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Most of the existing action recognition methods represent actions as bags of space-time interest points.

Specifically, space-time interest points are detected from the video and described using appearance-

based descriptors. Each descriptor is then classified as a video-word and a histogram of these video-

words is used for recognition. These methods therefore rely solely on the discriminative power of

individual local space-time descriptors, whilst ignoring the potentially useful information about the

global spatio-temporal distribution of interest points. In this paper we propose a novel action

representation method which differs significantly from the existing interest point based representation

in that only the global distribution information of interest points is exploited. In particular, holistic

features from clouds of interest points accumulated over multiple temporal scales are extracted. Since

the proposed spatio-temporal distribution representation contains different but complementary

information to the conventional Bag of Words representation, we formulate a feature fusion method

based on Multiple Kernel Learning. Experiments using the KTH and WEIZMANN datasets demonstrate

that our approach outperforms most existing methods, in particular under occlusion and changes in

view angle, clothing, and carrying condition.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Human action recognition in videos has recently become a
very active research area. It is an important component in various
application areas including: video surveillance, video indexing
and browsing, recognition of gestures, human–computer interac-
tion, and analysis of sport-events. Despite the best efforts of a
large number of computer vision researchers, action recognition
remains largely an unsolved problem. This is because in real
world the same actions can be performed by subjects of different
sizes, appearances, and poses. Moreover, actions can be captured
under occlusion from static or moving objects, illumination
changes, shadows, and camera movements.

Most of the previous approaches on action recognition focus on
the action representation problem. Early work is based on tracking
[30,1,29,32] or spatio-temporal shape templates [15,19,41]. Both
tracking and spatio-temporal shape template construction require
extraction of highly detailed silhouettes, which may not be
possible given a real-world noisy video input. To address this
problem, space-time interest point based approaches have become
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increasingly popular [9,7,26,31,25]. These approaches are based on
a Bag of Words (BOW) feature representation that has been
successfully applied to 2D object categorisation and detection [8].
Compared with tracking and spatio-temporal shape based
approaches, they are more robust to noise, camera movement,
and low-resolution inputs. Nevertheless, they rely solely on the
discriminative power of individual local space-time descriptors. In
other words, only the appearance information captured by each
individual interest point is utilised; information about the global
spatio-temporal distribution of interest points is ignored. Conse-
quently, they are unable to capture smooth and fast motions due to
the lack of large scale temporal information. Furthermore, they
have to address the non-trivial problems of selecting an optimal
space-time descriptor, clustering algorithm for constructing
a codebook and codebook size, all of which inevitably involve
parameter tuning. Such parameter settings are highly data depen-
dent and re-tuning is required for different video inputs.

To address the limitations of the conventional BOW action
representation method, we propose a novel approach based on
representing action as clouds of interest points accumulated at
different temporal scales. Specifically, we adopted a new space-
time interest point detection method to extract denser and more
informative interest points compared to existing interest point
extraction methods [9,7]. In particular, our model avoids spurious
detection in both background areas and highly textured static
distribution information of interest points for action recognition,
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foreground areas unrepresentative of the dynamic parts of actions
concerned. The extracted interest points are accumulated over
time at different temporal scales to form point clouds. Examples of
the clouds of interest points of different temporal scales are shown
in Fig. 1. Holistic features are then computed from these point
clouds for action representation, which capture explicitly and
globally the spatial and temporal distribution of salient local
space-time patches. Differing from the existing interest point based
representation approaches, the proposed method extracts holistic
and global information about action at multiple scales rather than
local appearance information at each individual interest point.

Since Bag of Words (BOW) and the proposed Clouds of Points
(COP) representations exploit completely different yet comple-
mentary aspects of an action, it is natural to fuse them to form a
better representation. To this end, we formulate a feature fusion
method based on Multiple Kernel Learning (MKL) [2]. Specifically,
to learn a multi-class classifier for action recognition, we employ
a support vector machine with multiple kernels, each of them
being computed using either the BOW features or our COP
features at a certain scale. Multiple kernel learning is then
performed to learn the best linear combination of the kernels to
yield the optimal classification accuracy. Learned in a one-vs-all
setting, the multiple kernel SVM can automatically identify which
type of features are the most informative ones in discriminating
one specific class of actions from others.

