
Providing a Formal Linkage between the

MDG Veri�cation System and HOL

Proof System

Haiyan Xiong, Paul Curzon,

So��ene Tahar and Ann Blandford

Technical Report:IDC-TR-2003-006

December 2003

Interaction Design Centre

Interaction Design Centre
School of Computing Science

Middlesex University
Trent Park Campus

Bramley Road
N14 4YZ

For further details of this technical report series contact:
Paul Curzon (p.curzon@mdx.ac.uk)

Providing a Formal Linkage between MDG and

HOL

Haiyan Xiong1, Paul Curzon1, So��ene Tahar2, and Ann Blandford3

1 School of Computing Science, Middlesex University, London, UK.
Tel: +44 20 84116762, Fax: 44 20 84115924

p.curzon@mdx.ac.uk
2 ECE Department, Concordia University, Montreal, Canada.

tahar@ece.concordia.ca
3 UCL Interaction Centre, University College London, London, UK.

a.blandford@ucl.ac.uk

Abstract. We describe an approach for formally linking a symbolic
state enumeration system and a theorem proving system based on a
veri�ed version of the former. It has been realized using the HOL system
and a simpli�ed version of the MDG system. It involves the following
three steps. Firstly, we have veri�ed aspects of correctness of a simpli�ed
version of the MDG system. We have made certain that the semantics
of a program is preserved in those of its translated form. Secondly, we
have provided a formal linkage between the MDG system and the HOL
system based on a set of theorems, which formally import MDG veri�-
cation results into HOL theorems. Thirdly, we have combined the trans-
lator correctness and importation theorems to allow MDG veri�cation
results to be imported in terms of a high level language (MDG-HDL)
rather than low level decision diagrams. We also summarize a general
method of the stronger consistency theorem to prove design implemen-
tations against respective speci�cations. The feasibility of this approach
is demonstrated in a case study that integrates two applications: hard-
ware veri�cation (in MDG) and usability veri�cation (in HOL). A single
HOL theorem is proved that integrates the two results.

1 Introduction

Deductive theorem proving and symbolic state enumeration are complementary
approaches to formal veri�cation. In the former, the correctness condition for
a design is represented as a theorem in a mathematical logic, and a mechani-
cally checked proof of this theorem is generated using a general-purpose theorem
prover. In symbolic state enumeration systems, the design being veri�ed is rep-
resented as a decision diagram. Techniques such as reachability analysis are used
to automatically verify given properties of the design or machine equivalence.
Much of this work is based on Binary Decision Diagrams (BDD) [3].

Deductive theorem proving systems often use interactive proof methods. The
user interactively constructs a formal proof which proves a theorem stating the
correctness of an implementation. Theorem proving systems allow a hierarchical

veri�cation method to be used to model the overall functionality of designs with
complex datapaths. They are very general in their application. Theorems cannot
only be used to formalize a speci�c design but also can be abstracted as a general
situation of this class of design. Theorem proving systems are semi-automated.
To complete a veri�cation, experts with good knowledge of the internal structure
of the design are required to guide the proof searching process. This enables the
designer to gain greater insight into the system and thus achieve better designs.
However, the learning curve is very steep and modeling and verifying a system
is very time-consuming. This is a major problem for applying theorem proving
systems in industry.

In contrast, symbolic state enumeration systems are automated decision di-
agram based approaches. In this kind of approach, an implementation and its
behavioral speci�cation are represented as decision diagrams. A set of algorithms
is used to e�ciently manipulate the decision diagrams so as to get the correct-
ness results. The symbolic state enumeration veri�cation method can be viewed
as a black-box approach. During the veri�cation, the user does not need to un-
derstand the internal structure of the design. The strength of this approach is its
speed and ease of use. However, it does not scale well to complex designs since
it uses non-hierarchy state-based descriptions of the design. An increase in the
number of design components can result in the state space growing exponentially.

Recently, there has been a great deal of work concerned with combining
theorem proving and symbolic state enumeration systems to gain the advantages
of both. A common approach to combining proof tools is to use a symbolic
state enumeration system as an oracle to provide results to the theorem proving
system. In other words, an oracle is used to receive problems and return answers.
For example, the HOL system [17] provides approaches for tagging theorems that
are dependent on the correctness of external veri�cation tools. An oracle can be
built in the HOL system and viewed as a plug-in. The issue in such work is to
guarantee that the results provided by external tools are theorems within the
theory of the proof system. This process thus brings about two questions:

1. Can we ensure the automated veri�cation system produces correct results?
2. Have the veri�cation results from an automated veri�cation system been

correctly converted into a valid theorem in the theorem proving system?

We investigate the answers to the above two questions. Some symbolic state
enumeration based systems such as MDG [8] consist of a series of translators
and a set of algorithms. Higher level languages such as hardware description
languages are used to describe the speci�cation and implementation of the de-
sign. The speci�cation and implementation are then translated into the decision
diagrams via intermediate languages. The algorithms in the system are used
to e�ciently and automatically deal with the decision diagrams so as to ob-
tain the correctness results. We need to verify the translators and algorithms
in order to get the answer to the �rst question. To solve the second question,
we can formally justify the correctness results obtained from the symbolic state
enumeration system in a theorem prover.

2

The main contribution of this paper is that we describe an approach that
provides a formal linkage between a theorem proving system and a symbolic
state enumeration system based on a veri�ed symbolic state enumeration sys-
tem, to ensure the correctness of the theorem creation process. We partly realize
the methodology with the HOL system and a simpli�ed version of the MDG
system. We prove the correctness of aspects of the simpli�ed MDG system. We
also provide a formal linkage between the HOL system and the simpli�ed MDG
system based on the importing of MDG results to HOL theorems [31]. Most im-
portantly, we combine the translator correctness theorems with the importation
theorems in order to allow low level MDG veri�cation results to be imported
into HOL in terms of the semantics of a high level language (MDG-HDL). Full
details of this work can be found in [30]. Lessons from the work are applicable
to other related systems. We chose HOL and MDG because this work is part of
a large project in collaboration with the Hardware Veri�cation Group at Con-
cordia University. They are developing a hybrid system (MDG-HOL) [24] which
combines the MDG system and the HOL system.

The structure of the rest of this paper is as follows: in Section 2, we review
related work. In Sections 3 and 4, we brie
y introduce the MDG and HOL
systems, respectively. The main body of the paper is described in Section 5.
Section 6 presents a case study application of our work. Finally, our conclusion
and ideas for further work are presented in Section 7.

2 Related Work

Many di�erent technologies have been used to link veri�cation systems. We will
brie
y review a range of work linking proof systems to external, automated
veri�cation tools to give a
avour of the approaches. We concentrate on higher-
order logic proof systems since that is the main focus of this paper.

Joyce and Seger [23] presented a hybrid veri�cation system, HOL-Voss, which
links HOL to a symbolic trajectory system. Predicates were de�ned in the HOL
system, which created a mathematical link between the speci�cation language
of the Voss system (symbolic trajectory evaluation) [20] and that of the HOL
system. Aagaard et al. built on this work in developing the Forte veri�cation
system [1]. Forte is a combined model checking (in Voss via symbolic trajectory
evaluation) and theorem proving system (ThmTac). ThmTac is written in fl (a
strongly-typed functional language in the ML family [27]) and is an LCF (Logic
of Computable Functions) style implementation of a higher-order classical logic.
Both speci�cation and implementation language of Forte are fl which has been
deeply embedded in itself so as to be lifted. In other words, the system can
execute fl functions in Voss and reason about the behavior of fl functions in
ThmTac.

