by checking that the machines produce the same sequence of
outputs for every sequence of inputs. The same inputs are fed to the two ma-
chines M and M' and then reachability analysis is performed on their product
machine using an invariant asserting the equality of the corresponding outputs
in all reachable states. This e�ectively introduces new \hardware" (see Figure 3)
which we refer to here as PSEQ (the Product machine for SEQuential veri�cation).
PSEQ has the same inputs as M and M', but has as output a single Boolean signal
(flag). The outputs op and op' of M and M' are input into an equality checker.
On each cycle, PSEQ outputs true if op and op' are identical at that time, and
false otherwise. The result that MDG proves about PSEQ is that the flag output

10

M

M’

op

op’

ip flag (T/F)

PSEQ

EQ

Fig. 3. The Product Machine used in MDG Sequential Veri�cation

is always true. This can be formalized as

8 ip op op'. PSEQ ip flag op op' M M' � (8 t. flag t = T) (5)

The corresponding importing theorem which converts MDG results to the ap-
propriate HOL form has been obtained:

`thm 8 M M'.

((8 ip op op' flag.

PSEQ ip flag op op' M M' � 8 t. flag t = T) ^

(8 ip. 9 op'. M' ip op')) �

(8 ip op. M ip op � M' ip op) (6)

However, the MDG results can be imported into HOL when an additional as-
sumption (8 ip. 9 op'. M' ip op'))) is proved. We have also summarized a
general method to prove the additional assumption of the design in the section
5.4.

5.3 Combining the Translator Correctness Theorems with the

Importing Theorems

In this section, we will introduce the basic idea about how to combine the trans-
lator correctness theorems with the importing theorems based on the deep em-
bedding semantics. This combination allows the MDG results to be reasoned
about in HOL in terms of the MDG input language (MDG-HDL). Ultimately
in HOL we want a theorem about input language artifacts. However, The MDG
veri�cation results is obtained based on a low level data structure { an MDG
representation: that is what the algorithms apply to. Therefore, the formaliza-
tion of the MDG veri�cation results in the importing theorems ought to be based
on the semantics of the MDG representations. Moreover, the theorem about the

11

translator's correctness can be used to convert the result MDG proves about
the low level representation to one about the input language (MDG-HDL). By
combining the translator correctness theorems with the importation theorems,
we obtain the new importing theorems which convert the low level MDG veri�-
cation results into HOL to form the HOL theorems in terms of the semantics of
MDG-HDL. In other words, we are not only able to import the MDG result into
HOL based on a veri�ed MDG system, but also the MDG veri�cation results
can be converted directly from the MDG input �les to the theorems of HOL
naturally.

For example, if we check that three NOT gates are equivalent to a single NOT

gate, the whole MDG veri�cation process and the importing process can be
illustrated in Figure 4. In the Figure 4, step (1) gives a main part of the two
circuit description �les (the MDG-HDL input language), which are translated
into the core MDG-HDL (tabular representations) language as shown in step
(2). The core MDG-HDL languages are then translated into the MDG decision
graph language (step (3)). A set of the MDG algorithms is then applied to the
MDG decision graph in order to obtain two canonical MDG decision graphs and
the MDG tool checks whether two canonical MDG decision graphs are identical
and returns true or false (step (4)).

In our example the MDG tool returns true. The MDG veri�cation results are
obtained based on the low level MDG decision graphs rather than the high level
language MDG-HDL. However, the translator correctness theorems state that
the semantics of the low level MDG is equal to the semantics of the high level
MDG-HDL (the MDG input language). By combining the translator correctness
theorems, the MDG veri�cation results can be imported into HOL based on the
semantics of the MDG input language (MDG-HDL). Therefore, the traditional
HOL theorem can be obtained in terms of the semantics of the MDG input
language.

