
A Formal Justi�cation of a Design Rule

for Avoiding Post-completion Errors

Paul Curzon and Ann Blandford

Technical Report:IDC-TR-2003-005

December 2003

Interaction Design Centre

Interaction Design Centre
School of Computing Science

Middlesex University
Trent Park Campus

Bramley Road
N14 4YZ

For further details of this technical report series contact:
Paul Curzon (p.curzon@mdx.ac.uk)



A Formal Justi�cation of a Design Rule for

Avoiding Post-completion Errors

Paul Curzon1 and Ann Blandford2

1Middlesex University, Interaction Design Centre, Bramley Road, London N14 4YZ
2University College London Interaction Centre, 26 Bedford Way, London WC1H 0AP

p.curzon@mdx.ac.uk, a.blandford@ucl.ac.uk

Abstract. Interactive systems combine a human operator with a com-
puter component. Either may be a source of error. The veri�cation pro-
cesses used must ensure not only the correctness of the computer compo-
nent, but also that it minimizes the risk of human error. Human-centred
design aims to do this by designing systems in a way that make allowance
for human frailty. One approach to such design is to adhere to design
rules. Design rules proposed, however, are often ad hoc. We examine
how a formal cognitive model, encapsulating results from the cognitive
sciences, can be used to justify such design rules in a way that integrates
their use with existing formal hardware veri�cation techniques. This ap-
proach provides a lightweight use of formal proof that is also integrated
with fully formal veri�cation approaches. We consider here the veri�-
cation of a design rule intended to prevent a commonly occurring class
of human error know as the post-completion error. All proof has been
machine-checked using the HOL proof system.

Keywords

Formal cognitive architecture, user error, design rules, formal veri�cation.

1 Introduction

Interactive computer systems are systems that combine a human operator with
a computer system. Such a system needs to be both correct and usable. With the
increasing ubiquity of interactive computer systems, usability becomes increas-
ingly important. Minor usability problems can scale to having major economic
and social consequences. Usability has many aspects. We concentrate on one
aspect: user error. Humans are naturally prone to error. Though such error is
not predictable in the way the behaviour of a faulty computer may be, much
human error is systematic and as such can be modelled and reasoned about.

Design approaches to prevent usability problems often tend to be ad hoc: fol-
lowing lists of design rules, sometimes apparently contradictory, that are based
on the experience of HCI experts. Furthermore the considerations of usability
experts are often far removed from those of computer system veri�cation ap-
proaches, where the emphasis is on correctness of the system against a functional



speci�cation. In this paper we consider how the two worlds of formal computer
system veri�cation and human-centred usability veri�cation can be integrated.
We propose a way in which usability design rules can be both formalised and de-
rived from formalised principles of cognition within a framework that integrates
with traditional veri�cation techniques. Our approach integrates usability veri�-
cation with computer system veri�cation. It also integrates lightweight use of for-
mal proof outside the design cycle with fully formal, but more time-consuming,
veri�cation approaches within the design cycle. We illustrate the approach by
considering a well studied and widely occurring class of human error known as
the post-completion error. As described more fully below, a post-completion er-
ror occurs when a user achieves their main goal but omits 'clean up' actions;
examples include making copies on a photocopier but forgetting to retrieve the
original, �lling the car with fuel but failing to replace the fuel cap, and forgetting
to take change with the goods from a vending machine.

We �rst de�ne simple principles of cognition. These are principles that
generalise the way humans act in terms of the mental attributes of knowledge,
tasks and goals. The principles considered do not cover the full range of human
cognition. Rather they focus on particular aspects of cognitive behaviour of in-
terest. They do not describe a particular individual, but generalise across people
as a class. They are each backed up by evidence from HCI and/or psychology
studies. Those presented are not intended to be complete but to demonstrate
the approach. We have developed a formal model of these principles in higher-
order logic. This description is a generic formal cognitive model. By \generic"
we mean that it can be targeted to di�erent tasks and interactive systems. It is
thus strictly a simple cognitive architecture [17]. In the remainder of the paper
we will refer to the generic model as a cognitive architecture and use the term
cognitive model for a version of it instantiated for a given task and system. The
underlying principles of cognition are formalised once in the architecture, rather
than having to be re-formalised for each new task or system of interest. Whilst
higher-order logic is not essential for this, its use makes the formal speci�cations
simpler and more natural than the use of a �rst-order logic would. Here we use
it to make precise the general principles considered, to allow us to then reason
about their consequences with respect to user error and design rules. Combining
the principles of cognition into a single architecture rather than formalising them
separately allows reasoning about their interaction.

The principles, and more formally the cognitive architecture, specify cogni-
tively plausible behaviour (see [7]). That is, they specify possible traces of
user actions that can be justi�ed in terms of the speci�c principles. Of course
users might also act outside this behaviour, about which situations the model
says nothing. Its predictive power is bounded by the situations where people act
according to the principles speci�ed. That does not preclude useful results from
being obtained, provided their scope is remembered. The architecture allows us
to investigate what happens if a person does act in such plausible ways. The be-
haviour de�ned is neither \correct" nor \incorrect". It could be either depending
on the environment and task in question. It is, rather, \likely" behaviour.



After describing the architecture, we next consider post-completion errors.
They are a class of error that people make systematically, if not predictably, in
a wide range of situations. We also describe a simple and well known usability
design rule that, if followed, eliminates this class of error; broadly speaking, the
rule states that the machine will prevent the user from achieving their main goal
without completing all the key task steps �rst. We give a formal speci�cation of
the design rule and also formally specify what it means for a post-completion
error to occur in terms of the cognitive architecture. We prove a theorem that
states that if the design rule is followed, then the erroneous behaviour cannot
occur due to the speci�ed cause as a result of a person behaving according to the
principles of cognition as formalised. All theorems have been machine-checked
within the HOL interactive proof system [16].