Rajan et al. [28] proposed an approach for the integration of model checking
with PVS [9]: the Prototype Veri�cation System. The �-calculus, which consists
of quanti�ed Boolean formula and predicates de�ned by means of the least and

3

greatest �xpoint operators, was used as a medium for communicating between
PVS and a model checker.

Computer algebra tools are another class of tool that can provide useful au-
tomated results for a theorem prover. Harrison and Th�ery [19], for example,
combined the theorem prover system (HOL) and the Maple [21] computer alge-
bra system. A software bus with three di�erent processes: HOL, Maple, and a
bridge were used to connect the theorem prover and computer algebra system. A
request is sent by HOL which is received and translated by the bridge, and then
sent to the computer algebra system. The answer from the computer algebra
system is then transferred back to the prover through the bridge.

In work such as the above an external tool is trusted to provide results to the
proof system. The external system is assumed to produce correct results (at least
with a similar level of con�dence as the proof system). Gordon [16] investigated a
way that such trust can be increased. He integrated the BDD based veri�cation
system BuDDY [25] into HOL by implementing BDD-based veri�cation algo-
rithms inside HOL building on top of primitives provided. Since \LCF-Style"
general infrastructure was provided, by implementing BDD primitives in HOL
| as long as those primitives are correct | not only could the standard state
enumeration algorithms be e�ciently and safely programmed in HOL, but it
also made it possible to achieve the advantages of both theorem proving tools
and state enumeration algorithms, without the need to trust a complete external
package, just a set of primitives.

Hurd [22] used a di�erent method to combine the strengths of two systems
without loss of trust. He considered two theorem-prover systems|Gandalf [29]
and HOL. He wrote functions to simulate the Gandalf proof according to the
Gandalf logged �le so reconstructing the proof in HOL to form the HOL the-
orems. Gandalf thus �nds a proof externally but that proof is then actually
recreated in HOL. As a result, the Gandalf proof results need not be tagged into
HOL and the degree of trust is high. If the Gandalf proof is incorrect, HOL will
just fail to create a theorem when following it.

In the above cases the e�ort was to link a single tool to a proof system. Other
work has looked at providing more general infrastructure for linking a variety of
tools. For example, the PROSPER toolkit [14] provides a uniform way of linking
HOL with external proof tools. The speci�cation of its integration interface has
been implemented in several languages allowing components written in these
languages to be used together. A range of di�erent external proof tools can
access the toolkit and act as servers to a HOL client. It also tags theorems
produced by its plug-in with a label which can be used in the HOL system. The
MDG-HOL system [24] used the PROSPER/Harness Plug-in Interface to link
the HOL system and the MDG system.

The VeriTech project [18] developed an interactive tool to integrate a variety
of formal veri�cation tools together. It is based on a set of tools translating from
each component veri�cation tool to a core representation and from the core to
each tool. This translation allows the user to directly import one veri�cation

4

tool's speci�cation and implementation �les into another veri�cation tool. The
user can thus take advantage of the di�erent veri�cation tools.

We take a di�erent approach from the above work. The external system is
not trusted unreservedly as in the earlier linkage work. Instead the proof sys-
tem is used to verify aspects of its correctness. Furthermore the linkage is not
trusted implicitly either { linkage theorems verify the way results are turned into
theorems in the proof system. We focus on the veri�cation of a symbolic state
enumeration system (the MDG system) and provide a theoretical underpinning
to the formal linkage of such a system and a theorem proving system (MDG and
HOL). We verify the correctness of translators of the MDG system by using the
HOL system and prove theorems that formally convert the MDG veri�cation
results of MDG's di�erent applications into the traditional HOL hardware ver-
i�cation theorems. By combining the translator correctness theorems with the
importation theorems, the MDG veri�cation results can be imported into HOL
in terms of the MDG input language (MDG-HDL). The feasibility of this ap-
proach is demonstrated in a case study that integrates two distinct applications:
hardware veri�cation (in MDG) and usability veri�cation (in HOL). A single
HOL theorem is proved that integrates the two results.

3 The MDG System

The full MDG system [8] is an automated veri�cation tool for hardware veri�-
cation. It uses a new class of decision graphs called Multiway Decision Graphs,
which subsume the class of Bryant's Reduced and Ordered Binary Decision Di-
agrams (ROBDD) [4] while accommodating abstract sorts and uninterpreted
function symbols.

A multiway decision graph (MDG) is a �nite directed acyclic graph G where
the leaf nodes are labeled by formulas, the internal nodes are labeled by terms
and the edges issuing from an internal node, N, are labeled by terms of the same
sort as the label of N. Such a graph represents a formula de�ned inductively as
follows:

1. If G consists of a single leaf node labeled by a formula P, then G represents
P,

2. If G has a root node labeled A with edges labeled B1:::Bn leading to sub-
graphs G1

0:::Gn
0, and if each Gi

0 represents a formula Pi, then G represents
the formula _1�i�n ((A = Bi) ^ Pi).

In fact, when an MDG has been constructed as a graph, it must obey the re-
strictions that any path from the root to leaf yields a canonical representation.
Like ROBDDs, an MDG must be reduced and ordered. Unlike ROBDDs, all the
variables used in an MDG must have appropriate sort, and sort de�nitions must
be provided for all functions. MDG can also represent the transition and output
relations of a state machine, as well as the set of possible initial states and the
sets of states that arise during reachability analysis.

The underlying logic of MDG is a subset of many-sorted �rst-order logic
with a distinction between concrete and abstract sorts. A concrete sort has an

5

enumeration while an abstract sort does not. Therefore, a data signal can be
represented by a single variable of abstract sort rather than a vector of Boolean
variables, and a data operation can be represented by an uninterpreted function
symbol. It partially ful�lls the aim of interactive veri�cation to verify hardware
designs automatically at a high level of abstraction. It also lifts many ROBDD
techniques from the Boolean domain to a more abstract domain. Therefore,
MDGs are more compact than ROBDDs for circuits having a datapath, and this
greatly increases the range of circuit that can be proved.

The MDG package [34] has been implemented in Prolog. Algorithms such
as disjunction, relational product (combination of conjunction and existential
quanti�cation), pruning-by-subsumption (for testing of set inclusion) and reach-
ability analysis (using abstract implicit enumeration) have been developed. Ap-
plications for hardware veri�cation such as combinational veri�cation, sequential
veri�cation, invariant checking and model checking are provided.

The input language of the MDG system is a Prolog-style hardware description
language (MDG-HDL) [34], which supports structural speci�cation, behavioral
speci�cation or a mixture of both. A structural speci�cation is usually a netlist
of components connected by signals, and a behavioral speci�cation is given by a
tabular representation of transition/output relations or a truth table.

4 The HOL System

HOL [17] is a theorem proving environment, which uses higher-order logic to
model and verify systems. There are two main proof methods used: forward
and backward proof. In forward proof, the steps of a proof are implemented by
applying inference rules chosen by the user, and HOL checks that the steps are
safe. It is an LCF [15] style proof system: all derived inference rules are built
on top of a small number of primitive inference rules. In backward proof, the
user sets the desired theorem as a goal. Small programs written in SML [27],
called tactics and tacticals, are applied that break a proof goal into a list of
subgoals. Tactics and tacticals are repeatedly applied to the subgoals until they
can be proved. A justi�cation function is also created mapping a list of theorems
corresponding to subgoals to a theorem that solves the goal. In practice, forward
proof is often used within backward proof to convert a goal's assumptions to a
suitable form. Table 1 shows the notation of higher-order logic and corresponding
meaning used in this paper.