In our research, we have proved the �rst translator. In order to demonstrate
the combination of the translator correctness theorems and the importing theo-
rems, the formalization of the MDG results will be in terms of the core MDG-
HDL (see Figure 5). In fact, the principal is the same. Similar conversion can be
done for further translators if we prove corresponding translators. By combining
the translator correctness theorem with the importation theorems, we obtain the
new importing theorems which convert the low level MDG veri�cation results
into HOL to form the HOL theorems in terms of the semantics of MDG-HDL.
The combination also allow the additional assumption for sequential veri�cation
to be proved in terms of the semantics of MDG-HDL and the conversion theorem
to be obtained in terms of the semantics of MDG-HDL. Therefore, the di�erent
MDG veri�cation applications are formalized in a way that corresponds to the
semantics of the low level program (core MDG-HDL) and converted into HOL
to form the HOL theorem in terms of the semantics of MDG-HDL. We have, for
combinational veri�cation and sequential veri�cation, obtained a theorem that
each circuit in the general importing theorem has been turned the MDG veri�-
cation results based on the semantics of the low level program into HOL to form

12

ip op

1.The MDG−HDL language

The core MDG−HDL language2.

The MDGs3.

ip u v op

0
1

T
01

0 1
00

1
1

0 1
01

opip

ip

u u

u

v

T T

v

T

ip

1

1

1 0

0

v

opop

0 1 0 0

1 01 0

1

vvuu

op op

True

ip op

10
1 0

ip

T

0

01

1
ip

T

0

01

1

op op

op op

Obtain the canonical MDGs

Apply the MDG algorithms 4.

component (not_gate, not (input (v), output (op)))

component (not_gate, not (input (u), output (v)))

component (not_gate, not (input (ip), output (u)))

Traditional HOL theorems

component (not_gate, not (input (ip), output (op)))

6. Importing theorems

compare

Fig. 4. The MDG Veri�cation Process

13

.

MDG−HDL

The HOL

in terms of
theorems

Formalize the

terms of core

MDG−HDL

MDG results in

...

...

MDG−HDL core MDG−HDL

apply

translator correctness theorems

convert

importing theorems

Fig. 5. Combining the Translator Correctness Theorems with Importing Theorems for
an Extended Subset

HOL theorems based on the semantics of the high level language (MDG-HDL),
i.e., that the structural speci�cation implements the behavioral speci�cation.

For example, the new importing theorem for sequential veri�cation is ob-
tained by using general importing theorem (6) and translator correctness theo-
rem (2).

`thm 8 IMP SPEC.

(8 ip op op' flag.

PSEQ ip op op' flag

(SemProgram Core (TransProgMC SPEC))

(SemProgram Core (TransProgMC IMP))

� (8 t. (flag t = T))) ^

(8 ip. 9 op'. SemProgram SPEC ip op') �

(8 ip op. SemProgram IMP ip op �

SemProgram SPEC ip op) (7)

5.4 Proving the Existential Theorem

We have proved the importing theorem for the sequential veri�cation, which has
the form:

`thm Formalized MDG result ^
8 ip. 9 op. SPECIFICATION ip op �

(8 ip op. (IMPLEMENTION ip op � SPECIFICATION ip op))

where SPECIFICATION represents the behavioral speci�cation and IMPLEMENTATION

represents the structural speci�cation. The �rst assumption is discharged by

14

the MDG veri�cation. However, for importing the sequential veri�cation results
into HOL, a user of the hybrid system strictly needs to prove the additional
assumption (an existential theorem) to ensure the correct HOL theorem can
be made. This theorem states that for all possible input traces, the behavioral
speci�cation SPECIFICATION can be satis�ed for some outputs:

`thm 8 ip. 9 op. SPECIFICATION ip op (8)

When we convert the MDG results into HOL to form the HOL theorems,
the theorems actually state that the implementation of the design implements
its speci�cation as shown in (9).

`thm 8 ip op. IMPLEMENTATION ip op � SPECIFICATION ip op (9)

This representation might meet an inconsistent model that trivially satis�es
any speci�cation. We need to verify a stronger consistency theorem against the
implementation as suggested in [17], which has the form:

`thm 8 ip. 9 op. IMPLEMENTATION ip op (10)

This means that for any set of input values ip there is a set of output values
op which is consistent with it. This shows that the model does not satisfy a
speci�cation merely because it is inconsistent.

