
DCS/100: Procedural Programming
Week 11: Arrays, Sorting and Matrices

Queen Mary, University of London

DCS/100: wk 11 – p.1/23

Last Week

By now you should be able to:

write programs that process bulk data using arrays

write programs that search arrays for information

explain how arrays are declared and used

write programs using recursion

implement divide and conquor algorithms

explain concepts related to recursion and divide and
conquor algorithms

DCS/100: wk 11 – p.2/23

A program from last week

static int sumton(int n)
{ if (n==0)

return 0;
else

return (n + sumton(n-1));
}

DCS/100: wk 11 – p.3/23

A program from a previous week

for (int i=0; i<length; i++)
{

if (a[i]==target)
{ out.writeln(i);

break;
}

}

DCS/100: wk 11 – p.4/23

This Week: Learning Outcomes

By the end of the week you should be able to:

explain different ways to sort arrays of data into order

write programs to sort arrays

write programs containing matrices

explain how to declare and use matrices

DCS/100: wk 11 – p.5/23

Arrays

Arrays are used to handle bulk data.
Typical things you do with arrays are:

apply some operation to a single element

apply some operation to each element of the array

find some particular element

sort the elements into some order

DCS/100: wk 11 – p.6/23

Sorting Arrays

There are lots of sorting algorithms.

Which one is best depends on the kind of data you have
(size, how nearly sorted, how easy to copy, . . .).

Some algorithms change the array so that it becomes
sorted (sorting in place)

Others give you a copy of the array, in sorted order.

Here are a couple of examples of in-place algorithms.

By using Divide and Conquer we can get very fast sort
algorithms

DCS/100: wk 11 – p.7/23

Sorting: bubblesort

Go through the array swapping pairs that are out of order.
Go back and do it again.
Keep going till array sorted.

DCS/100: wk 11 – p.8/23

Sorting: bubblesort

boolean sorted=false;

while (!sorted)

{ sorted = true;// array potentially sorted

//traverse array switching ill-ordered pairs

for (int i=0; i < length-1; i++)

{

if (array[i] > array [i+1])

{ // swap them

int tmp = array[i+1];

array[i+1] = array[i];

array[i] = tmp;

// array wasn’t sorted

sorted = false;

}

}

}

DCS/100: wk 11 – p.9/23

Sorting: insertion sort

Find the smallest element.
Put it in first place.
Find the second smallest element.
Put it in second place.
Keep going.

DCS/100: wk 11 – p.10/23

Sorting: insertion sort

Put another way (recursively):

Find the smallest element.
Put it in first place.
Sort the rest of the array (using insertion sort).

DCS/100: wk 11 – p.11/23

Divide and conquer: Sorting

Suppose you have a long array that you want to sort.
Divide and conquer says:
split it into smaller arrays and sort those
then combine the sorted arrays into the sorted large array.

DCS/100: wk 11 – p.12/23

Divide and Conquer: Mergesort

We could just split the array in the middle. Then we’d end
up with two sorted arrays, and we’d have to shuffle them
together. This leads to mergesort. Splitting the arrays is
trivial, recombining them after sorting takes time.
Mergesort:

split array in two halves
Mergesort first half
Mergesort second half
Shuffle the two sorted halves together

DCS/100: wk 11 – p.13/23

Divide and Conquer: Quicksort

In quicksort we also split the array. But we put all the
elements smaller than some suitably chosen size at one
end, and all the elements bigger at the other first. That way
we don’t have to do any shuffling at the end.
Quicksort:

choose an element to partition round
move elements smaller than it to its left
move elements bigger than it to its right
Split the array into two parts around
the final position of the chosen element

Quicksort first part
Quicksort second half
Put the two sorted halves together

DCS/100: wk 11 – p.14/23

Quicksort

Quicksort is a famous algorithm for sorting arrays
invented by Tony Hoare.

It is one of the algorithms most commonly used in real
systems.

It is generally very fast.

We gave a rational reconstruction, but not its most
efficient form.

DCS/100: wk 11 – p.15/23

Matrices

Sometimes the information you want to work with comes in
two dimensions or more:

pixels on a screen

squares on chess board

volume elements in space

Then you need a two or three-dimensional form of array.

DCS/100: wk 11 – p.16/23

Matrices

Java handles this by allowing arrays of arrays

int matrix[][] = new int[m][n];

This lets you store a matrix as an array of rows (or an array
of columns).

DCS/100: wk 11 – p.17/23

Matrices

M0,0 M0,1 M0,2 . . . M0,m

M1,0 M1,1 M1,2 . . . M1,m

.

Mn,0 Mn,1 Mn,2 . . . Mn,m

int M[][] = new int[n][m];

DCS/100: wk 11 – p.18/23

Matrices

M0,0 M0,1 M0,2 . . . M0,m

M1,0 M1,1 M1,2 . . . M1,m

.

Mn,0 Mn,1 Mn,2 . . . Mn,m

int M[][] = new int[n][m];
M[1][] is a row

(Row order).

DCS/100: wk 11 – p.19/23

Matrices

M0,0 M0,1 M0,2 . . . M0,m

M1,0 M1,1 M1,2 . . . M1,m

.

Mn,0 Mn,1 Mn,2 . . . Mn,m

int M[][] = new int[m][n];
M[][1] is a column
(Column order).

DCS/100: wk 11 – p.20/23

Processing a matrix

int M[][] = new int[n][m];

for (int i=0; i<n; i++)
for (int j=0; j<m; j++)
PROCESS (a[i][j]);

DCS/100: wk 11 – p.21/23

Processing a matrix

int M[][] = new int[n][m];

for (int i=0; i<n; i++)
for (int j=0; j<m; j++)
out.writeln(a[i][j]);

DCS/100: wk 11 – p.22/23

This Week: Learning Outcomes

By the end of the week you should be able to:

explain different ways to sort arrays of data into order

write programs to sort arrays

write programs containing matrices

explain how to declare and use matrices

Reading Computing Without Computers Chapter 14

Brinch Hansen: Chapter 8: Matricees.

DCS/100: wk 11 – p.23/23

	Last Week
	A program from last week
	A program from a previous week
	This Week: Learning Outcomes
	Arrays
	Sorting Arrays
	Sorting: bubblesort
	Sorting: bubblesort
	Sorting: insertion sort
	Sorting: insertion sort
	Divide and conquer: Sorting
	Divide and Conquer: Mergesort
	Divide and Conquer: Quicksort
	Quicksort
	Matrices
	Matrices
	Matrices
	Matrices
	Matrices
	Processing a matrix
	Processing a matrix
	This Week: Learning Outcomes