Theorems in the HOL system are represented by values of the SML abstract
type thm. In a pure system (where mk thm which creates arbitrary theorems
is not used), a theorem is only obtained by carrying out a proof based on the
primitive inference rules and axioms. More complex inference rules and tactics
must ultimately call a series of primitive rules to do the job. In this way, the
SML type system protects the HOL logic from the arbitrary construction of a
theorem, so that every computed value of the type representing theorems is a
theorem. The user can have a great deal of con�dence in the results of the system
provided mk thm and new axioms are not used.

6

Notation Meaning

T truth
F falsity
P(x) x has property P
t1 ^ t2 t1 and t2
t1 _ t2 t1 or t2
t1 � t2 t1 implies t2
8 x. t[x] for all x, it is the case that t[x]
9 x. t[x] for some x, it is the case that t[x]

Table 1. Higher-order Logic Notation

HOL has a rudimentary library facility which enables theories to be shared.
This provides a �le structure and documentation format for self contained HOL
developments. Many basic reasoners are given as libraries such as mesonLib,

simpLib, decisionLib and bossLib. These libraries integrate rewriting, con-
version and decision procedures that automate a proof. They free the user from
performing low-level proof.

5 Formally Linking a Veri�ed MDG and HOL System

The intention of our work is to explore a way of increasing the degree of trust
of the MDG system and provide a formal linkage between the HOL system and
the MDG system in terms of the MDG input language as shown in Figure 1.
This work can be divided into three steps.

{ We must verify the correctness of the MDG system using the HOL system.
It consists of two phases: (1) veri�cation of the translators (step 1 of Figure
1) [32] and (2) veri�cation of the algorithms (step 2 of Figure 1).

{ We then must prove theorems (step 3 of Figure 1), which formally con-
vert the veri�cation results of the MDG applications into traditional HOL
hardware veri�cation theorems [31].

{ By combining the correctness theorems (theorems obtained from step 1 of
Figure 1 and step 2 of Figure 1) of the veri�cation of the MDG system
with the importing theorems (obtained from step 3 of Figure 1), the MDG
veri�cation results can be formalized in terms of the MDG input language
(MDG-HDL) in a form suitable for use in HOL.

During this study, we concentrate on the veri�cation of the translation phase
of the MDG system (step 1 in Figure 1) using the HOL theorem prover and
importing the MDG results into HOL to form the HOL theorems (step 3 in
Figure 1) [31]. Step 2 is similar to Chou and Peled's work [7] which veri�es a
partial-order reduction technique for model checking. Verifying the algorithms is
beyond the scope of this paper: we are primarily concerned with the linkage and
how it could be combined with the correctness theorems and importation theo-
rems. We outline the overall methodology and emphasize the importation process

7

Traditional HOL theorems

Results (Yes/No)

Verify the translator

Conversion

1.

2.

3.

MDG−HDL

MDGs

MDG verif. algorithms

Translator

Verify the algorithms

Verify the conversion

Fig. 1. Overview of the Formal Linkage Project

of the hybrid system. We not only verify the correctness of aspects of the MDG
system in HOL, but also formally import the MDG results into HOL to form
HOL theorems based on the semantics of the high level MDG input language
(MDG-HDL) [34] rather than the semantics of the low level MDG results. Since
we use a deep embedding semantics, the separate translator correctness theorems
can be combined with each other and the importation theorems. Besides, we also
summarize a general method for proving stronger consistency theorems, which
occur as assumptions to the importation theorems, to remove the burden from
the user of the combined system [32]. These theorems are needed speci�cally
to justify importing sequential veri�cation results on sequential designs into the
theorem proving system.

In the remainder of this section, we will discuss the individual steps that we
have undertaken: verifying the translator correctness theorems, proving the gen-
eral importation theorems, combining the translator correctness theorems with
the importation theorems in terms of deep embedding semantics, proving the ex-
istential theorem and implementing our method in a case study that integrates
two di�erent applications.

5.1 Verifying the MDG Translators

The input language of the MDG system (MDG-HDL) supports structural speci-
�cation, behavioral speci�cation or a mixture of both. The various speci�cations

8

INPUTS OUTPUTS

x1 y

T T T

F

x2

Table([[x1, x2, y], [1, 1, 1] | 0)

Fig. 2. The AND Table

(1) (2)core MDG−HDLMDG−HDL MDGs

Fig. 3. Overview of the MDG Translation Phases

of a design are input as a series of �les. In particular, a circuit description �le
declares signals and their sort assignment, components network, outputs, initial
values for sequential veri�cation and the mapping between state variables and
next state variables. In the components network, there is a large set of prede-
�ned components such as logic gates,
ip-
ops, registers, constants, etc. Among
the prede�ned components there is a special component called a Table, which is
used to describe a functional block in the implementation and speci�cation.

The Table constructor is similar to a truth table, but allows �rst-order terms
in rows. It also allows the high-level description to construct ITE (If-Then-Else)
formulas and CASE formulas. A table is essentially a series of lists, together with
a single �nal default value. The �rst list contains variables and cross-terms. The
last element of the list is the output of the table which must be a variable (either
concrete or abstract). For example, a two input AND gate can be described as a
table as shown in Figure 2. It states that if x1 is equal to true and x2 is true
then the output y is equal to true, otherwise the output y is equal to false.

In the MDG system, most of the components in the MDG-HDL library are
compiled into their own core MDG-HDL tabular code �rst. The core MDG-HDL

program can then be compiled into an internal MDG. Some components, such
as registers, are implemented directly in terms of an MDG. However, in theory
these components could also be implemented as tables; this provides a general
speci�cation mechanism. We assume theMDG-HDL program is �rstly translated
into a core MDG-HDL program. The core MDG-HDL program is then translated
into MDGs. In this situation, the MDG system could be speci�ed as in Figure 3.

Adopting this approach makes the translation phase more amenable to veri�-
cation. We are not verifying the actual MDG implementation (although an MDG
system could be implemented in this way, the existing implementation is not).
Rather, our formalization of the translator is a speci�cation of it. Once com-

9

bined with a translator from core MDG-HDL to MDGs, it would be specifying
the output required from the implementation. This would be used as the basis
for verifying such an implementation. We thus split the problem of verifying the
translator into the two problems of verifying that the implementation meets a
functional speci�cation, and that the functional speci�cation then meets the re-
quirement of preserving semantics. We are concerned with the latter step here.
This split between implementation and speci�cation correctness was advocated
by Chirica and Martin [6] with respect to compiler correctness.

We de�ne a deep embedding semantics for a subset of the MDG-HDL lan-
guage. This subset is all of MDG except three prede�ned components, namely
the Multiplexer, the Driver and the Transform construct used to apply functions.
These components are omitted from our subset as they have non-Boolean inputs
or outputs. We consider this subset since our aim is to explore the feasibility
of this method. The subset does allow a program to contain concrete sorts. In
other words, the inputs and outputs of a table could be Boolean sorts and
concrete sorts. The concrete sort of Boolean values is treated separately as it
is prede�ned in MDG and used with most components. It is therefore treated
as a special case. To cope with di�erent types in one list, we de�ne a new type
Mdg Basic in HOL. The value of the type can be either a Boolean value or a
string. In the rest of this paper, we will refer to this simpli�ed version of the
MDG system as \the MDG system".