The proposed approach is evaluated in depth on two widely
used public datasets, namely the KTH dataset [7] and the Weiz-
mann Institute of Science (WEIZMANN) dataset [15]. The experi-
mental results demonstrate that our approach outperforms most of
the existing methods. In particular, with only the proposed COP
features, very competitive results can be obtained. When combined
with the complementary BOW features, better performance can be
achieved. Furthermore, we tested our method on the WEIZMANN
robustness test dataset. The result suggests that the proposed
approach is more robust against occlusion and changes in view
angle, clothing, carrying condition compared to existing methods.
In addition, we examine the performance of our method on the
more challenging YouTube dataset [24], which features constant
and unpredictable camera movements and dynamic background,
in order to identify its limitations and suggest possible extensions.
Fig. 1. Examples of clouds of interest points extracted from the KTH dataset [7]. The po

(b) clapping, (c) hand waving, (d) jogging, (e) running, (f) walking. (For interpretation

version of this article.)
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2. Related work

Existing human action representation approaches can be broadly
classified into four categories: flow based approaches [10], spatio-
temporal shape template based approaches [15,19,41], interest points
based approaches [9,7,26,31,23,14,43,35,17,22,34], and tracking based
approaches [30,1,29,32]. Flow based approaches construct action
templates based on optical flow computation [10,11]. However,
the features extracted from flow templates are sensitive to noise,
especially at the boundaries of the human body. Spatio-temporal
shape template based approaches essentially treat the action recogni-
tion problem as a 3D object recognition problem by representing an
action using features extracted from the spatio-temporal volume of
an action sequence [15,19,41]. These approaches require highly
detailed silhouettes to be extracted, which may not be possible given
a real-world noisy video input. In addition, the computational cost of
the space-time volume based approaches is unacceptable for real-
time applications. Tracking based approaches [30,1,29,32] suffer from
the same problems. Consequently, although 100% recognition rate
has been reported on the ‘clean’ Weizmann Institute of Science
(WEIZMANN) dataset, these approaches would not work well on
noisy datasets such as the KTH dataset, which is featured with low
resolution, strong shadows, and camera movement that renders clean
silhouette extraction impossible.

To address this problem, Schüldt et al. [7] propose to represent
action using 3D space-time interest points detected from video.
The detected points are clustered to form a dictionary of proto-
types or video-words. Each action sequence is then represented
following the Bag of Words (BOW) paradigm. Dollar et al. [9]
introduce a multidimensional linear filter detector, which results in
the detection of denser interest points compared to alternative
detectors such as 3D Harris detector [18]. However, as mentioned
earlier, their method ignores the potential valuable information
provided by the global spatio-temporal distribution of the interest
points. Consequently, they are unable to capture smooth and fast
motions due to the lack of temporal information. This also explains
why they generate poor results on the clean yet more ambiguous
WEIZMANN dataset whilst working reasonably well on the KTH
dataset, compared with methods using holistic representation such
as the spatio-temporal shape template [15,19,41].
int clouds at different temporal scales are highlighted in yellow boxes. (a) Boxing,

of the references to color in this figure legend, the reader is referred to the web

distribution information of interest points for action recognition,
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A number of researchers have realised the limitations of the
conventional BOW model and started to exploit the information
about the spatial and temporal distribution of interest points. Liu
and Shah exploit the spatial distribution of interest points using a
modified correlogram [23]. Gilbert et al. [14] encode spatial
information through concatenating video-words detected in dif-
ferent regions. Zhang et al. [43] introduce the concept of motion
context to capture both spatial and temporal distributions of
video-words. However, all these extensions still suffer from the
same problem as the original BOW method, that is, they still have
to go through the non-trivial process of selecting the optimal
space-time descriptor, clustering algorithm for constructing a
codebook, and codebook size. In addition, spatial and temporal
information about the distribution of the interest points is only
exploited implicitly, locally, and at a fixed temporal scale. In
comparison, the proposed Clouds of Points (COP) representation
exploits the distribution information explicitly and at multiple
temporal scales, therefore capturing both local and global tem-
poral information about the distribution.