In our research, we have investigated a way of proving the additional assump-
tion and the stronger consistency theorem based on the syntax and semantics of
the MDG input language [21]. As we mentioned above, we prove the additional
assumption because we want to make the linking process easier and remove the
burden from the user of the hybrid system. We prove the stronger consistency
theorem because we want to avoid an inconsistent model occurring. The above
two theorems actually have the same form. We call them existential theorems.
If we use C to represent any speci�cation or implementation of a circuit, ip and
op to represent the external inputs and outputs, the existential theorem should
have the form:

`thm 8 ip. 9 op. C ip op (11)

In fact, the stronger consistency theorem (10) is an existential theorem for the
structural speci�cation, whereas the additional assumption (8) for the importing
theorem is an existential theorem for the behavioral speci�cation.

The existential theorem is existentially quanti�ed. We can remove hidden
lines in goals of this form using EXISTS TAC, which strips away the leading ex-
istentially quanti�ed variable and substitutes term for each free occurrence in
the body. This term is called the existential term. An existential term of a
variable is determined by one or several output representations of the corre-
sponding MDG-HDL components. An output representation of a component
represents an output function of this component, which depends on its input
value and output value at the current time or an earlier time instance.

15

In our research, we prove the existential theorems based on the syntax and
semantics of MDG-HDL [21] [8]. We provide the output representation for each
component (mainly logic gates and
ip-
ops). The existential term of a de-
sign, which reduces the goal 9 x. t to t[u/x], is determined in terms of the
corresponding output representations. This is very important for verifying the
existential theorem, since as long as we �nd the existential term of the design,
the corresponding theorem will be proved. We also provide HOL tactics for ex-
panding the semantics of the circuit and proving the existential theorem. More
detail can be found in [19] [22].

5.5 Case Study: Veri�cation of the Correctness and Usability

Theorems of a Vending Machine

So far, we have discussed how to prove translator correctness theorems and
importing theorems. We have combined the translator correctness theorems with
the importing theorems. The combination allows the MDG veri�cation results
to be formalized and reasoned about in HOL in terms of the semantics of MDG-
HDL. However, how can we ensure this method is feasible in practice? In other
words, how can we ensure the MDG veri�cation result can be imported into HOL
to form a traditional HOL theorem? Moreover, can the importing theorems be
used in HOL?

We have implemented this method in a simple example, the veri�cation
of a correctness and a usability theorem of a vending machine, to answer the
above questions. This example was originally used to verify the absence of post-
completion errors within the framework of a traditional hardware veri�cation
by Curzon and Blandford [7]. In this work, the correctness of the vending ma-
chine was veri�ed, i.e. it was proved that the implementation of the vending
machine meets its speci�cation. A usability property based on its specification
was then proved. By combining the above two theorems, the usability theorem
based on its implementation was proved. All the formalization and veri�cation
were implemented in HOL.

In our case studies, we follow their steps. However, we used the MDG system
to verify the correctness of the vending machine and imported into HOL using
the theorem (7). We then prove the specification based usability theorem in the
HOL system. By combining those two theorems, we obtain the implementation

based usability theorem. Therefore, the importing theorem (the correctness the-
orem) can not only be imported into HOL but also can be used in HOL.

We �rst veri�ed the correctness of the verding machine in MDG. The theorem
about the formalization of the MDG veri�cation result can be tagged into HOL
in terms of the semantics of core MDG-HDL.

`thm (8 ip flag op op'.

PSEQ ip flag op op'

(SemProgram Core (TransProgMC Vend Imp Syn))

(SemProgram Core (TransProgMC Vend Spe Syn))

� (8 t. (flag t = T)) (12)

16

where Vend Imp Syn and Vend Spe Syn are syntax of the implementation and spec-
i�cation of the vending machine in terms of MDG-HDL. As we stated in section
5.3, the importing theorem for the vending machine can be obtained by in-
stantiating theorem (7) with the syntax of its implementation and speci�cation
(Vend Spe Syn and Vend Imp Syn). We obtain the theorem Import Vend Thm

`thm (8 ip flag op op'.