We veri�ed the �rst translation step of the MDG system (see phase 1 in
Figure 3) based on the syntax and semantics of the MDG input language (MDG-

HDL) and the core MDG-HDL language using the HOL theorem prover. The
syntax and the semantics of the subset MDG-HDL and core MDG-HDL are
de�ned. A set of functions, which translate the program fromMDG-HDL to core
MDG-HDL is then de�ned. For each program in MDG-HDL, the compilation
operators are de�ned as functions, which return their core MDG-HDL code. A
translation function TransProgMC is applied to each MDG-HDL program so
that the corresponding core MDG-HDL program is established (Figure 4). In
other words, the relations of the translations can be represented as follows:

8 p. TransProgMC p = Corresponding core MDG-HDL program

The standard approach to prove a translator between two languages is in
terms of the semantics of the languages. Essentially the translation should pre-
serve the semantics of the source language. This has the traditional form of com-
piler speci�cation correctness (Figure 4) used in the veri�cation of a compiler [6].
An analogous method has been used in the speci�cation and veri�cation of the
MDG system. For the translation to core MDG-HDL, the correctness theorem
has been proved:

`thm 8 p. SemProgram (p) = SemProgram Core (TransProgMC p) (1)

where SemProgram and SemProgram Core are semantic functions for the MDG-

HDL program and core MDG-HDL program. This theorem states that the se-
mantics of the low level core MDG-HDL program is equal to the semantics of

10

MDG−HDL

core MDG−HDL

core MDG−HDL

core MDG−HDL

p

SemProgram_Core (TransProgMC p)SemProgram (p)

TransProgMC pTransProgMC

MDG−HDL
 Syntax

MDG−HDL

 Syntax

Semantics Semantics

Fig. 4. Compilation Correctness

the high level MDG-HDL (the MDG input language). For a subset of MDG, we
have also veri�ed the translation to a lower level formula language of decision
diagrams. More details can be found in [30].

5.2 The Importation Theorems

Generally, when we use HOL to verify a design, the design is modeled as a hi-
erarchy structure with modules divided into submodules as shown in Figure 5.
The submodules are repeatedly subdivided until the logic gate level is eventually
reached. Both the structural and the behavioral speci�cations of each module
are given as relations in higher-order logic. The veri�cation of each module is
carried out by proving a theorem asserting that the implementation (its struc-
ture) implements (implies) the speci�cation (its behavior). They have the very
general form:

implementation � specification (2)

The correctness theorem for each module states that its implementation down
to the logic gate level satis�es the speci�cation. The correctness theorem for each
module can be established using the correctness theorems of its submodules. In
this sense the submodule is treated as a black-box. A consequence of this is that
di�erent technologies can be used to address the correctness theorem for the
submodules. In particular, we can use the MDG system instead of HOL to prove
the correctness of submodules.

In order to convert the MDG veri�cation results into HOL, we formalized
the results of the MDG veri�cation applications in HOL. These formalizations
have di�erent forms for the di�erent veri�cation applications, i.e., combinational
veri�cation gives a theorem of one form, sequential veri�cation gives a di�erent
form and so on. However, the most natural and obvious way to formalize the
MDG results does not give theorems of the form that HOL needs if we are
to use traditional HOL hardware veri�cation techniques. Therefore, we have

11

Module

SubsubmoduleSubsubmodule

Submodule Submodule

VerificationSpecification

Fig. 5. Hierarchical Veri�cation

to convert the MDG results into a form that can be used. In other words, we
proved a series of translation theorems (one for combinational veri�cation, one
for sequential veri�cation, etc.) that state how an MDG result can be converted
into the traditional HOL form:

Formalized MDG result �

implementation � specification (3)

We have formally speci�ed the correctness results produced by several dif-
ferent MDG veri�cation applications and given general importation theorems.
These theorems do not explicitly deal with the MDG-HDL semantics or mul-
tiway decision graphs. Rather they are given in terms of general relations on
inputs and outputs. The theorems proved could be applied to other veri�cation
systems with similar architectures based on reachability analysis or equivalence
checking.

For example, the behavioral equivalence of two state machines (Figure 6) is
veri�ed by checking that the machines produce the same sequence of outputs for
every sequence of inputs. The same inputs are fed to the two machines M and
M' and then reachability analysis is performed on their product machine using
an invariant asserting the equality of the corresponding outputs in all reachable
states. This e�ectively introduces new \hardware" (see Figure 6) which we refer
to here as PSEQ (the Product machine for SEQuential veri�cation). PSEQ has
the same inputs as M and M', but has as output a single Boolean signal (flag).
The outputs op and op' of M and M' are input into an equality checker. On
each cycle, PSEQ outputs true if op and op' are identical at that time, and false
otherwise. The result that MDG proves about PSEQ is that the flag output is
always true. This can be formalized as

8 ip op op' flag. PSEQ ip op op' flag M M' � (8 t. flag t = T) (4)

12

M

M’

op

op’

ip flag (T/F)

PSEQ

EQ

Fig. 6. The Product Machine used in MDG Sequential Equivalence Checking

The corresponding importation theorem which converts MDG results to the
appropriate HOL form has been obtained:

`thm 8 M M'.

((8 ip op op' flag.

PSEQ ip op op' flag M M' � (8 t. flag t = T)) ^

(8 ip. 9 op'. M' ip op')) �

(8 ip op. M ip op � M' ip op) (5)

This suggests that the MDG results can only safely be imported into HOL
when an additional assumption (8 ip. 9 op'. M' ip op') is proved. We sum-
marize a general method to prove the additional assumption of the design in
Section 5.4.

5.3 Combining the Translator Correctness Theorems with the

Importation Theorems

In this section, we introduce the basic idea about how to combine the transla-
tor correctness theorems with importation theorems based on a deep embedding
semantics. This combination allows MDG results to be reasoned about in HOL
in terms of the MDG input language (MDG-HDL). Ultimately in HOL we want
a theorem about input language artifacts. However, the MDG veri�cation re-
sult is obtained based on a low level data structure | an MDG representation:
that is what the algorithms apply to. Therefore, the formalization of the MDG
veri�cation results in the importation theorems ought to be based on the seman-
tics of the MDG representations. Moreover, the theorem about the translator's
correctness can be used to convert the result MDG proves about the low level
representation to one about the input language (MDG-HDL). By combining the
translator correctness theorems with the importation theorems, we obtain the

13

new importation theorems which convert the low level MDG veri�cation results
into HOL to form the HOL theorems in terms of the semantics ofMDG-HDL. In
other words, we are not only able to import the MDG result into HOL based on
a veri�ed MDG system, but also the MDG veri�cation results can be converted
directly from the MDG input �les to the theorems of HOL naturally.

For example, if we check that three NOT gates are equivalent to a single
NOT gate, the whole MDG veri�cation process and the importing process can be
illustrated in Figure 7. In Figure 7, step 1 gives the main part of the two circuit
description �les (the MDG-HDL input language), which are translated into the
core MDG-HDL (tabular representations) language as shown in step 2. The core
MDG-HDL languages are then translated into the MDG language (step 3). The
MDG algorithm is then applied to the MDG in order to obtain two canonical
MDGs and the MDG tool checks whether the two canonical MDGs are identical
and returns true or false (step 4).