The design rule is initially formalised in user-centric terms. To enable the
integration with machine-centric veri�cation, we next reformulate it in machine-
centric terms, ultimately proving that a machine-centric version of the design
rule implies the absence of post completion errors. Even though the cognitive
architecture is capable of making the error, the design rule ensures that the user
environments (as provided by the computer part of the system) in which it would
emerge do not occur. Other errors are, of course, still possible. The design rule is
well known and our contribution is not the rule itself, but its generic formalisation
and the generic theorems justifying it from a formalisation of a small set of
principles. More generally our contribution is to demonstrate an integrated way
that such reasoning about design rules can be achieved. Because the design
rule is formalised, we can be precise about its scope of applicability. This raises
the possibility in further work of, for example, unpacking the situations where
di�erent design rules appear contradictory at �rst sight.

2 Related Work

There are several approaches to formal reasoning about the usability of inter-
active systems. One approach is to focus on a formal speci�cation of the user
interface; Campos and Harrison [9] review several such techniques. Most com-
monly it is used with model-checking-based veri�cation; investigations include
whether a given event can occur or whether properties hold of all states. In
contrast, Bumbulis et al [5] veri�ed properties of interfaces based on a guarded
command language embedded in the HOL machine-assisted proof system. Back
et al [1] illustrate how properties can be proved and data re�nement performed
of a speci�cation of an interactive system. However, techniques that focus on the
interface do not directly support reasoning about design problems that lead to
users making systematic errors; also, the usability properties checked are neces-
sarily device-speci�c and have to be reformulated for each system veri�ed, unlike
in our work.

An alternative is formal user modelling of the underlying system. It involves
writing both a formal speci�cation of the computer system and one of the user,
to support reasoning about their conjoint behaviour. Both system and user are



considered as central components of the system and modelled as part of the
analysis. Doing so provides a conceptually clean method of bringing usability
concerns into the domain of traditional veri�cation in a consistent way. Exam-
ples of formal user modelling include the work of Duke et al [14], Moher and
Dirda [22] and Paterno' and Mezzanotte [23]. Duke et al [14] express constraints
on the channels and resources within an interactive system; this approach is par-
ticularly well suited to reasoning about interaction that, for example, combines
the use of speech and gesture. Moher and Dirda [22] use Petri net modelling
to reason about users' mental models and their changing expectations over the
course of an interaction; this approach supports reasoning about learning to
use a new computer system but focuses on changes in user belief states rather
than proof of desirable properties. Paterno' and Mezzanotte [23] use LOTOS
and ACTL to specify intended user behaviours and hence reason about interac-
tive behaviour. Back et al [1] illustrate how properties can be proved and data
re�nement performed of a speci�cation of an interactive system.

Our work complements these alternative uses of formal user modelling. None
of the above focus on reasoning about user errors. Models typically describe how
users are intended to behave: they do not address human fallibility. If veri�cation
is to detect user errors, a formal speci�cation of the user, unlike one of a computer
system, is not a speci�cation of the way a user should be; rather, it is a description
of the way they are [7]. Work that does take account of this includes that of
Butterworth et al [6] and Rushby [26]. Butterworth et al used TLA to reason
about reachability conditions within an interaction, while Rushby formalised
plausible mental models of the system, looking for discrepancies between these
and actual system behaviour. However, like interface-oriented approaches, each
model is individually hand-crafted for each new device in this work.

An approach to interactive system veri�cation that focuses directly on errors
is exempli�ed by Fields [15]. He models erroneous actions explicitly, analysing
the consequences of each possible action. He thus models the e�ect of errors
rather than their underlying causes. A problem of this approach is the lack of
discrimination about which errors are the most important to consider. It does
not discriminate random errors from systematic errors which are likely to re-
occur and so be most problematic. It also implicitly assumes there is a \correct"
plan, from which deviations are errors.

The ongoing safeHCI project at the University of Queensland [21] has broadly
similar aims and approach to our overall project, combining the areas of cog-
nitive psychology, human-computer interaction and system safety engineering.
The precise focus and details di�er, however. SafeHCI has had a focus on hazard
analysis and system-speci�c modelling, whereas our work has an emphasis on
machine-assisted veri�cation and generic cognitive models.

In a di�erent tradition, approaches that are based on a cognitive architec-
ture (e.g. the work of Kieras, Wood and Meyer [20]; Gray [18] and Ritter and
Young [24]) model the underlying cognitive causes of errors. However, the mod-
elling exempli�ed by these approaches is too detailed to be amenable to formal
proof. Our previous work [11, 12] also followed this approach but at a coarser



level of detail, making formal reasoning using machine-checked proof tractable.
In this approach general mechanisms of cognition are modelled and so need be
speci�ed only once, independent of any given interactive system [14]. This fact
means a single generic model of user behaviour can be written. Furthermore,
by explicitly doing the veri�cation at the level of underlying cause, on failed
veri�cation, a much greater understanding of the problem is obtained. Rather
than just knowing the manifestation of the error { the actions that lead to the
problem { the failed proof provides understanding of the underlying causes.

In this paper, we use the cognitive architecture as the basis of formal machine-
checked reasoning about interactive systems design in general, rather than to
reason directly about speci�c systems. Our approach is similar to that of [2] in
that we are working from a (albeit di�erent and more formal) model of user
behaviour to high level guidance. There the emphasis is on a semi-formal basis
underpinning the craft skill in spotting when a design has usability problems.
In contrast, we are concerned here with guidance for a designer rather than for
a usability analyst. We focus on the veri�cation of general purpose design rules
rather than the interactive systems themselves.

Providing precision to ensure di�erent people have the same understanding
of a concept has been suggested as the major bene�t of formal models in inter-
action design [4]. One approach would therefore be to just formalise the design
rules (see [4], [25]). The bene�t is the increased understanding of the design
rule resulting from attempting to formalise it. In our approach, we not only for-
malise design rules, we also prove theorems justifying them based on underlying
principles about cognition embodied in a formal cognitive architecture. In this
way the design rules are formally demonstrated to be e�ective, up to the as-
sumptions of the principles of cognition. This builds on our previous work where
informal argument only was used to justify the e�ectiveness of design rules [13].
A contribution of this paper is to show how this can be formalised in a way that
integrates with other forms of veri�cation.