PSEQ ip flag op op'

(SemProgram Core (TransProgMC Vend Imp Syn))

(SemProgram Core (TransProgMC Vend Spe Syn))

� (8 t. (flag t = T)) ^

8 ip. 9 op'. SemProgram Vend Spe Syn ip op' �

(8 ip op. SemProgram Vend Imp Syn ip op �

SemProgram Vend Spe Syn ip op) (13)

We then prove the existential theorem for the behavioral speci�cation in
terms of the semantics of MDG-HDL.

8 ip. 9 op'. (SemProgram Vend Spe Syn ip op') (14)

Finally, the conversion theorem can be obtained by discharging the formaliza-
tion theorem (12) and the existential theorem (14) from the importing theorem
(13). This theorem states that the implementation implies the speci�cation.

`thm 8 ip op. SemProgram Vend Imp Syn ip op �

SemProgram Vend Spe Syn ip op (15)

We then prove the specification based usability theorem in the HOL system.
The general user model for a vending machine is de�ned as CHOC MACHINE USER

ustate op ip. It speci�es concrete types for the machine and user state, a list
of pairs of lights and the actions associated with them, history functions that
represent the possessions of the user, functions that extract the part of the user
state that indicates when the user has �nished and has achieved their main goal
and an invariant that indicates the part of the state that the user intends to be
preserved after the interaction.

`def CHOC MACHINE USER ustate op ip =

USER

[(CoinLight,InsertCoin); (ChocLight,PushChoc);

(ChangeLight,PushChange)]

(CHOC POSSESSIONS UserHasChoc GiveChoc CountChoc UserHasChange

GiveChange CountChange UserHasCoin InsertCoin CountCoin)

UserFinished

UserHasChoc

(VALUE INVARIANT (CHOC POSSESSIONS UserHasChoc GiveChoc CountChoc

UserHasChange GiveChange CountChange

UserHasCoin InsertCoin CountCoin))

ustate op ip

17

The usability of a vending machine is de�ned as CHOC MACHINE USABLE ustate op

ip in terms of a user-centric property. It states that if at any time, t, a user
approaches the machine when its coin light is on, then they will at some time,
t1, have both chocolate and change.

`def CHOC MACHINE USABLE ustate op ip =

8 t. � (UserHasChoc ustate t) ^
� (UserHasChange ustate t) ^
(UserHasCoin ustate t) ^
(VALUE INVARIANT (CHOC POSSESSIONS UserHasChoc GiveChoc

CountChoc UserHasChange GiveChange CountChange

UserHasCoin InsertCoin CountCoin) ustate t) ^
((CoinLight op t)= BOOL T) �

9 t1. (UserHasChoc ustate t1) ^
(UserHasChange ustate t1)

The specification based usability theorem states that if all the external inputs
and outputs are boolean values, a user acts reactively and the machine behaves
according to its speci�cation, then the usability property will hold.

`thm 8 ustate op ip.

Boolean ip op ^

CHOC MACHINE USER ustate op ip ^

CHOC MACHINE SPEC ip op �

CHOC MACHINE USABLE ustate op ip (16)

where predicate Boolean is used to check if all the external wires are boolean
values. This is because the inputs of a TABLE could be either a concrete type
variable or a boolean value variable. This predicate ensures the external wires
have proper values.

The implementation based usability theorem can be proved in terms of the
above two theorems (15)(16). This theorem (17) states that if the inputs and
outputs are boolean value, a user acts rationally according to the user model and
the machine behaves according to its implementation, then the usability property
will hold.

`thm 8 ustate op ip.

Boolean ip op ^

CHOC MACHINE USER ustate op ip ^

CHOC MACHINE IMPL ip op �

CHOC MACHINE USABLE ustate op ip (17)

From this example, we have shown that a system can be veri�ed in two
parts. One part of proof can be done in MDG, the other part of the proof
can be done in HOL. The division allows MDG to be used when it would be
easier than obtaining the result directly in HOL. We have provided a formal
linkage between the MDG system and the HOL system, which allows the MDG

18

veri�cation results to be formally imported into HOL to form the HOL theorem.
We do not simply assume that the results proved by MDG are directly equivalent
to the result that would have been proved in HOL. The linkage is based on the
importing theorems given a greater the degree of trust. We have made use of the
importing theorem. In other words, the MDG veri�cation result not only can be
imported into HOL to form the HOL theorem, it also can be used as part of a
hierarchical hardware veri�cation proof in HOL. We have also shown that two
di�erent applications (hardware veri�cation and usability veri�cation) suited to
two di�erent tools can be combined together.