In our example the MDG tool returns true. The MDG veri�cation results are
obtained based on the low levelMDGs rather than the high level languageMDG-

HDL. However, the translator correctness theorems state that the semantics of
the low level MDG is equal to the semantics of the high level MDG-HDL (the
MDG input language). By combining the low level MDG result with the trans-
lator correctness theorems, the MDG veri�cation results can be imported into
HOL based on the semantics of the MDG input language (MDG-HDL). There-
fore, the traditional HOL theorem can be obtained in terms of the semantics of
the MDG input language.

In our work, we have veri�ed the �rst translator. In order to demonstrate
the combination of the translator correctness theorems and the importation
theorems, the formalization of the MDG results will be in terms of the core

MDG-HDL. In fact, the principle is the same. Similar conversion can be done
for further veri�ed translators. By combining the translator correctness theorem
with the importation theorems, we obtain the new importation theorems which
convert the low level MDG veri�cation results into HOL to form the HOL theo-
rems in terms of the semantics of MDG-HDL. The combination also allows the
additional assumption for sequential veri�cation to be proved in terms of the
semantics of MDG-HDL and the conversion theorem to be obtained in terms of
the semantics of MDG-HDL.

Therefore, the di�erent MDG veri�cation applications are formalized in a way
that corresponds to the semantics of the low level program (core MDG-HDL)
and converted into HOL to form the HOL theorem in terms of the semantics of
MDG-HDL. We have obtained theorems for both combinational veri�cation and
sequential veri�cation. They state that a veri�cation result about a circuit based
on a low level program is equivalent to a HOL theorem based on the semantics
of the high level language (MDG-HDL), i.e., that the structural speci�cation
implements the behavioral speci�cation.

We now describe how to obtain the new sequential veri�cation importation
theorem. That is, given an importation theorem about low level code, we use
the translator correctnesss theorem to obtain one about high level code. We �rst

14

ip op

1.The MDG−HDL language

The core MDG−HDL language2.

The MDGs3.

ip u v op

0
1

T
01

0 1
00

1
1

0 1
01

opip

ip

u u

u

v

T T

v

T

ip

1

1

1 0

0

v

opop

0 1 0 0

1 01 0

1

vvuu

op op

True

ip op

10
1 0

ip

T

0

01

1
ip

T

0

01

1

op op

op op

Obtain the canonical MDGs

Apply the MDG algorithms 4.

Traditional HOL theorems

component (not_gate, not (input (ip), output (op)))

component(not_gate1, not(input(ip), output(u)))

component(not_gate2, not(input(u), output(v)))

component(not_gate3, not(input(v), output(op)))

5. Importing theorems

Compare

Fig. 7. The MDG Veri�cation Process

15

instantiate the two machines in terms of the semantics of the core MDG-HDL

language in the importation theorem (5). Therefore, we obtain the importation
theorem based on the semantics of the core MDG-HDL language as shown below:

`thm 8 IMP SPEC.

(8 ip op op' flag.

PSEQ ip op op' flag

(SemProgram Core (TransProgMC SPEC))

(SemProgram Core (TransProgMC IMP))

� (8 t. flag t = T)) ^

(8 ip. 9 op'. SemProgram Core (TransProgMC SPEC) ip op') �

(8 ip op.(SemProgram Core (TransProgMC IMP) ip op) �

(SemProgram Core(TransProgMC SPEC) ip op)) (6)

Secondly, we need to prove the additional assumption.

`thm (8 ip. 9 op'. SemProgram Core(TransProgMC SPEC) ip op') (7)

From the translator correctness theorem (1), we obtain a theorem Exist Equ Thm

(8). This theorem states that the additional assumption based on the semantics
of the core MDG-HDL language is equivalent to that based on the semantics of
MDG-HDL. In other words, we can prove the additional assumption in terms of
the semantics of MDG-HDL. We discuss how this is done in Section 5.4.

`thm (8 ip. 9 op'. (SemProgram Core (TransProgMC SPEC))) ip op') =

(8 ip. 9 op'. SemProgram SPEC ip op') (8)

Thirdly, we prove a theorem, Imp Equ Thm, which states that the HOL
theorem based on the semantics of the core MDG-HDL language is equivalent
to that based on the semantics of MDG-HDL.

`thm (8 ip op.

(SemProgram Core (TransProgMC IMP)) ip op �

(SemProgram Core (TransProgMC SPEC)) ip op) =

(8 ip op. (SemProgram IMP) ip op �

(SemProgram SPEC) ip op) (9)

Finally, a new importation theorem Import Mdghdl Thm is obtained by rewrit-
ing theorem (6) with the theorems (8) and (9).

`thm 8 IMP SPEC.

(8 ip op op' flag.

PSEQ ip op op' flag

(SemProgram Core (TransProgMC SPEC))

16

(SemProgram Core (TransProgMC IMP))

� (8 t. flag t = T)) ^

(8 ip. 9 op'. SemProgram SPEC ip op') �

(8 ip op. SemProgram IMP ip op �

SemProgram SPEC ip op) (10)

This result, a combination of the translator correctness theorem and importa-
tion theorems allows MDG veri�cation results to be imported into HOL in terms
of the semantics of MDG-HDL. An example of importing an MDG veri�cation
result into HOL will be given when we describe the case study in Section 6.

5.4 Proving the Existential Theorem

Above we proved the importation theorem for sequential veri�cation. It has the
form:

`thm Formalized MDG result ^

8 ip. 9 op. SPECIFICATION ip op �

(8 ip op. (IMPLEMENTION ip op � SPECIFICATION ip op))

where SPECIFICATION represents the behavioral speci�cation and IMPLE-

MENTATION represents the structural speci�cation of a design. The �rst as-
sumption is discharged by the MDG veri�cation. However, for importing the
sequential veri�cation results into HOL, a user of the hybrid system strictly
needs to prove the additional assumption (an existential theorem) to ensure the
correct HOL theorem can be made. This theorem states that for all possible
input traces, the behavioral speci�cation SPECIFICATION can be satis�ed for
some outputs:

`thm 8 ip. 9 op. SPECIFICATION ip op (11)

Similar existential theorems are also needed about implementations. When
we convert MDG results into HOL to form HOL theorems, the theorems actually
state that the implementation of the design implements its speci�cation as shown
in (12).

`thm 8 ip op. IMPLEMENTATION ip op � SPECIFICATION ip op (12)

This representation might meet an inconsistent model that trivially satis�es any
speci�cation. This is sometimes called \The false implies anything problem"
[5]. If the implementation of a design (IMPL ip op) is false for all the inputs
and outputs, then this implication is a theorem, no matter what constraint
is imposed on the variables by its speci�cation (SPEC ip op). This is wrong
because a theorem like this provides no meaning to ensure the correctness of the
circuit. One solution to this problem is to verify a stronger consistency theorem
against the implementation as suggested in [26], which has the form:

`thm 8 ip. 9 op. IMPLEMENTATION ip op (13)

17

This means that for any set of input values ip there is a set of output values
op which is consistent with it. This shows that the model does not satisfy a
speci�cation merely because it is inconsistent. This has the same form (though
for the implementation) as the importation theorem assumption has for the
speci�cation.