3 Formalising Cognitively Plausible Behaviour

Our cognitive architecture was developed by formally modelling principles of
cognitively plausible behaviour. We do not model erroneous actions explicitly
(as is done for example in [15]). Instead, erroneous actions emerge from an ab-
stract description of cognitively plausible behaviour. The behaviour described
in the architecture could correspond to correct or incorrect actions being taken,
depending on the circumstances. The focus of the description is in terms of inter-
nal goals and knowledge of a user. This contrasts with a description of a user's
actions as, say, a �nite state machine that makes no mention of such cognitive
attributes. The principles considered are: non-determinism; goal-based termina-
tion; task-based termination; reactive behaviour; communication goals; mental
triggers; no-option-based termination; and relevance. These will be described
in more detail below. The list is not intended to be exhaustive, but to cover
a variety of classes of cognitive principles, based on the motor system, simple



knowledge based cognition, goal-based cognition, etc. Also, some of the princi-
ples are formalised in a simple way, our intention at this stage being to test the
approach, rather than modelling the full richness of the principles. In future work
we will increase the richness of the descriptions. In subsequent sections we refer
to cognitively plausible behaviour when strictly meaning the subset of cognitively
plausible behaviour embedded in the current version of our formalisation.

The cognitive architecture is speci�ed by a relation USER that combines for-
malisations of cognitively plausible behaviour. It takes as arguments the various
pieces of information such as the user's goal, actions that the user may take, etc.
referred to in the description below. Here we give an overview of the cognitive
architecture's formalisation in terms of the principles of cognition used; the for-
malisation is given in more detail in [12]. It is formalised in higher-order logic.
We use standard mathematical notation in this paper.

The cognitive architecture is based on a series of non-deterministic temporally
guarded action rules. Each describes an action that a user could rationally make.
The rules are grouped corresponding to a user performing actions for speci�c
cognitively related reasons. Each such group then has a single generic description.
Each rule has a guard-action form. They state that if the guard holds at some
point then the NEXT action taken by the user is that given. By next in this context
we mean the �rst action of interest taken by the user after the current point in
time. The rules each have the form: guard t ^ NEXT flag actions action t,
stating that a guard is true at time t and the NEXT action performed from the list
of actions relevant to the interaction (given by the list actions) is action. The
action is identi�ed by its position in the list of all actions. The flag argument
is a speci�cation artifact used to distinguish time between the instances where
a rule is �ring and so where no actions relevant to the interaction occur.

Non-determinism: In any situation, any one of several behaviours that
are plausible might be taken. The separate behaviours are speci�ed as rules.
Each rule is formalised in the user model non-deterministically. That is, it is
one of a series of options, any of which could be taken. The architecture does
not assert that a rule will be followed, just that it may be followed. Below, we
outline several such rules. They form the core of the cognitive architecture. By
combining them, the architecture asserts that the behaviour of any rule whose
guards are true at a point in time is cognitively plausible at that time. It cannot
be assumed that any speci�c rule will be the one that the person will follow if
several are cognitively plausible.

Goal-based termination behaviour: Cognitive psychology studies have
shown that users intermittently, but persistently, terminate interactions as soon
as their goal has been achieved [8]. It is formalised as a guarded rule as described
above. We must supply a relation to the cognitive architecture that indicates over
time whether the goal is achieved or not. This is referred to as goalachieved,
in the formal de�nitions. We also use finished, to indicate whether the user
considers the interaction to be over. With a vending machine, for example, this
may correspond to the person walking away, starting a new interaction (perhaps
by hitting a reset button), etc. Both goalachieved and finished are signals



that, given a time, return a boolean value indicating whether the goal is achieved
or the interaction terminated (respectively) at that time. If the goal is achieved
at a time then the next action of the cognitive architecture is to terminate the
interaction: goalachieved ustate t ^ NEXT flag actions finished t.

As an example, consider instantiating the goalachieved argument of the
user model (and other de�nitions and theorems developed below) for an in-
teraction to do with obtaining chocolate from a vending machine. UserHasChoc
ustate might be provided as the goalachieved argument to the user model. Here
UserHasChoc is a state accessor function and ustate is a relation representing
the user state over time. It would be speci�ed as a tuple of signals over time
indicating when each user action occurs and tracking the changes in possessions
of the user. More details of instantiating the user model with this example can
be found in [11]. Note that goalachieved is a higher-order function and can
as such represent an arbitrarily complex condition. It might, for example, be
that the user has a particular object as above, that the count of some series of
objects is greater than some number or a combination of such atomic conditions.
In specifying the cognitive architecture we just state that it is a boolean function
whose value may vary over time. This makes use of the higher-order nature of
the speci�cation language.

Task-based termination behaviour: For the purposes of analysis, the
architecture speci�es that a user will terminate an interaction when their whole
task is achieved. In achieving a goal, subsidiary tasks are often generated. For
the user to complete the task associated with their goal they must also complete
all subsidiary tasks. Examples of such tasks with respect to a vending machine,
for example, include taking back a credit card or taking change. One way to
specify these tasks would be to explicitly describe each such task. Instead we
use the more general concept of an interaction invariant [12]. The underlying
reason for these tasks being performed is that in interacting with the system
some part of the state must be temporarily perturbed in order to achieve the
desired task. Before the interaction is completed such perturbations must be
undone. For example, to pay at a vending machine using a credit card requires
the card being inserted and later returned. A condition on the state that holds
at the start of the interaction { that the user has the card { must be restored
by the end. We specify the need to perform these completion tasks indirectly by
supplying the interaction invariant as a higher-order argument to the cognitive
architecture. The interaction invariant is an invariant in a similar sense to a loop
invariant in program veri�cation. It is an invariant at the level of abstraction of
whole interactions. Full task completion involves not only completing the user's
goal, but also restoring the invariant by completing all the subsidiary tasks
generated in the process.

For example, the invariant for use of a simple vending machine might be that
the value of the user's possessions have been restored to their original value,
having exchanged coins for chocolate of the same value. If ustate is the user
state, then a relation of the form USER INVARIANT ustate might be used as the
argument where USER INVARIANT is de�ned to be true at times when the value



of the user's possessions as given in the user state are the same as at the initial
time. For example for a vending machine the possessions might be di�erent forms
of coins and chocolate. The user invariant is true at times when their combined
value is restored. More details of this example can be found in [11].

