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Abstract—An action consists of a sequence of instantaneous
motion patterns whose temporal ordering contains critical in-
formation especially for distinguishing fine-grained action cate-
gories. However, existing action recognition methods are dom-
inated by discriminative classifiers such as kernel machines or
metric learning with Bag-of-Words (BoW) action representations.
They ignore the temporal structures of actions in exchange for
robustness against noise. Although such temporal structures can
be modelled explicitly using dynamic generative models such
as Hidden Markov Models (HMMs), these generative models
are designed to maximise the likelihood of the data therefore
providing no guarantee on suitability for discrimination required
by action recognition. In this work, a novel approach is proposed
to explore the best of both worlds by discriminatively learning
a generative action model. Specifically, our approach is based
on discriminative Fisher kernel learning which learns a dynamic
generative model so that the distance between the log-likelihood
gradients induced by two actions of the same class is minimised.
We demonstrate the advantages of the proposed model over the
state-of-the-art action recognition methods using two challenging
benchmark datasets of complex actions.
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I. INTRODUCTION

Most existing work on action recognition deploys discrim-
inative models such as kernel machines and metric learning
[1], [2]. Spatio-temporal features are first extracted from
video frames of action sequences; action descriptors are then
constructed by discretising all the features of the entire action
sequences into a Bag-of-Words (BoW) representation in the
form of fixed-length histogram vectors. Taking these BoW
representations of action sequences, a discriminative model
utilises the given class labels of some training sequence data to
learn the optimal decision boundaries for separating different
action classes observed in video either in the visual spatio-
temporal feature space or a kernel embedding space. In this
discriminative classifier based approach, although the local
temporal information is captured implicitly by the spatio-
temporal features, the global temporal structure of an action
is completely ignored.

However, for recognising actions of complex (and subtle)
temporal structures, action recognition using a discriminative
classifier model trained on a BoW representation is inadequate.
Different approaches are necessary for modelling explicitly
the temporal structures. To this end, there have been attempts
on exploring dynamic generative models. These generative

model are designed to learn explicitly temporal ordering
dependencies of a sequence of data. Most of these models
are probabilistic graphic models, including Dynamic Bayesian
Networks (DBNs) such as Hidden Markov Models (HMM)
[3], [4], probabilistic topic models (PTMs) such as Latent
Dirichlet Allocation (LDA) [5] and its extensions [6], [7], or
a hybrid of both DBN and PTM [8]. However, most existing
generative models are constructed for abnormal behaviour
detection or temporal segmentation. When deployed for action
recognition, these generative models are often suboptimal.
This is because such models are designed to maximise the log-
likelihood of the training data required for anomaly detection
or segmentation. This does not necessarily guarantee that these
models are also good for discriminating actions of different
classes.

In this work, we propose a new method for action recogni-
tion that explores both discriminative feature learning and gen-
erative temporal modelling, that is, to discriminatingly learn
a dynamic generative model which captures explicitly action
temporal structures and simultaneously optimised directly for
distinguishing different action classes. Our approach is based
on learning discriminative Fisher kernel using a HMM. In
contrast to previous methods that learn a HMM for each
class independently for maximum data likelihood, we learn all
class-specific HMMs jointly and discriminatively so that the
class similarity distance between the log-likelihood gradients
induced by two actions of the same class is minimised whist
those of different classes are made farther apart. The Fisher
kernels computed using these discriminatively trained HMMs
are then utilised by a kernel machine for classification.

II. RELATED WORK

The limitation of the BoW+discriminative classier based
approach for complex action recognition has long been recog-
nised and various solutions have been proposed to overcome
this limitation. One solution is to model explicitly the tem-
poral structures of each action category. Most of such mod-
els are generative models, e.g. Dynamic Bayesian Networks
(DBNs) [3], Propagation Net [9] among which graphical
models especially DBNs are popular [10]. Different DBN
topologies have been developed for object-based decomposi-
tion and to factorise the state space and/or observation space
by introducing multiple hidden state variables and observation
state variables, e.g. Multi-Observation HMM (MOHMM) [11],



Parallel HMM (PaHMM) [12]. representation to discriminate
complex human activities. A recent study by Kuehne et al. [13]
shows that additional granularity in the action length improves
the HMM performance. They demonstrate that classifying
smaller components of action sequences by HMM similar to
a fine-grained object classification approach can benefit action
recognition. However, these generative model based methods
are based on maximum likelihood learning of different class
models independently for individual action classes. In contrast,
our method learns HMMs for different classes jointly and
discriminatively so to maximise inter-class discrimination.