We have investigated a way of proving the additional assumption and the
stronger consistency theorem based on the syntax and semantics of the MDG
input language [32]. As we mentioned above, we prove the additional assumption
because we want to make the linking process easier and remove the burden from
the user of the hybrid system. We prove the stronger consistency theorem be-
cause we want to avoid an inconsistent model occurring. As noted, the above two
theorems have the same form. We call them existential theorems. The stronger
consistency theorem (13) is an existential theorem for the structural speci�ca-
tion, whereas the additional assumption (11) for the importation theorem is an
existential theorem for the behavioral speci�cation. If we use C to represent
any speci�cation or implementation of a circuit, and ip and op to represent the
external inputs and outputs, existential theorem should have the form:

`thm 8 ip. 9 op. C ip op (14)

For example, the existential theorem for a circuit consisting of two NOT gates
in series should be:

`thm 8 ip. 9 op. (9 op1. SEM NOT ip op1 ^ SEM NOT op1 op)

The existential theorem is existentially quanti�ed. We can remove hidden
lines in goals of this form using the HOL tactic EXISTS TAC, which strips away
the leading existentially quanti�ed variable and substitutes a supplied term for
each free occurrence in the body. This term is called the existential term. An
existential term of a variable is determined by one of several output representa-
tions of the corresponding MDG-HDL components. An output representation of
a component represents an output function of this component, which depends on
its input value and output value at the current time or an earlier time instance.
The HOL tactic EXISTS ELIM TAC [2] is used to eliminate existentially quan-
ti�ed variables in a goal. This tactic corresponds to a theorem EXISTS ELIM

given below.

`thm (9 x. (x = t) ^ (A x)) = A t (15)

In other words, if the existentially quanti�ed variable (x) is explicitly repre-
sented by its value as in (15) with (x = t) in the goal, the tactic EXISTS ELIM TAC

can be used to remove the hidden lines. The general purpose simpli�cation tactic,
SIMP TAC can similarly be used to eliminate existentially quanti�ed variables.
However, for dealing with those existentially quanti�ed variables which are not
represented in the form (x = t), we need to �nd their output representations.

To import MDG results into HOL avoiding inconsistent models, we need to
prove the existential theorems for each circuit. Although one is the existential

18

theorem for the behavioral speci�cation and one is the existential theorem for
the structural speci�cation, they all use the same representation language: the
MDG input language (MDG-HDL) in our case.

We prove the existential theorems based on the syntax and semantics of
MDG-HDL [32] [13]. However, a similar method can be used to solve other exis-
tentially quanti�ed goals. We provide the output representation for each compo-
nent (mainly logic gates and
ip-
ops). The existential term of a design, which
reduces the goal 9 x. t to t[u/x], is determined in terms of the correspond-
ing output representations. This is very important for verifying the existential
theorem, since as long as we �nd the existential term of the design, the corre-
sponding theorem will be proved. We also provide HOL tactics for expanding
the semantics of the circuit and proving the existential theorem. Further details
can be found in [30] and [33].

6 Case Study: Integrated Hardware and Usability

Veri�cation

So far, we have discussed how to prove translator correctness theorems and
importation theorems. Their combination allows the MDG veri�cation results
to be formalized and reasoned about in HOL in terms of the semantics of MDG-

HDL. We now consider a simple case study to show that this method works
in practice. We show how an actual MDG veri�cation result can be imported
into HOL to form a traditional HOL theorem. Moreover, we show that the
importation theorems can be practically used in HOL. In particular, we apply
our approach to a simple example, integrating MDG hardware veri�cation and
HOL usability veri�cation for a vending machine.

The vending machine here is used to sell chocolate as shown in Figure 8. It
takes pound coins only, returning 20p change. To get the change a button must
be pressed. Similarly a further button must be pressed to get the chocolate. The
machine has lights next to the coin slot and 2 buttons to indicate the order things
should be done. The lights light up to indicate the next action the user should
perform. The order of operation is that a coin is inserted, the change button is
pressed and the change removed, and then �nally the chocolate button is pressed
and the chocolate removed. If the user does not press the appropriate button
the machine does nothing until the correct button is pressed. In summary, the
vending machine has three inputs which correspond to the buttons being pressed
and a coin inserted. It has �ve outputs which correspond to three lights and a
signal each to release change and chocolate.

The vending machine is implemented in hardware as shown in Figure 9. We
can use the prede�ned components in the MDG-HDL library to represent the
corresponding circuit as described in [10]. In the circuit, two registers are needed
to store the 4 internal states of the vending machine (reset, coin, choc, change).
The inputs are connected to wire xin and yin and their outputs to wires x

and y, respectively. In MDG-HDL, we use command component to specify their
speci�cations.

19

£1 ONLY

1 Insert Coin

2. Push for Change

CHOCOLATE − 80p

3. Push for Chocolate

C
H
O
C
O
L
A
T
E

Get Chocolate Get Change

Fig. 8. The Vending Machine

This example was originally used to verify the absence of a common class
of user errors known as post-completion errors (users missing completion tasks
after their goal is achieved, e.g. forgetting to take change after getting choco-
late.) within the framework of traditional hardware veri�cation by Curzon and
Blandford [11]. It was proved that the implementation of the vending machine
meets its speci�cation. A usability theorem about the absence of post-completion
errors based on its speci�cation was then proved. By combining the above two
theorems, the usability theorem based on its implementation was proved. In the
original work all the veri�cation was done in HOL.

We closely followed their steps. However, we used the MDG system to verify
the correctness of the vending machine and imported it into HOL using theo-
rem (10). We then proved the speci�cation based usability theorem in the HOL
system. By combining those two theorems, �rst the correctness theorem of the
vending machine which is veri�ed in MDG (the importation theorem), second
the speci�cation based usability theorem which is proved in HOL, we obtained
the implementation based usability theorem. Therefore, the importation theo-

20

AND

OR

OR

REG

NOT

AND

AND

REG

NOT

AND

ANDOR

AND

AND

FORK FORK FORK FORKFORK

NOT

l4

y

ybar

xbar

coin

l3

l5

change

change

coin

x

choc

GiveChoc GiveChange

reset

CoinLight ChangeLight ChocLight

xin

l1

yin

l2

reset

InsertCoin PushChange PushChoc

Fig. 9. The Circuit Implementation of the Vending Machine

21

rem (the correctness theorem) cannot only be imported into HOL but also can
be used in HOL.

We �rst did a hardware veri�cation of the vending machine in MDG. The
theorem about the formalization of the MDG veri�cation result can be tagged
into HOL in terms of the semantics of core MDG-HDL.

`thm 8 ip flag op op'.

PSEQ ip flag op op'

(SemProgram Core (TransProgMC Vend Imp Syn))

(SemProgram Core (TransProgMC Vend Spe Syn))

� (8 t. (flag t = T)) (16)

where Vend Imp Syn and Vend Spe Syn stand for the syntax of the implementa-
tion and speci�cation of the vending machine in terms of MDG-HDL. As stated
in Section 5.3, the importation theorem for the vending machine can be obtained
by instantiating the high level language importation theorem (10) with the syn-
tax of its implementation and speci�cation (Vend Spe Syn and Vend Imp Syn).
We obtain theorem Import Vend Thm:

`thm (8 ip op op' flag.

PSEQ ip op op' flag

(SemProgram Core (TransProgMC Vend Imp Syn))

(SemProgram Core (TransProgMC Vend Spe Syn))

� (8 t. flag t = T)) ^

8 ip. 9 op'. SemProgram Vend Spe Syn ip op' �

(8 ip op. SemProgram Vend Imp Syn ip op �

SemProgram Vend Spe Syn ip op) (17)

Note that the �rst part of this theorem concerns the low level code produced
by the translator, but that the existential assumption and conclusion are about
high level code.