We assume that on completing the task in this sense of goal achieved and
invariant restored, the interaction will be considered terminated by the user,
irrespective of any other possible actions apart from actions already mentally
triggered (discussed below). This is modelled using an if construct rather than
disjunction to give it priority. If both the goal has been achieved and the invariant
restored then the user will terminate the interaction, irrespective of what other
non-deterministic rules may potentially be active. Otherwise one of the non-
deterministic rules will be �red.

IF (invariant t) ^ (goalachieved t)

THEN NEXT flag actions finished t ELSE non-deterministic rules

Reactive behaviour: A user may react to a stimulus or message from a
device, doing the action suggested by the stimulus. For example, if a 
ashing
light comes on next to the coin slot of a vending machine, a user might, if the
light is noticed, react by inserting coins if it appears to help the user achieve their
goal. Reactive behaviour is speci�ed as a general class of behaviour: in a given
interaction there may be many di�erent stimuli to react to. Rather than specify
this class of behaviour for each, we de�ne the behaviour generically. REACT gives
the rule de�ning what it means to react to a given stimulus.

REACT flag actions stimulus action t =

stimulus t ^ NEXT 
ag actions action t

If at time t, the speci�ed stimulus is active, the NEXT action taken by
the user out of the possible actions, actions, at an unspeci�ed later time, may
be action. As there may be a range of signals designed to be reactive, the user
model is supplied with a list of stimulus-action pairs: [(s1, a1); . . . (sn, an)]. A list
recursive relation, given a list of such pairs, extracts the components and asserts
the above rule about them. They are combined using disjunction in the recursive
de�nition, so are non-deterministic choices, and this de�nition is combined with
the other non-deterministic rules.

Communication goal behaviour: A user enters an interaction with knowl-
edge of task dependent sub-goals that must be discharged. Given the opportu-
nity, they may attempt to discharge any such communication goals [3]. The
precise nature of the action associated with the communication goal may not
be known in advance. A communication goal speci�cation is a pre-determined
partial plan that has arisen from knowledge of the task in hand independent
of the environment in which that task will be accomplished. It is not a fully
speci�ed plan, in that no order of the corresponding actions may be speci�ed.
For example, when purchasing a ticket, in some way the destination and ticket
type must be speci�ed as well as payment made. The way that these must be
done and their order may not be known in advance. However, a person enters an



interaction with the aim of purchasing a ticket primed for these communication
goals to be addressed. If the person sees an apparent opportunity to discharge a
communication goal they may do so. Once they have done so they will not expect
to need to do so again. No �xed order is assumed over how communication goals
will be discharged if their discharge is apparently possible. Communication goals
are a reason why people do not just follow instructions.

Communication goals are modelled as guard-action pairs as for reactive sig-
nals. The guard describes the situation under which the discharge of the com-
munication goal appears possible. It will include a label signal indicating that
the input exists and that it corresponds to the desired action. As for reactive
behaviour, a list of (guard, action) pairs is supplied to correspond to each com-
munication goal processed by a recursive de�nition and included as a disjunct
with the non-deterministic rules. This determines when a communication goal
may be discharged. However, unlike the reactive signal list that does not change
through an interaction, communication goals are discharged. This corresponds
to them disappearing from the user's mental list of intentions. We model this by
removing them from the communication goal list when done.

Mental triggers: A user commits to taking an action in a way that cannot
be revoked after a certain point. Once a signal has been sent from the brain to the
motor system to take an action, the signal cannot be stopped even if the person
becomes aware that it is wrong before the action is taken. Rather than associate
an external stimulus directly with an external action using the disjunctive rules,
we associate them with mental \actions" that trigger the process of taking the
actual action. Thus the actions in each of the rules described so far will not
be externally visible actions, but internal mental actions. A further category of
trigger rules is introduced that links the mental decision to the actual action. If
one of the mental actions is taken on a cycle then the next action will be the
externally visible action it triggers. The cognitive architecture is supplied with
a guard-action pair list linking mental triggers with external actions. Mental
triggers are given a higher priority than the non-deterministic rules. If a trigger
is �red then it will be the next action taken.

No-option-based termination behaviour: A user may terminate an in-
teraction when there is no apparent action they can take that would help com-
plete the task. For example, if on a touch screen ticket machine, the user wishes
to buy a weekly season ticket, but the options presented include nothing about
season tickets, then the person might give up, assuming their goal is not achiev-
able. The model includes a �nal default non-deterministic rule that models this
case.

Relevance: A user will only take an action if there is something to suggest
it corresponds to the desired e�ect. We do not currently model this explicitly:
however, it is implicit in most of the rules. For example, communication goals and
the termination rules are by de�nition only �red when relevant. In particular,
the \label" signals referred to above are intended to address aspects of relevance.

Probes: The features of the cognitive architecture discussed above concern
aspects of cognition. An extension of the architecture for this paper over that



of our previous work [11] involves the addition of "probes". Probes are an extra
set of signals that do not alter the cognitive behaviour of the architecture, but
instead make internal aspects of its action over time visible. This allows spec-
i�cations to be written in terms of hidden internal cognitive behaviour, rather
than just externally visible behaviour. This is important for this work, as our
aim here is to formally reason about whether design rules address underlying
cognitive causes of errors not just their physical manifestation. The form of
probe we consider here records for each time instance whether a particular rule
�res at that instance. We require here a single probe that �res when the goal-
based termination rule described above �res. We formalise this using a function,
Goalcompletion that extracts the goal completion probe from the collection of
probes passed as an argument to the cognitive architecture. To make the probe
record goal completion rule events, we add a clause specifying the probe is true
to the rule concerning goal completion given above:

(Goalcompletion probes t) ^ goalachieved t ^ NEXT 
ag actions �nished t

Each other rule in the architecture has a clause added asserting the probe is
false at the time it �res. For example the REACT rule becomes:

(Goalcompletion probes t = F) ^ stimulus t ^ NEXT flag as action t

A similar clause is also added to the part of the architecture that describes the
behaviour when no rule is �ring (where no actions relevant to the interaction
occur).