6 Conclusions and Further work

In this paper, we have discussed a methodology which can provide a formal
linkage between the symbolic state enumeration system and the theorem proving
system based on a veri�ed symbolic state enumeration system. The methodology
involves the following three steps.

The �rst step of the methodology is to verify correctness of the symbolic
state enumeration system in a interactive theorem proving system. Some sym-
bolic state enumeration based systems such as MDG consist of a series of trans-
lators and a set of algorithms. We need to prove the translators and algorithms
to ensure the correctness of the system. For verifying the translators, we need
to de�ne the deep embedding semantics and translation functions. We have to
make certain that the semantics of a program is preserved in those of its trans-
lated form. This work greatly increases the degree of trust of the symbolic state
enumeration system.

The second step of the methodology is to prove importing theorems in theo-
rem proving system about the results from the symbolic state enumeration sys-
tem. We need to formalize the correctness results produced by di�erent hardware
veri�cation applications using the theorem proving system. The formalization is
based on semantics of the low level language (decision graph). We need to prove
a theorem in each case that translates them into a form usable in the theorem
proving system. In other words, we need to provide the theoretical justi�cation
for linking two systems.

The third step of the methodology is to combine the translator correctness
theorems with importing theorems. This combination allows the veri�cation re-
sults from the state enumeration system to be formalized in terms of the seman-
tics of a low level language (decision graph) that the algorithms manipulate and
the tools is strictly about and imported in terms of the semantics of a high level
language (HDL). Therefore, we are able to import the result into the theorem
proving system based on the semantics of the input language of a veri�ed sym-
bolic state enumeration system. This makes the formalization of a design, the
importation and veri�cation process easier, more direct and trustworthy.

We have partly implemented this methodology in a simpli�ed version of the
MDG system and the HOL system, and provide a formal linkage by using the
above mentioned steps. We have veri�ed aspects of correctness of a simpli�ed ver-

19

sion of the MDG system. We have provided a formal linkage between the MDG
system and the HOL system based on importing theorems. We have combined
the translator correctness theorems with the importing theorems. This combi-
nation allows the low level MDG veri�cation results to be imported into HOL
in terms of the semantics of a high level language (MDG-HDL). We have also
summarized a general method which is used to prove the existential theorem

for the speci�cation and implementation of the design. This work makes the
linking process easier and remove the burden from the user of the hybrid sys-
tem. The feasibility of this approach has been demonstrated in a case study:
the veri�cation of the correctness and usability theorems of a vending machine.
However, for importing the MDG veri�cation result into HOL, we have to prove
the existential theorem for the speci�cation of the design. The behaviour spec-
i�cations must be in the form of a �nite state machine or table description.

The focus of future work centers around verifying veri�cation systems and
building a veri�ed linkage between MDG and HOL. We are intend to verify the
translator from the core MDG-HDL to the MDG decision graph and verify the
MDG algorithms. We will prove the importing theorems for the other MDG
applications. We will consider the veri�cation of more complex examples and
use our method in a combined system.

Acknowledgments

This work is funded by EPSRC grant GR/M45221, and a studentship from the
School of Computing Science, Middlesex University. Travel funding was provided
by the British Council, Canada.

References

1. M. D. Aagaard, R. B. Jones, R. Kaivola, and C. J. H. Seger. Formal veri�cation
of iterative algorithms in microprocessors. DAC, June 2000.

2. R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions in Computers, 35(8):677{691, August 1986.

3. R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Computer Surveys, 24(3), September 1992.

4. L. M. Chirica and D. F. Martin. Toward compiler implementation correctness
proofs. ACM Transactions on Programming Languages and Systems, 8(2):185{
214, April 1986.