We then prove the existential theorem for the behavioral speci�cation in terms
of the semantics of MDG-HDL.

`thm 8 ip. 9 op'. SemProgram Vend Spe Syn ip op' (18)

Finally, the conversion theorem can be obtained by discharging the formal-
ization theorem (16) and the existential theorem (18) from the importation the-
orem (17). This theorem states that the implementation of the vending machine
implies its speci�cation.

`thm 8 ip op. SemProgram Vend Imp Syn ip op �

SemProgram Vend Spe Syn ip op (19)

22

We next prove a speci�cation based usability theorem about the vending
machine in the HOL system. We will then use (19) to convert it into an im-

plementation based usability theorem. The general user model for a vending
machine is de�ned as CHOC MACHINE USER ustate op ip. This speci�es a sim-
ple form of cognitively plausible user behavior. We prove that if a user behaves
in this cognitively plausible way, they will not make post completion errors with
the particular vending machine in question (though they may with other poorer
designs). It speci�es concrete types for the machine and user state, a list of pairs
of lights and the actions associated with them, history functions that represent
the possessions of the user, functions that extract the part of the user state that
indicates when the user has �nished and has achieved their main goal and an in-
variant that indicates the part of the state that the user intends to be preserved
after the interaction. The details of the user model are not important for our
main argument here about integrating the results: the interested reader should
refer to [11] [12].

`def CHOC MACHINE USER ustate op ip =

USER

[(CoinLight,InsertCoin); (ChocLight,PushChoc);

(ChangeLight,PushChange)]

(CHOC POSSESSIONS UserHasChoc GiveChoc CountChoc UserHasChange

GiveChange CountChange UserHasCoin InsertCoin CountCoin)

UserFinished

UserHasChoc

(VALUE INVARIANT (CHOC POSSESSIONS UserHasChoc GiveChoc CountChoc

UserHasChange GiveChange CountChange

UserHasCoin InsertCoin CountCoin))

ustate op ip

The usability of a vending machine is de�ned as CHOC MACHINE USABLE ustate

op ip in terms of a user-centric property. It states that if at any time, t, a user
approaches the machine when its coin light is on, then they will at some time,
t1, have both chocolate and change: they will not make post-completion errors.

`def CHOC MACHINE USABLE ustate op ip =

8 t. � (UserHasChoc ustate t) ^

� (UserHasChange ustate t) ^

(UserHasCoin ustate t) ^

(VALUE INVARIANT (CHOC POSSESSIONS UserHasChoc GiveChoc

CountChoc UserHasChange GiveChange CountChange

UserHasCoin InsertCoin CountCoin) ustate t) ^

((CoinLight op t)= BOOL T) �

9 t1. (UserHasChoc ustate t1) ^

(UserHasChange ustate t1)

The speci�cation based usability theorem states that if all the external inputs
and outputs are Boolean, a user acts in the cognitively plausible way speci�ed
by the user model and the machine behaves according to its speci�cation, then
the usability property will hold.

23

`thm 8 ustate op ip.

Boolean ip op ^

CHOC MACHINE USER ustate op ip ^

CHOC MACHINE SPEC ip op �

CHOC MACHINE USABLE ustate op ip (20)

where predicate Boolean checks if all the external wires are Boolean values.
This is required because the inputs of a TABLE could be either a concrete type
variable or a Boolean variable. This predicate ensures the external wires have
proper values.

The implementation based usability theorem can be proved in HOL by com-
bining the correctness theorem (19) based on the MDG result with speci�cation
based usability theorem (20) proved in HOL. It (21) states that if the inputs and
outputs are Boolean, a user acts rationally according to the user model and the
machine behaves according to its implementation, then the usability property
will hold.

`thm 8 ustate op ip.

Boolean ip op ^

CHOC MACHINE USER ustate op ip ^

CHOC MACHINE IMPL ip op �

CHOC MACHINE USABLE ustate op ip (21)

From this example, we have shown that a system can be veri�ed in two
parts. One part of the proof can be done in MDG and the other part of the
proof can be done in HOL. The division allows MDG to be used when it would
be easier than obtaining the result directly in HOL. We have provided a formal
linkage between the MDG system and the HOL system, which allows the MDG
veri�cation results to be formally imported into HOL to form the HOL theorem.
We do not simply assume that the results proved by MDG are directly equivalent
to the result that would have been proved in HOL. The linkage is based on
the importation theorems giving a greater degree of trust. We have made use
of the importation theorem. In other words, the MDG veri�cation result not
only can be imported into HOL to form the HOL theorem, it can also be used
as part of a compositional veri�cation in HOL. We have also shown that two
di�erent applications (hardware veri�cation and usability veri�cation) suited to
two di�erent tools can be combined together.

7 Conclusions

We have described a methodology which provides a formal linkage between a
symbolic state enumeration system and a theorem proving system based on

24

veri�ed symbolic state enumeration systems. The methodology involves the fol-
lowing three steps. The �rst step is to verify correctness of the symbolic state
enumeration system in an interactive theorem proving system. Some symbolic
state enumeration based systems such as MDG consist of a series of translators
and a set of algorithms. We need to prove the translators and algorithms to
ensure the correctness of the system. We have not veri�ed the algorithms in this
work, but concentrated on the translators. For verifying the translators, we need
to de�ne the deep embedding semantics and translation functions. We have to
make certain that the semantics of a program is preserved in those of its trans-
lated form. This work increases our trust in the results of the symbolic state
enumeration system.

The second step of the methodology is to prove importation theorems in
the proof system about the results from the symbolic state enumeration system.
We need to formalize the correctness results produced by di�erent hardware
veri�cation applications using the theorem proving system. The formalization
is based on the semantics of the low level language (decision graph). We need
to prove a theorem in each case that translates them into a form usable in
the theorem proving system. In other words, we need to provide the theoretical
justi�cation for linking two systems.

The third step is to combine the translator correctness theorems with the
importation theorems. This combination allows the veri�cation results from the
state enumeration system to be formalized in terms of the semantics of a low
level language that the algorithms manipulate, and the result is strictly about,
but imported in terms of the semantics of a high level language. Therefore, we
are able to import the result into the theorem proving system based on the
semantics of the input language of a veri�ed symbolic state enumeration system.

We also summarize a general method to prove existential theorems of given
designs, which strictly is needed for importing sequential veri�cation results
into a theorem proving system. This work makes the linking process easier and
removes the burden from the user of the hybrid system.

We have implemented this methodology on a simpli�ed version of the MDG
system and the HOL system, and provided a formal linkage by using the above
mentioned steps. We have veri�ed aspects of correctness of a simpli�ed version of
the MDG system. We have provided a formal linkage between the MDG system
and the HOL system based on importing theorems [31]. Most importantly, we
have combined the translator correctness theorems with the importation theo-
rems. The feasibility of this approach has been demonstrated in a case study:
integrating hardware veri�cation and usability veri�cation for a vending ma-
chine. However, for importing the MDG veri�cation result into HOL, we have to
prove the existential theorem for the speci�cation of the design. The behavioral
speci�cations must be in the form of a �nite state machine or table description.

In ongoing work we are verifying the translator from core MDG-HDL to
MDGs. This has already been done, and integrated with the importation theo-
rems, for a smaller subset of the language (only using Boolean sorts). We will
also prove importation theorems for other MDG applications, verify more com-

25

plex examples and use our method in a combined system. In the longer term we
will verify the MDG algorithms and so integrate them with the existing work.