III. REPRESENTATION AND MODELLING

Spatio-temporal features are first extracted for capturing
temporal structural information. In our approach, we adopt
the MBH (Motion Boundary Histogram) features [14]. Local
optical flows are computed and dense trajectories are formed
across each entire action video sequence. MBH features are
constructed along those dense trajectories across each action
video. We then divide each action video into a discrete number
of fixed length short clips with some overlapping between
clips. In each short clip, we compute k-means clustering of
MBH features and construct a dictionary of words for a BoW
histogram representation of MBH features for this clip.

Formally, MBH descriptors (features) di are extracted along
the dense trajectories in each action video Li = (xi, yi, ti).
A set (pool) of N MBH descriptors (features) is given as
Pv = {(d1, L1), . . . , (di, Li) , . . . , (dN , LN )} for video v,
where the total number of action videos is V . To construct
temporally ordered and localised BoW representations of
MBH features, each action video is split into short clips with
fixed-length T∀t at time t, where each clip is Pvt ⊂ Pv

and Pvt = {d1, . . . , di, . . . , dT }. Each clip Pvt may overlap
with another Pvt′ . Suppose the overlapping is between (t, T ),
the overlapped video segment between two clips is then
B = 1− t′−t

T ⇐⇒ t′−t ≤ T . In each clip, MBH features are
clustered with k-means to generate K centres for constructing
a localised MBH dictionary, denoted as w = {w1, . . . , wK}.
More precisely, MBH features extracted from each action
video are represented by a sequence of localised BoW rep-
resentations as follows:

Ci =argmin
k

√√√√J=192∑
j=1

(wkl
− dil)

2 (1)

f(Ci, k) =

{
1 if Ci = k
0 if Ci 6= k

Ht = {
∑N

n=1 f(Ci, 1), . . . ,
∑N

n=1 f(Ci, k), . . . ,
∑N

n=1 f(Ci,K)} (2)

In (1) the MBH descriptors/features in each temporally seg-
mented video clip Pvt are assigned to computed K cluster
centres w. Each MBH descriptor is assigned to the nearest
centre with a cluster ID Ci. The resulting counts of MBHs in
each cluster forms a histogram Ht, defined in (2).

A. HMM for Temporal Modelling

The clip-wise MBH histograms are fed into a HMM model
to learn the temporal structures of actions. The role of HMM
is to learn the temporal dependencies between different clips
of an action video. More precisely, the model parameters
of a HMM are trained from a set of action videos per
action class, of which each action video sequence is repre-
sented by temporally segmented MBH histograms, defined by
Dv = {H1, . . . ,HT }. Suppose the number of HMM states
is given as S. This corresponds to the number of discrete
video clips into which each action video is segmented1.
The HMM model is initialised by k-means clustering that
estimates a Gaussian Mixture Model (GMM) of S Gaussians
Λ = {ws,µs,Σs, s = 1, . . . , S} where the mixture weights,
means and covariance of each state are estimated respectively.
The state dependencies are described by the transitions matrix.
Given some training action sequences, these HMM parameters
are estimated by the Forward-Backward algorithm through
maximising the following log-likelihood:

L(D) =

V∑
v=1

log p(Dv, z|Θ) (3)

where

p(Dv, z|Θ) = p(z1|π)

[∏N
n=2 p(zn|zn−1,A)

]∏N
n=1 p(xn|zn, β) (4)

The equation (4) above describes the joint probability distribu-
tion of the data Dv given the hidden states z = {z1, . . . , zS}
and model parameters Θ = {π,A, β}, where the model
parameters Θ consists of the probabilities of the states π,
transitions A and emissions β, where transitions and emission
probabilities are used to estimate the ordering of the S states.
This optimisation problem can be solved by either the varia-
tional expectation maximisation algorithm or gradient decent.
Model training is performed for each action class where for
simplicity, class labels have been omitted. Now, to make the
learned HMMs for different action classes discriminative, we
explore discriminative Fisher kernel learning as follows.