4 Verifying a Post-completion Error Design Rule

Erroneous actions are the immediate, obvious cause of failure attributed to hu-
man error, as it was a particular action (or inaction) that caused the problem:
users pressing a button at the wrong time, for example. However, to understand
the problem, and so minimize re-occurrence, approaches that consider the im-
mediate causes alone are insu�cient. It is important to consider why the person
took that action. The ultimate causes can have many sources. Here we consider
situations where the ultimate causes of an error are that limitations of human
cognition have not been addressed in the design. An example might be that the
person pressed the button at that moment because their knowledge of the task
suggested it would be sensible. Hollnagel [19] distinguishes between human error
phenotypes (classes of erroneous actions) and genotypes (the underlying psy-
chological cause). He identi�es a range of simple phenotypes such as repetition
of an action, reversing the order of actions, omission of actions, etc. These are
single deviations from required behaviour.

In practical designs it is generally infeasible to make all erroneous actions
impossible. Fields [15] uses model-checking to identify errors by introducing phe-
notypes explicitly into task speci�cations. A problem with this approach is that
it gives many false negatives: few tasks are possible if such errors are arbitrarily



made. The veri�er must determine which are real problems. A de�nition of what
is cognitively plausible is one way to make this judgment. A more appropriate
aim is therefore to ensure that cognitively plausible erroneous actions are not
made. To ensure this, it is necessary to consider the genotypes of the possible
erroneous actions. We previously showed how a wide range of error phenotypes
emerge from our model of cognitively plausible behaviour [13]. We do not claim
to cover all cognitively plausible phenotypical actions. There are other ways each
could occur for reasons we do not consider. However, not all errors that result
from the model were explicitly considered when the principles were de�ned. The
scope of the model in terms of erroneous actions is wider than those it was
originally expected to encompass.

4.1 Formalising Post-completion Error Occurrence

In this paper, to demonstrate the feasibility of formally reasoning about design
rules based on cognitively plausible behaviour, we consider one particular error
genotype: the class of errors known as post-completion errors. As outlined above,
a post-completion error occurs if the user terminates the interaction for a par-
ticular reason { that they have achieved their goal { despite other requirements
on them. The same e�ect (i.e. phenotype) can occur for other reasons (such as
malicious behaviour). However that would be considered a di�erent class of error
(genotype). Other design rules to prevent it might be required.

In our cognitive architecture this behaviour is modelled by the goal termi-
nation rule �ring. Our probe signal Goalcompletion is used to record the fact
that that particular rule has �red or not at any given time. Note that this rule
can �re when the goal is achieved but does not have to. Note also that it �r-
ing is necessary but not su�cient for the cognitive architecture to make a post
completion error. In some situations it is perfectly correct for the rule to �re. In
particular if the interaction invariant has been re-established at the point when
it �res then an error has not occurred. Thus whilst the error occurring is a direct
consequence of the existence of this rule in the model, the rule is not directly
modelling erroneous actions, just cognitively plausible behaviour that can lead
to an erroneous action in some situations.

We �rst formalise what it means for a post-completion error to occur. Def-
inition PCE OCCURS speci�es that a post-completion error occurs if there ex-
ists a time, t, less than the end time of the interaction te, such that the
Goalcompletion probe is true at that time but the invariant has not been re-
established.

PCE OCCURS probes invariant te =
(9t. t � te ^ Goalcompletion probes t ^ :(invariant t))

This takes two higher order arguments, representing the collection of probes
indicating which rules �re and the relation indicating when the interaction in-
variant is established. A �nal argument indicates the end time of interest. It
bounds the interaction under consideration corresponding for example to the



point when the user has left and the machine has reset. The start time of the
interaction is assumed to be time zero.

4.2 Formalising the Design Rule

We next formalise a well-known user-centric design rule intended to prevent
designs giving a user the opportunity to make a post-completion error. It is
based on the observation that the error occurs because it is possible for the goal
to be achieved before the task as a whole has been completed. If the interaction
design is altered so that all user actions have been achieved before the goal
then a post-completion error will not be possible. In particular any tidying up
actions associated with restoring the interaction invariant must be either done
by the user before the goal can possibly be achieved, or done automatically by
the system. This is the design approach taken by the designers of British cash
machines where, unlike in the original versions, cards are always returned before
cash is dispensed. This prevents the post-completion error where the person
takes the cash (achieving their goal) but departs without the card (a tidying
task).

We �rst specify that task completion at a time, t, is not simply goal com-
pletion but that the invariant is re-established.

TASK DONE goalachieved invariant t = (goalachieved t ^ invariant t)

The higher-order variables goalachieved and invariant are the same as appear
in the cognitive architecture.

The formal version of the design rule then states that for all times less than
the end time, te it is not the case that both the goal is achieved at that time
and the task is not done.

PCE DR goalachieved invariant te =
(8t. t � te � :(goalachieved t ^ :(TASK DONE goalachieved invariant t)))

Thus when following this design approach, the designer must ensure that at
all times prior to the end of the interaction it is not the case that the goal is
achieved when the task as a whole is incomplete. Of course, there are other ways
of avoiding the problem corresponding to a range of di�erent design rules that
we do not consider here.

The design rule was formulated in the above way to match a natural way
to think about the design rule informally according to the above observation.
It is trivial to prove within HOL that this is equivalent to a simpler form more
convenient for reasoning, in terms of implication.

4.3 Justifying the Design Rule

We now prove a theorem that justi�es the correctness of this design rule (up
to assumptions in the cognitive architecture). If the design rule works, at least
for users obeying the principles of cognition, then the cognitive architecture's



behaviour when interacting with a machine satisfying the design rule should
never lead to a post-completion error occurring. We have proved using HOL the
following theorem stating this:

` USER . . . goalachieved invariant probes ustate mstate ^
PCE DR (goalachieved ustate) (invariant ustate) te �

:(PCE OCCURS probes (invariant ustate) te)

We have simpli�ed, for the purposes of presentation the list of arguments to
the relation USER which is the speci�cation of the cognitive architecture, omit-
ting those arguments that are not directly relevant to the discussion. One way
to interpret this theorem is as a traditional correctness speci�cation against
a requirement. The requirement (conclusion of the theorem) is that a post-
completion error does not occur. The conjunction of the user and design rule
is a system implementation. The system is implemented by placing an operator
(as speci�ed by the cognitive architecture USER) with the machine (as minimally
speci�ed by the design rule). This theorem does not assert that real users cannot
make the error, just that ones obeying the principles of cognition as modelled
will not do so.