There have also been a number of attempts on fusing features
extracted for representing actions. Yao et al. [40] extract deform-
able templates constructed with flow and shape features and then
use them to represent actions. The fusion is performed at the
feature level through a weighted sum of flow and shape primi-
tives. Similarly, Ikizler et al. [17] extract flow and shape features
and then fuse them via a voting scheme. Instead of giving equal
weight to different features, a weighted voting scheme is also
tested and different combinations of weights are manually
selected, but no improvement was obtained. An alternative fusion
strategy is presented in [22], which builds a shape-motion
prototype tree and classifies actions using prototype-matching.
Feature fusion is performed by simple concatenation of shape-
motion prototypes. Our approach differs from these methods in
two aspects: (1) the two types of features, COP and BOW features
are both extracted from space-time interests points, which are
easy to compute, and robust against noise and occlusion. (2) The
fusion method used in our work is based on multiple kernel
learning (MKL) which automatically determines which features
are more relevant for the classification task and assigns weights
accordingly. Our results suggest that this leads to superior
performance compared with simple concatenation. Note that
MKL has recently been adopted to fuse three different context
features for action recognition [34]. Compared with [34], our
method does not rely on feature tracking and is computationally
much more efficient.

The idea of extracting spatio-temporal distribution features
was first exploited in our previous work [5]. Compared with [5],
this work differs significantly in the following: (1) features
extracted from clouds of interest points of multiple temporal
scales are combined in a more principled manner via kernel
methods. (2) The complementary nature of the proposed clouds
of interest point features and bag of words features are exploited
and a multiple kernel learning method is formulated to fuse
them together, which leads to improvement on both recognition
accuracy and robustness against occlusion.
1 Although it is a very simple technique, frame differencing is found to be

sufficient for our interest point detector given moderate camera motions such as

those in the KTH dataset; When larger camera movements are present, a more

sophisticated foreground detection method need to be adopted (e.g. one can

employ an object detector such as [12]).
3. Interest points detection

Space-time interest points are local spatio-temporal features
considered to be salient or descriptive of actions captured in a
video. Among various interest point detection methods, the one
proposed by Dollar et al. [9] is perhaps the most widely used for
action recognition. Using their detector, intensity variations in the
temporal domain are detected using Gabor filtering. The detected
interest points correspond to local 3D patches that undergo
Please cite this article as: M. Bregonzio, et al., Fusing appearance and
Pattern Recognition (2011), doi:10.1016/j.patcog.2011.08.014
complex motions. Specifically, the response function of the Gabor
filters has the following form:

R¼ ðIngnhevÞ
2
þðIngnhodÞ

2
ð1Þ

where gðx,y : sÞ is the Gaussian smoothing kernel applied in the
spatial domain, while hev and hod are the 1D Gabor filters applied
temporally, defined as:

hevðt; t,oÞ ¼�cosð2ptoÞe�t2=t2

ð2Þ

hodðt; t,oÞ ¼�sinð2ptoÞe�t2=t2

ð3Þ

As reported in the original paper [9], by setting o¼ 4=t, there are
essentially two free parameters t and s which roughly control the
spatial and temporal scales of the detector.

Despite its popularity, the Dollar detector has a number of
drawbacks: it ignores pure translational motions, since it uses
solely local information within a small region; it is prone to false
detection due to video noise; it also tends to generate spurious
detection in background areas surrounding object boundaries and
in highly textured areas that are not in motion; it is particularly
ineffective given slow object movement, small camera movement,
or camera zooming. Some of those drawbacks are highlighted in
the examples shown in Fig. 2.

A new interest point detector is developed here to overcome
the shortcomings of the Dollar detector. In particular, most of the
shortcomings of the Dollar detector are caused by its design of
spatial and temporal filters and the way these filters are com-
bined to give the final response. Especially, the 1D Gabor filter
applied in the temporal domain is sensitive to background noise
and highly textured background/foreground areas which have
nothing to do with the action being performed. To overcome this
problem, the proposed detector adopts different and more effec-
tive filters for detecting salient space-time local areas undergoing
complex motions. More specifically, our interest point detection
method consists of two steps: (1) frame differencing for focus of
attention and region of interest detection1; and (2) Gabor filtering
on the detected regions of interest using 2D Gabor filters of
different orientations. Via these two steps, saliency detection in
both the temporal and spatial domains are combined together to
give the filter response.