B. Discriminative Fisher Kernel Learning

Fisher kernel learning aims to enhance the discriminative
properties of a model in its parameter space [15]. In this work,
the Θ and Λ parameters are considered for learning discrimi-
native Fisher kernels. For simplicity we denote M = {Θ,Λ}
and m being a parameter vector for each HMM state. The
following equation is differentiated:

O(M,W ;D) =
∑
i

∑
j 6=i

δyi,yj
pij (5)

where W is a stochastic selection matrix, δ is the Kronecker
delta, and pij is the probability of data sample Dv assigning

1We set S = 5 in this work unless otherwise stated.



its label to another data sample. The probability pij in (7) are
gradients computed from the data as follows:

gs =
∂L(D)

∂m
∀m ∈M (6)

In (6), the gradient gs is computed by associating the highest
posterior for each parameter vector, that is, the gradient which
is computed between the actual data and the parameter vector.
In practice, the HMM gradient is estimated based on the
temporally aligned histograms as follows:

pij =
exp(−(gi − gj)TWTW (gi − gj))∑

j′ 6=i exp(−(gi − gj′)TWTW (gi − gj′))
(7)

The Fisher kernel learning representations are obtained by
evaluating the posterior probabilities in (4) and maximising
the partial derivatives of (5) with ( ∂O

∂m ,
∂O
∂W ), where

∂O

∂m
= 2Qm

∑
i

[∑
j 6=i

[
δyi,yj

pij(gi − gj)
(∂gi

∂m
− ∂gi

∂m

)]
−

pi
∑
j 6=i

[
pij(gi − gj)

(∂gi

∂m
− ∂gi

∂m

)]]
(8)

Qm represents an element of the diagonal matrix Q = WTW
that corresponds to the model parameter m and pi =

∑
j pij .

Therefore,
∂O

∂W
= 2W

∂O

∂Q
(9)

∂O
∂Q = −

∑
i

∑
j 6=i δyi,yj

pij‖gi − gj‖2 − pi
∑

j 6=i pij‖gi − gj‖2 (10)

The final Fisher kernel is estimated by the following equation:

k(Dvi,Dvj) = gT
i Q gj (11)

That is, the final kernel is computed as a dot product between
the discriminant gradients and the diagonal matrix Q. After
obtaining the final Fisher kernel representation, we use the
kernel matrix in a standard SVM to obtain a classifier. In this
way the generative model (HMM) and discriminative classifier
(SVM) are seamlessly combined by the Fisher kernel learning.
We call this new model for action recognition the Fisher
Kernel Learning of Hidden Markov Model (FKL-HMM).

IV. EXPERIMENTS

The proposed FKL-HMM model was evaluated against (1)
the standard HMM method and two state-of-the-art action
recognition model using (2) a BoW representation with SVM
[2] and (3) a structured temporal process with hierarchical
HMM (HTK) [13]. The experiments were carried out on two
challenging action datasets, the Breakfast [13] and Cooking
activities [2]. Some examples are shown in Figure 1.

For the BoW representation model of [2] the MBH features
[16], [14] are used. Each action video is then represented
individually by a 4K dimensional histogram (holistic code-
book) of MBH features where are trained and tested using
a multi-label χ2-SVM . Note, in this study we focus on
analysing the role and importance of modelling temporal

(a) FriedEgg (b) Sandwich (c) UnrollDough (d) TakeOutFrom-
Fridge

Figure 1. Action instances from both the Breakfast ((a) & (b)) and
the Cooking ((c) & (d)) datasets. Each of the two datasets contains both
short/simple ((b) & (d)) and long/complex ((a) & (c)) actions in duration
respectively.

structures in action recognition. Therefore no appearance
based descriptors are used in the experiments. For constructing
the proposed FKL-HMM model, temporally localised MBH
features are encoded into hisotgrams of fixed-length short
video length for each action video, where each has 80 frames
with 75% overlap between neighbouring histograms in a video.
A codebook of 300 words is used for the histogram encoding.
These temporal sequences of histograms are trained with an
HMM model (Sec. III-A) and the proposed new FKL-HMM
model (Sec. III-B). On comparative evaluation, Multi-class
Classification Accuracy (MCA) is adopted in this study for
benchmarking both datasets. The MCA criterion is selected
as a harder metric than Mean Average Precision (mAP)
because MCA evaluates the top ranked results comparing
to mAP which gives a softer average of the ranking. In
addition, a Relative Performance Gain (RPG) measurement is
also reported on both datasets. This measure is established
by subtracting the recognition accuracy per class between
two comparing methods and recording the mean performance
margins respectively. For training and testing of all the models,
we follow the training and testing data splits as defined in [13]
and [2] respectively.