The proof of the above theorem is relatively simple. It involves case splits on
the goal being achieved and the invariant being established. The only case that
does not follow immediately is when the goal is not achieved and the invariant
does not hold. However, this is inconsistent with the goal completion rule having
�red so still follows fairly easily.

The de�nitions and theorem proved are generic. They do not specify any
particular interaction or even task. A general, task independent design rule has
thus been veri�ed.

4.4 Machine-centric rules

The above design rule is in terms of user concerns { an invariant of the form
suitable for the cognitive model and a user centric goal. Machine designers are
not directly concerned with the user and this design rule is not in a form that is
directly of use. The designer cannot manipulate the user directly, only machine
events. Thus whilst the above rule and theorem are in a form of convenience to
a usability specialist, they are less convenient to a machine designer. If we wish
to integrate the two we need a more machine-centric design rule as below.

MACHINE PCE DR goalevent minvariant te =
(8t. goalevent t � (8t1. t � t1 ^ t1 � te � minvariant t1))

This design rule is similar to the user centric version, but di�ers in several key
ways. Firstly, the arguments no longer represent user based predicates. The
goal event signal represents a machine event. Furthermore this is potentially
an instantaneous event, rather than a predicate that holds from that point on.
Similarly, the machine invariant concerns machine events rather than user events.



Thus, for example with a vending machine, the goal as speci�ed in a user-centric
way is that the user has chocolate. Once this �rst becomes true it will continue to
hold until the end of the interaction, since for the purposes of analysis we assume
that the user does not give up the chocolate again until after the interaction is
over. The machine event however, is that the machine �res a signal that releases
chocolate. This is a relation on the machine state rather than on the user state:
GiveChoc mstate. It is also an event that occurs at a single time instance (up to
the granularity of the time abstraction modelled). The machine invariant is also
similar to the user one but specifying that the value of the machine's possessions
are the same as at the start of the interaction { it having exchanged chocolate
for an equal amount of money. It is also a relation on the machine's state rather
than on the user's state.

The rami�cation of the goal now being an instantaneous event is that we
need to assert more than that the invariant holds whenever the goal achieved
event holds. The invariant must hold from that point up to the end of the
interaction. That is the reason a new universally quanti�ed variable t1 appears
in the de�nition, constrained between the time the goal event occurs and the
end of the interaction.

We prove that this new design rule implies the original, provided assumptions
are met about the relationship between the two forms of goal statements and
invariants. It is these assumptions that form the basis of the integration between
the user and machine-centric worlds.

` (8t. minvariant t � invariant t) ^
(8t. (goalachieved t) � 9t2. t2 � t ^ (goalevent t2)) �

MACHINE PCE DR goalevent minvariant te �
PCE DR goalachieved invariant te

This asserts that the machine based design rule MACHINE PCE DR does indeed im-
ply the user centric one PCE DR, under two assumptions. The �rst assumption is
that at all times the machine invariant being true implies that the user invariant
is true at that time. The second assumption asserts a connection between the
two forms of goal statement. If the user has achieved their goal at some time t
then there must have existed an earlier time t2 at which the machine goal event
occurred. The user cannot achieve the goal without the machine enabling it.

4.5 Integrating the Theorems

At this point we have proved two theorems. Firstly we have proved that a ma-
chine centric statement of a design rule implies a user centric one, and secondly
that the user-centric design rule implies that post-completion errors are not made
by the cognitive architecture. These two theorems can be combined giving us
a theorem that justi�es the correctness of the machine-centric design rule with
respect to the occurrence of post-completion errors as illustrated in Figure 1.
The theorem proved in HOL is:



Architecture

Cognitive

Design Rule

User-centric

PCE

Design Rule

PCE

Free from

Post-completion

Errors

Machine-centric

Combined Design Rule Correctness Theorem

Linking

Assumptions

Fig. 1. Verifying the Design Rule in Stages

` (8t. minvariant t � invariant t) ^
(8t. (goalachieved t) � 9t2. t2 � t ^ (goalevent t2)) �

MACHINE PCE DR goalevent minvariant te ^
USER . . . goalachieved invariant probes ustate mstate �

:(PCE OCCURS probes (invariant ustate) te)

This is a generic correctness theorem, that is independent of the task or any
particular machine. It states that under the assumptions that link the machine
invariant to the user interaction invariant and the user goal to the machine goal
action, the machine speci�c design rule is \correct". By correct in this context we
mean that if any device whose behaviour satis�es the device speci�cation is used
as part of an interactive system with a user behaving according to the principles
of cognition as formalised, then no post-completion errors will be made. This is
despite the fact that the principles of cognition themselves do not exclude the
possibility of post-completion errors.

5 Discussion: Integration with full system veri�cation

Our aim has been to verify a usability design rule in a way that integrates
with formal hardware veri�cation. The veri�cation of the design rule needs to
consider user behaviour. However, hardware designers and veri�ers do not want
to be concerned with cognitive models. Our aim has been therefore to separate
these distinct interests so that they can be dealt with independently, but within
a common integrated framework. In this section we discuss in general terms how
the veri�ed design rule could be combined with other veri�cation results.

There are several ways the design rule correctness theorem could be used.
The most lightweight is to treat the veri�cation of the design rule as a justi�-
cation of its use in a variety of situations with no further formal reasoning, just
informal argument that any particular device design does match the design rule



as speci�ed. Its formal statement then would give a precise statement, including
assumptions in the theorem, of what was meant by the design rule. Slightly more
formally, the formal statement of the design rule could be instantiated with the
details of a particular device. This would give a precise statement about that
device. The instantiated design rule correctness theorem then is a speci�c state-
ment about the absence of user error (assuming cognitively plausible behaviour
is followed).

A more heavyweight use of the theorem would be to formally verify that the
device speci�cation of interest implies the instantiated design rule. This theorem
and its proof would concern only the device speci�cation precisely because of the
use of a machine-centric version of the design rule. It would be independent of
consideration of the user model or user state. Such a theorem could be proved
using machine-assisted proof. However, as it is a simple temporal property of the
machine speci�cation it could also be veri�ed using automated model checking
technology. Combined with the design rule correctness statement, this result
gives a formal result not just that the speci�cation meets the design rule but
that in interacting with it a user would not make post-completion errors. If the
proof that the device satis�ed the design rule was done in HOL, then a HOL
theorem would be obtained stating this.