The Gabor filters are applied on the frame difference result.
Specifically, the 2D Gabor filters are composed of two parts. The
first part sðx,y; iÞ represents the real part of a complex sinusoid,
known as the carrier:

sðx,y; iÞ ¼ cosð2pðm0xþu0yÞþyiÞ ð4Þ

where yi defines the orientation of the filter and eight orienta-
tions are considered:

yi ¼ 1,: :,8 ¼ f01,7221,7451,7671,901g ð5Þ

and m0 and u0 are the spatial frequencies of the sinusoid controlling
the scale of the filter. The second part of the filter Gðx,yÞ represents
a 2D Gaussian-shaped function, known as the envelope:

Gðx,yÞ ¼ exp
�x2

r2 þ
y2

r2

2

0
@

1
A ð6Þ

where r is the parameter that controls the width of Gðx,yÞ. We
have m0 ¼ u0 ¼ 1=2r; therefore, the only parameter controlling the
distribution information of interest points for action recognition,

dx.doi.org/10.1016/j.patcog.2011.08.014


Fig. 2. Comparison between interest points detected using our detector (green circle points) and the Dollar et al. [9] detector (red square points). (a) Boxing, (b) hand

waving, (c) running. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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scale is r, which is set to 11 pixels in this study.2 The eight Gabor
filters are applied separately and eight different responses are
computed at each frame. Examples of 2D Gabor filters oriented
along different directions are shown in Fig. 3. These responses are
combined together to compute a bi-dimensional saliency map Smap

t

as follows:

Smap
t ¼ ðS01

t Þ
2
þðS221

t Þ
2
þðS�221

t Þ
2
þðS451

t Þ
2
þðS�451

t Þ
2

þðS671
t Þ

2
þðS�671

t Þ
2
þðS901

t Þ
2

ð7Þ

where that image coordinates (x,y) are omitted for conciseness.
Finally, interest points are detected as local maxima of the
saliency map.

Fig. 2 shows examples of our interest point detection results
obtained on the KTH dataset. It is evident that the detected
interest points are much more meaningful and informative
compared with those detected using the Dollar et al. [9] detector.
In particular, the interest points detected by our approach tend to
correspond to the main body parts contributing to the action
being performed, whilst those detected by the Dollar detector
often drift to static body parts or to background areas with strong
edges. The experiments presented in Section 7.3 also suggest that
a better recognition performance can be obtained when our
interest point detector is used in place of the Dollar et al. [9]
detector, either with the standard Bag of Words representation or
the proposed Clouds of Points representation.
2 The value of r is set empirically. It could be set in a more principal way via

cross validation. It has been observed in our experiments that the recognition

performance is not sensitive to the value of r.

Please cite this article as: M. Bregonzio, et al., Fusing appearance and
Pattern Recognition (2011), doi:10.1016/j.patcog.2011.08.014
4. Action representation

4.1. Clouds of interest points

Consider an action video sequence V consisting of T image
frames, represented as:

V¼ ½I1, . . . ,It , . . . ,IT � ð8Þ

where It is the tth image frame. For the image frame It , a total of S

interest point clouds of different temporal scales are formed. They
are denoted as ½C1

t , . . . ,Cs
t , . . . ,C

S
t �. More specifically, an interest

point cloud of the s-th scale is constructed by accumulating the
interest points detected over the past s� Ns frames, where Ns is
the difference between two consecutive scales (in the number of
frames). Examples of clouds of interest points formed using the
KTH and WEIZMANN datasets are shown in Fig. 4. It can be seen
from Fig. 4 that different types of actions result in interest point
clouds of very different shapes, relative locations (w.r.t. body
location), and distributions. It is also evident that interest point
clouds of different scales capture different aspects of human
motion that potentially have different levels of discriminative
power. This will be exploited by the feature selection method
detailed later (Section 4.3).

4.2. Feature extraction

For the S interest point clouds constructed for the t-th image
frame ½C1

t , . . . ,Cs
t , . . . ,C

S
t �, two sets of features are extracted. These

features are significantly different from the local descriptors
computed by conventional interest point based approaches. In
particular, the interest point cloud features are global and holistic
capturing distribution information of interest points, whilst the
distribution information of interest points for action recognition,

dx.doi.org/10.1016/j.patcog.2011.08.014


Fig. 3. Examples of the 2D Gabor filters oriented along (a) 221 and (b) 671.

Fig. 4. Examples of clouds of space-time interest points. We have S¼6 and Ns ¼ 5. In each frame the red rectangle represents the foreground area, the green points are the

extracted interest points, and the yellow rectangles illustrate clouds of different scales. (a) Boxing, (b) hand clapping, (c) hand waving, (d) jogging, (e) running, (f) walking,

(g) galloping sideways. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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conventional descriptor features, computed from a cuboid
centred at each interest point are local, describing appearance
information of individual interest points.