TABLE I
ACTION RECOGNITION COMPARISONS ON THE BREAKFAST AND THE

COOKING DATASETS.

FKL-HMM HMM BoW[2] HTK [13] BoW(50CB)[13]

Breakfast [13] 52.01 49.53 — 40.50 26.00

Cooking [2] 41.06 35.21 40.50 — —

Table I shows the comparisons of action/activity recogni-
tion performance of different models, including FKL-HMM,
HMM, BoW [2], HTK [13] and BoW(50CB) [13]2, on both the
Breakfast and the Cooking datasets. The reported performance
measure is Multi-class Classification Accuracy (MCA). It is
evident that the proposed new FKL-HMM model outperforms
all other models. The structured temporal model HTK has
clear advantage over the BoW holistic model (BoW(50CB))
with the same features for the recognition of more complex
actions/activities with longer durations as in the case of the

2This differs from BoW [2] in both the features (HOG/HOF vs. MBH) and
code book (CB) size (50 vs. 300).



Breakfast dataset. Moreover, the Cooking dataset is anno-
tated at a finer level of actions of cooking activities. This
resulted in difficulties in distinguishing many short actions.
Our results show that the Fisher kernel learning in the HMM
parameter space provides notable advantages over the HMM
model alone, therefore better suited for fine-grained action
discrimination. The performance using only the MBH features
is reported to allow fair comparisons with their benchmarks.

A more detailed analysis on different models’ effectiveness
on different types of action/activities in terms of short/long
and simple/complex temporal structures, is shown with com-
parative evaluations on the Relative Performance Gain (RPG)
between a BoW holistic representation based model and the
proposed FKL-HMM model. For the Breakfast dataset, it is
evident in Figure 2a that the FKL-HMM model performs better
than BoW at six categories of activities whilst the latter is
better at three, and both are equally good at one category.
Among the six activity classes where FKL-HMM performs
better, the average action temporal durations are significantly
longer than those of the three classes when BoW do better. For
example, FKL-HMM has a 10% RPG on “Fried egg” which
has an averaged duration of 3,180 frames, whilst BoW has
a 12% RPG on “Sandwich” whose average duration is 1,575
frames.

For the Cooking dataset, it is evident in Figure 2b that
the learned temporal ordering information by the FKL-HMM
model is very important for some classes but not for all of
them. In particular, actions/activities such as “unroll dough”,
“take out from oven” and “open tin” are better recognised
by the FKL-HMM model whilst actions such as “open/close
fridge”, “take out from fridge”, and “dry” are better recog-
nised by the BoW model. By observing these actions, one
notices clearly that actions with short temporal durations
(and repetitions) are better recognised by the BoW model.
In contrast, those actions with more variability and longer
temporal durations are better recognised by the FKL-HMM
model. In particular, it is noted that for the 10 classes that our
FKL-HMM has the biggest RPGs, their average duration is
416 frames, whilst for the 10 classes whereby BoW has the
biggest winning margin, the average duration is 156 frames.
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Figure 2. The Relative Performance Gain (RPG) between the FKL-HMM
and the BoW models on both the Breakfast and the Cooking datasets. The
horizontal axis shows the per action/activity class RPG and the vertical axis
denotes the action/activity class labels.

V. CONCLUSION

In this work we introduced a novel action recognition
model by exploring Fisher kernel learning in the Hidden
Markov Model parameter space that represents the temporal
structures of action sequences. Our proposed FKL-HMM
model aims to learn a discriminative function in a generative
temporal model parameter space, therefore being benefited
from both the strengths of discriminating learning and gen-
erative modelling necessary for effective recognition of more
complex and longer-duration actions and activities in more
realistic environments. Our model is evaluated comparatively
against existing and the state-of-the-arts structured temporal
models and the BoW holistic classification models using two
challenging action benchmark datasets, the Cooking and the
Breakfast datasets. Our experiments demonstrate clearly that
the proposed new FKL-HMM model is advantageous over
the existing state-of-the-arts models using either BoW holistic
representations or structured temporal modelling. Future work
involves the deployment of active and transfer leaning methods
to explore further improvement on the model.
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