Acknowledgments

This work was funded by EPSRC grant GR/M45221, and a studentship from
the School of Computing Science, Middlesex University. Travel funding was pro-
vided by the British Council, Canada.

References

1. M. D. Aagaard, R. B. Jones, R. Kaivola, and C. J. H. Seger. Formal veri�cation
of iterative algorithms in microprocessors. Design Automation Conference, pages
201{206, June 2000. ACM Press.

2. G. Birtwistle, S. Chin, and B. Graham. new theory `HOL';; An Introduc-
tion to Hardware Veri�cation in Higher Order Logic. Unpublished, 1994.
http://www.comp.leeds.ac.uk/graham/research/hv/hvbooks.html.

3. R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions in Computers, 35(8):677{691, August 1986.

4. R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Computer Surveys, 24(3):293{318, September 1992.

5. A. Camilleri, M. Gordon, and T. Melham. Hardware veri�cation using Higher-
Order Logic. In D. Borrione, editor, From HDL Descriptions to Guaranteed Correct
Circuit Designs: Proceedings of the IFIP WG 10.2 Working Conference, pages 43{
67, Grenoble, September 1986.

6. L. M. Chirica and D. F. Martin. Toward compiler implementation correctness
proofs. ACM Transactions on Programming Languages and Systems, 8(2):185{
214, April 1986.

7. C. T. Chou and D. Peled. Formal veri�cation of a partial-order reduction technique
for model checking. In T. Margaria and B. Ste�en, editors, Tools and Algorithms
for the Construction and Analysis of Systems, volume 1055 of Lecture Notes in
Computer Science, pages 241{257. Springer-Verlag, 1996.

8. F. Corella, Z. Zhou, X. Song, M. Langevin, and E. Cerny. Multiway decision
graphs for automated hardware veri�cation. Formal Methods in System Design,
10(1):7{46, 1997.

9. J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A tutorial introduction
to PVS. http://www.dcs.gla.ac.uk/prosper/papers.html, 1999.

10. P. Curzon and A. Blandford. Reasoning about order errors in interaction. In
TPHOLs 2000 Supplemental Proceedings, Technical Report CSE-00-009, pages 33{
48. Oregon Graduate Institute, August 2000.

11. P. Curzon and A. Blandford. Using a veri�cation system to reason about post-
completion errors. In Philippe Palanque and Fabio Patern�o, editors, Participants
Proceedings of DSV-IS 2000: 7th International Workshop on Design, Speci�cation
and Veri�cation of Interactive Systems, at the 22nd International Conference on
Software Engineering, pages 293{308, Limerick, Ireland, June 2000. Kluwer Aca-
demic.

12. P. Curzon and A. Blandford. Detecting multiple classes of user errors. In M.R. Lit-
tle and L. Nigay, editors, Engineering for Human-Computer Interaction, 8th IFIP
International Conference, EHCI 2001, volume 2254 of Lecture Notes in Computer
Science, pages 57{71. Springer-Verlag, 2001.

26

13. P. Curzon, S. Tahar, and O. A��t-Mohamed. Veri�cation of the MDG components
library in HOL. In Jim Grundy and Malcolm Newey, editors, Theorem Proving
in Higher-Order Logics: Emerging Trends, pages 31{46. Department of Computer
Science, The Australian National University, 1998.

14. L. A. Dennis, G. Collins, M. Norrish, R. Boulton, K. Slind, G. Robinson, M. Gor-
don, and T. Melham. The PROSPER toolkit. In The Sixth International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems,
volume 1785 of Lecture Notes in Computer Science, pages 78{97. Springer Verlag,
2000.

15. M. J. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanised
Logic of Computation, volume 78 of Lecture Notes in Computer Science. Springer-
Verlag, 1979.

16. M. J. C. Gordon. Reachability programming in HOL98 using BDDs. In M. Aagaard
and J. Harrison, editors, Theorem Proving in Higher Order Logics, volume 1869 of
Lecture Notes in Computing Science, pages 179{196. Springer-Verlag, 2000.

17. M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem Proving
Environment for Higher-order Logic. Cambridge University Press, 1993.

18. Orna Grumberg and Shmuel Katz. Veritech: Translating among speci�cation and
veri�cation tools de-
sign principles. http://www.cs.technion.ac.il/labs/ssdl/research/veritech, March
1999.

19. J. Harrison and L. Th�ery. A skeptic's approach to combining HOL and Maple.
Journal of Automated Reasoning, 21:279{294, 1998.

20. S. Hazelhurst and C. J. H. Seger. Symbolic trajectory evaluation. In T. Kropf, ed-
itor, Formal Hardware Veri�cation: Methods and Systems in Comparison, volume
1287 of Lecture Notes in Computer Science, pages 3{79. Springer-Verlag, 1997.

21. A. Heck. Introduction to MAPLE. Springer, 1993.
22. J. Hurd. Integrating GANDALF and HOL. Technical Report 461, University of

Cambridge, Computer Laboratory, April 1999.
23. J. Joyce and C. Seger. Linking BDD-based symbolic evaluation to interactive

theorem-proving. In the 30th Design Automation Conference, pages 469{474,
Texas, United States, 1993.

24. S. Kort, S. Tahar, and P. Curzon. Hierarchical veri�cation using an MDG-HOL
hybrid tool. In T. Margaria and T. Melham, editors, 11th IFIP WG 10.5 Advanced
Research Working Conference, volume 2144 of Lecture Notes in Computer Science,
pages 244{258. Springer-Verlag, 2001.

25. J Lind-Nielsen. BuDDY - A Binary Decision Diagram Package.
http://www.itu.dk/research/buddy/.

26. T. F. Melham. Higher Order Logic and Hardware Veri�cation. Cambridge Tracts
in Theoretical Computer Science 31. Cambridge University Press, 1993.

27. L. C. Paulson. ML for the Working Programmer. Cambridge University Press,
1991.

28. S. Rajan, N. Shankar, and M. K. Srivas. An integration of model-checking with
automated proof checking. In P. Wolper, editor, Computer-Aided Veri�cation,
volume 939 of Lecture Notes in Computer Science, pages 84{97. Springer-Verlag,
1995.

29. T. Tammet. Gandalf version c-1.0c reference manual.
http://www.cs.chalmers.sr/�tammet/, October 1997.

30. H. Xiong. Providing a Formal Linkage between MDG and HOL Based on a Veri�ed
MDG System. School of Computing Science, Middlesex University, January 2002.
Ph.D. thesis.

27

31. H. Xiong, P. Curzon, and S. Tahar. Importing MDG veri�cation results into HOL.
In Theorem Proving in Higher Order Logics, volume 1690 of Lecture Notes in
Computer Science, pages 293{310. Springer-Verlag, 1999.

32. H. Xiong, P. Curzon, S. Tahar, and A. Blandford. Embedding and veri�cation of
an MDG-HDL translator in HOL. In TPHOLs 2000 Supplemental Proceedings,
Technical Report CSE-00-009, pages 237{248, August 2000.

33. H. Xiong, P. Curzon, S. Tahar, and A. Blandford. Proving existential theorems
when importing results from MDG to HOL. In Richard J. Boulton and Paul B.
Jackson, editors, TPHOLs 2001 Supplemental Proceedings, Informatic Research
Report EDI-INF-RR-0046, pages 384{399, September 2001.

34. Z. Zhou and N. Boulerice. MDG Tools (V1.0) User Manual. University of Montreal,
Dept. D'IRO, 1996.

28