5. C. T. Chou and D. Peled. Formal veri�cation of a partial-order reduction technique
for model checking. In T. Margaria and B. Ste�en, editors, Tools and Algorithms
for the Construction and Analysis of Systems, number 1055 in Lecture Notes in
Computer Science, pages 241{257, 1996.

6. F. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny. Multiway decision
graphs for automated hardware veri�cation. Formal Methods in System Design,
10(1):7{46, 1997.

7. P. Curzon and A. Blandford. Using a veri�cation system to reason about post-
completion errors. In Participants Proceedings of DSV-IS 2000: 7th International

20

Workshop on Design, Speci�cation and Veri�cation of Interactive Systems, at the
22nd International Conference on Software Engineering.

8. P. Curzon, S. Tahar, and O. A��t-Mohamed. Veri�cation of the MDG components
library in HOL. In Jim Grundy and Malcolm Newey, editors, Theorem Proving
in Higher-Order Logics: Emerging Trends, pages 31{46. Department of Computer
Science, The Australian National University, 1998.

9. L. A. Dennis, G. Collins, M. Norrish, R. Boulton, K. Slind, G. Robinson, M. Gor-
don, and T. Melham. The PROSPER toolkit. In The Sixth International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems,
number 1785 in Lecture Notes in Computer Science. Springer Verlag, 2000.

10. M. J. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A mechanised
logic of computation. Number 78 in Lecture Notes in Computer Science, 1979.

11. M. J. C. Gordon. Reachability programming in HOL98 using BDDs. In Mark
Aagaard and John Harrison, editors, Theorem Proving in Higher Order Logics,
number 1869 in Lecture Notes in Computing Science, pages 179{196. Springer-
Verlag, Aug. 2000.

12. M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem Proving
Environment for Higher-order Logic. Cambridge University Press, 1993.

13. S. Hazelhurst and C. J. H. Seger. Symbolic trajectory evaluation. Springer Verlag.
New York, 1997.

14. J. Hurd. Integrating GANDALF and HOL. Technical Report 461, University of
Cambridge, Computer Laboratory, April 1999.

15. J. Joyce and C. Seger. Linking BDD-based symbolic evaluation to interactive
theorem-proving. In the 30th Design Automation Conference, 1993.

16. S. Kort, S. Tahar, and P. Curzon. Hierarchical veri�cation using an MDG-HOL
hybrid tool. In T. Margaria and T. Melham, editors, 11th IFIP WG 10.5 Advanced
Research Working Conference (CHARME'2001), number 2144 in Lecture Notes
in Computer Science, pages 244{258, Livingston, Scotland, UK, September 2001.
Springer-Verlag.

17. T. F. Melham. Higher Order Logic and Hardware Veri�cation. Cambridge Tracts
in Theoretical Computer Science 31. Cambridge University Press, 1993.

18. L. C. Paulson. ML for the Working Programmer. Cambridge University Press,
1991.

19. H. Xiong. Providing a Formal Linkage between MDG and HOL Based on a Veri�ed
MDG System. School of Computing Science, Middlesex University, November 2001.
Ph.D. thesis.

20. H. Xiong, P. Curzon, and S. Tahar. Importing MDG veri�cation results into HOL.
In Theorem Proving in Higher Order Logics, number 1690 in Lecture Notes in
Computer Science, pages 293{310. Springer-Verlag, September 1999.

21. H. Xiong, P. Curzon, S. Tahar, and A. Blandford. Embedding and veri�cation of
an MDG-HDL translator in HOL. In TPHOLs 2000 Supplemental Proceedings,
Technical Reprot CSE-00-009, pages 237{248. Oregon Graduate Institute, August
2000.

22. H. Xiong, P. Curzon, S. Tahar, and A. Blandford. Proving existential theorems
when importing results from MDG to HOL. In Richard J. Boulton and Paul B.
Jackson, editors, TPHOLs 2001 Supplemental Proceedings, Informatic Research
Report EDI-INF-RR-0046, pages 384{399. Division of Informatics, University of
Edinburgh, Edinburgh, UK, September 2001.

23. Z. Zhou and N. Boulerice. MDG Tools (V1.0) User Manual. University of Montreal,
Dept. D'IRO, 1996.