As the veri�cation framework we have used was originally developed for hard-
ware veri�cation, it would then be simple to combine this result with a formal
hardware veri�cation result stating that the implementation of the device implied
its behavioural speci�cation. This would give a theorem stating that the actual
implementation of the device as speci�ed would not lead to post-completion
errors occurring. The hardware veri�cation is again done independently of the
cognitive model and explicit usability concerns. In previous work [10] [27] we
demonstrated how such a hardware veri�cation correctness theorem could be
similarly chained with a full usability task completion correctness theorem stat-
ing that when the cognitive model was placed with the behavioural speci�cation
of the device, the combined behaviour of the resulting system was such that
the task was guaranteed to be completed. The di�erence here is that the end
usability statement being chained to is about the absence of a class of errors
rather than task completion; however, the general approach is the same. We
have demonstrated how this could be done both in a pure HOL theorem proving
system [10] and in a hybrid system combining HOL with the decision diagram
based hardware veri�cation system, MDG [27].

The design rule correctness theorem could thus be combined with a result
that a particular device speci�cation meets the design rule. By further combin-
ing it with a result that a particular implementation of the device meets the
speci�cation we can obtain a theorem that the implementation does not result
in post-completion errors occurring as is illustrated in Figure 2. This is under
the assumption that the user behaves in a cognitively plausible way as speci�ed.



User

Model

Design Rule(s)
Device

BehaviourImplementation

Device

Hardware

Theorem

Combined Correctness Theorem

Correctness
Requirements

Correctness

Theorem

Design Rule

Theorem
Correctness user error

freedom from

Specification of

Fig. 2. Combining separate system correctness statements

6 Conclusions

We have shown how a usability design rule can be veri�ed using machine-assisted
proof. We started by outlining a set of principles of cognition specifying cogni-
tively plausible behaviour. These principles are based on results from the cog-
nitive science and human-computer interaction literature. From these principles
we developed a formal cognitive architecture. This architecture does not directly
model erroneous behaviour. However, erroneous behaviour can emerge if placed
in an environment (ie with a computer system) that allows it.

We then formally speci�ed a class of errors known as post-completion errors.
We also speci�ed two versions of a design rule claimed to prevent post-completion
errors from being made. The �rst is speci�ed in terms of user goals and invariant.
The second is in terms of machine events, and so of more direct use to a designer.
We proved a theorem that the user centred design rule is su�cient to prevent the
cognitive architecture from committing post-completion errors. This theorem is
used to derive a theorem that the machine-based formulation is also su�cient.
The resulting theorem is a correctness theorem justifying the design rule. It is not
an absolute correctness theorem, however. Rather, it says that users behaving
according to the principles of cognition will not make post-completion errors
when interacting with a device that satis�es the design rule.

The de�nitions and theorems are all generic and do not commit to any spe-
ci�c task or machine. They are thus a justi�cation of the design rule in general
rather than in any speci�c case. They can be instantiated, if required, to ob-
tain theorems about speci�c scenarios and then further with speci�c computer
systems.

This work demonstrates an approach that integrates machine-centred veri�-
cation with user-centred veri�cation. We show how by starting from user centred
descriptions of a design rule and its correctness theorem we can ultimately gain
a theorem that is concerned with machine events. The �nal generic theorem
obtained has as its conclusion a user-centred statement about a class of human
error. The theorem however is about the machine-centred design rule. The formal
cognitive architecture forms the core of this theorem.



Furthermore, the higher-order logic framework adopted is that developed for
hardware veri�cation. Speci�cations, whether of implementations, behaviours
or design rules, are higher-order logic relations over signals specifying input
or output traces. A consequence of this is that the theorems developed inte-
grate directly with hardware veri�cation proofs about the computer component
of the system. The theorem developed here, once instantiated for a particular
device could be combined with correctness theorems about a speci�c device to
obtain a theorem stating that the machine implementation implied that no post-
completion errors could occur. This would require the proof of a linking theorem
that the device speci�cation satis�ed the machine-centric design rule.

Finally the work presented here builds on the framework of our previous
work on fully formal proofs that an interactive system completes the task [11].
A problem with that approach is that with complex systems, even with the
simple set of principles of cognition used here, guarantees of task completion
may be unobtainable with trade-o�s needing to be made. The current approach,
in addition to not requiring detailed proof within the design cycle, means that
the most important errors for a given application can be focussed on.

Our formal model of user behaviour has very precise semantics that are open
to inspection. Of course our reasoning is about what the cognitive architecture
might do rather than about any real person. As such, the results should be
treated with care. However, errors that the cognitive architecture could make
are cognitively plausible and so worth attention.

7 Further Work

We have only considered a single class of error and one simple design rule that
prevents it occurring. In doing so we have shown the feasibility of the approach.
There are very many other classes of errors. Others that are potential conse-
quences of the principles of cognition are discussed in [13]. There we gave in-
formal arguments that a variety of design rules could prevent them. In future
work we will formally model those error classes and design rules, and verify
them formally following the approach developed here. This will also allow us to
reason about the scope of di�erent design rules especially those that apparently
contradict.

In this paper we have focussed on the development of the generic theorems.
We have been concerned with the veri�cation of design rules in general, rather
than in speci�c cases. We have argued, however that, since the framework used
is that originally developed for hardware veri�cation, integration of instantiated
versions of the design rule correctness theorem is straightforward. It requires
simple implication chaining of the separate correctness theorems. Major case
studies are needed to demonstrate the utility of this approach.

Our model is intended to demonstrate the principles of the approach and
covers only a small subset of cognitively plausible behaviour. As we develop it,
it will give a more accurate description of what is cognitively plausible. We in-
tend to extend it in a variety of ways. As this is done, more erroneous behaviour



will be possible. We have essentially made predictions about the e�ects of fol-
lowing design rules. In broad scope these are well known and based on usability
experiments. However, one of our arguments is that more detailed predictions
can be made about the scope of the design rules, relating them back to concepts
such as communication goals. The predictions resulting from the model could
be used as the basis for designing further experiments to validate the model and
the correctness theorems proved, or further re�ne it. We have also suggested
there are tasks where it might be very di�cult or even impossible to produce a
design that satis�es all the underlying principles, so that some may need to be
sacri�ced in particular situations. We intend to explore this issue further.

References

1. R. Back, A. Mikhajlova, and J. vonWright. Modeling component environments and
interactive programs using iterative choice. Technical Report 200, Turku Centre
for Computer Science, sep 1998.

2. A. Blandford, R. Butterworth, and P. Curzon. Puma footprints: linking theory
and craftskill in usability evaluation. In Proceedings of Interact, pages 577{584,
2001.

3. A. E. Blandford and R.M. Young. The role of communication goals in interaction.
In Adjunct Proceedings of HCI'98, pages 14{15, 1998.

4. A.E. Blandford, P.J. Barnard, and M.D. Harrison. Using interaction framework to
guide the design of interactive systems. International Journal of Human Computer
Studies, 43:101{130, 1995.

5. P. Bumbulis, P.S.C. Alencar, D.D. Cowen, and C.J.P. Lucena. Validating properties
of component-based graphical user interfaces. In F. Bodart and J. van der Donckt,
editors, Proc. Design, Speci�cation and Veri�cation of Interactive Systems '96,
pages 347{365. Springer, 1996.

6. R. Butterworth, A.E. Blandford, and D. Duke. Using formal models to explore
display based usability issues. Journal of Visual Languages and Computing, 10:455{
479, 1999.

7. R. Butterworth, A.E. Blandford, and D. Duke. Demonstrating the cognitive plau-
sibility of interactive systems. Formal Aspects of Computing, 12:237{259, 2000.

8. M. Byrne and S. Bovair. A working memory model of a common procedural error.
Cognitive Science, 21(1):31{61, 1997.

9. J.C. Campos and M.D. Harrison. Formally verifying interactive systems: a review.
In M.D. Harrison and J.C. Torres, editors, Design, Speci�cation and Veri�cation
of Interactive Systems '97, pages 109{124. Wien : Springer, 1997.

10. P. Curzon and A.E. Blandford. Using a veri�cation system to reason about post-
completion errors. Presented at Design, Speci�cation and Veri�cation of Interactive
Systems 2000. Available from http://www.cs.mdx.ac.uk/puma/ as working paper
WP31.

11. P. Curzon and A.E. Blandford. Detecting multiple classes of user errors. In Reed
Little and Laurence Nigay, editors, Proceedings of the 8th IFIP Working Conference
on Engineering for Human-Computer Interaction (EHCI'01), Lecture Notes in
Computer Science. Springer-Verlag, 2001.

12. P. Curzon and A.E. Blandford. A user model for avoiding design induced er-
rors in soft-key interactive systems. In R.J. Bolton and P.B. Jackson, editors,



TPHOLS 2001 Supplementary Proceedings, number ED-INF-RR-0046 in Informat-
ics Research Report, pages 33{48, 2001.

13. P. Curzon and A.E. Blandford. From a formal user model to design rules. In
P. Forbrig, B. Urban, J. Vanderdonckt, and Q. Limbourg, editors, Interactive Sys-
tems. Design, Speci�cation and Veri�cation, 9th International Workshop, volume
2545 of Lecture Notes in Computer Science, pages 19{33. Springer, 2002.

14. D.J. Duke, P.J. Barnard, D.A. Duce, and J. May. Syndetic modelling. Human-
Computer Interaction, 13(4):337{394, 1998.

15. R.E. Fields. Analysis of erroneous actions in the design of critical systems. Techni-
cal Report YCST 20001/09, University of York, Department of COmputer Science,
2001. D.Phil Thesis.

16. M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL: a theorem proving
environment for higher order logic. Cambridge University Press, 1993.

17. W. Gray, R.M. Young, and S. Kirschenbaum. Introduction to this special issue
on cognitive architectures and human-computer interaction. Human-Computer
Interaction, 12:301{309, 1997.

18. W.D. Gray. The nature and processing of errors in interactive behavior. Cognitive
Science, 24(2):205{248, 2000.

19. E. Hollnagel. Cognitive Reliability and Error Analysis Method. Elsevier, 1998.
20. D.E. Kieras, S.D. Wood S.D., and D.E. Meyer. Predictive engineering models based

on the EPIC architecture for a multimodal high-performance human-computer
interaction task. ACM Trans. Computer-Human Interaction, 4(3):230{275, 1997.

21. D. Leadbetter, P. Lindsey, A. Hussey, A. Neal, and M. Humphreys. Towards model
based prediction of human error rates in interactive systems. In Australian Comp.
Sci. Communications: Australasian User Interface Conf., volume 23(5), pages 42{
49, 2001.

22. T.G. Moher and V. Dirda. Revising mental models to accommodate expectation
failures in human-computer dialogues. In Design, Speci�cation and Veri�cation of
Interactive Systems '95, pages 76{92. Wien : Springer, 1995.

23. F. Paterno' and M. Mezzanotte. Formal analysis of user and system interactions
in the CERD case study. In Proceedings of EHCI'95: IFIP Working Conference on
Engineering for Human-Computer Interaction, pages 213{226. Chapman and Hall
Publisher, 1995.

24. F.E. Ritter and R.M. Young. Embodied models as simulated users: introduction
to this special issue on using cognitive models to improve interface design. Int. J.
Human-Computer Studies, 55:1{14, 2001.

25. C. R. Roast. Modelling unwarranted commitment in information artifacts. In
S. Chatty and P. Dewan, editors, Engineering for Human-Computer Interaction,
pages 77{90. Kluwer Academic Press, 1998.

26. J. Rushby. Using model checking to help discover mode confusions and other
automation suprises. In 3rd Workshop on Human Error, Safety and System De-
velopment (HESSD'99), 1999.

27. H. Xiong, P. Curzon, S. Tahar, and A. Blandford. Formally linking MDG and HOL
based on a veri�ed MDG system. In M. Butler, L. Petre, and K. Sere, editors, Proc.
of the 3rd International Conference on Integrated Formal Methods, volume 2335 of
Lecture Notes in Computer Science, pages 205{224, 2002.