The first set of interest point cloud features is concerned with
the shape and speed of foreground objects. To reliably detect and
segment a foreground object given camera movement, zooming,
strong shadows, and noisy input is a non-trivial task. This is
accomplished by the following procedure. First, regions of interest
are detected via frame difference. Second, a series of 2D Gabor
filters are applied to the image frame. Third, the responses of
these filters are fused together with the frame difference result.
Finally, a Prewitt edge detector [27] is employed to segment the
object from the detected foreground area. Once an object is
segmented from the frame, two features are computed from each
frame: Or

t measuring the height and width ratio of the object, and
OSp

t measuring the absolute speed of the object measured in pixels
per frame (OSp

t ¼ 0 means no object displacement).
The second set of features are extracted from interest point

clouds of different scales, they are thus scale dependent. Particu-
larly, from the s-th scale cloud, eight features are computed and
denoted as

½Cr
s ,CSp

s ,CD
s ,CVd

s ,CHd
s ,CHr

s ,CWr
s ,COr

s � ð9Þ

Note that subscript t is omitted for clarity. Specifically, Cr
s is the

height and width ratio of the cloud; CSp
s is the absolute speed of

the cloud measured in pixels per frame (CSp
s ¼ 0 means no cloud

movement); CD
s is the density of the interest point within the

cloud, which is computed as the total number of points normal-
ised by the area of the cloud (CD

s ¼ 1 means 1 point detected in a
10�10 pixels cloud area); CVd

s and CHd
s measure the spatial

relationship between the cloud and the detected object area
measured in pixels. Specifically, CVd

s is the vertical distance
Please cite this article as: M. Bregonzio, et al., Fusing appearance and
Pattern Recognition (2011), doi:10.1016/j.patcog.2011.08.014
between the geometrical centre (centroid) of the object area
and the cloud, and CHd

s is the distance in the horizontal direction
(CVd

s ¼ 0 and CHd
s ¼ 0 means that the cloud and the object are

centred in the same place). CHr
s and CWr

s are the height ratio and
width ratio between the object area and the cloud respectively
(CHr

s ¼ 1 and CWr
s ¼ 1 mean that object and cloud have the same

size). COr
s measures how much the two areas overlap in terms of

percentage. Overall, the eight features can be put into two
categories: Cr

s , CSp
s , and CD

s measure the shape, speed, and density
of the cloud itself; the five remaining features capture the relative
shape and location information between the object and the cloud
areas. To make these features insensitive to outliers in the
detected interest points, an outlier filter is deployed before the
feature extraction, which evaluates the interest point distribution
over four consecutive frames and removes those points that are
too far away from the distribution centroid. Specifically, we
estimate the centroid of the points in each frame and compute
the average distance from each point to the centroid. If the
distance between an interest point and the centroid is four times
or more of the average distance, it is most likely to be caused by
background noise and thus removed.

Now each frame is represented using 8Sþ2 features where S is
the total number of scales (i.e. eight features for each scale plus
two scale-independent features Or

t and OSp
t ). By using a total of

(8Sþ2) � T features to represent the whole action sequence of T

frames leads to a feature space of an extremely high dimension. It
is well known that a high dimensional feature space can cause
over-fitting resulting in poor recognition performance. To reduce
the dimensionality of the feature space, and more importantly, to
make our representation less sensitive to feature noise and
invariant to the length of each action sequence, a histogram of
Nb bins is constructed for each of the 8Sþ2 features collected over
distribution information of interest points for action recognition,

dx.doi.org/10.1016/j.patcog.2011.08.014
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time via linear quantization. Consequently, each action sequence
is represented as 8Sþ2 histograms or ð8Sþ2Þ � Nb scalar features
with Nb5T . Instead of using fixed-width histogram binning as
most existing work does, we adopt histogram of non-uniform bin
width with more bins being given to the high density area of the
feature space [21]. More specifically, it involves the following
steps: (1) For each feature, its values from different data points
are represented as a random variable with a certain value range.
(2) The Kaplan–Meier estimate of the cumulative distribution
function (cdf), also known as the empirical cdf, is computed.
(3) Plot the function with the random variable value as the x-axis
and the cdf value (ranged from 0 to 1) as the y-axis. (4) To build a
Nb-bin histogram, draw Nb horizontal lines at equal interval along
the y-axis. (5) The x coordinates of the intersection points with
the cdf plot determine the value range of each bin.
4.3. Feature selection

Using the ð8Sþ2Þ � Nb features as described above, the feature
space dimension is still very high and needs to be further reduced.
Moreover, there are uninformative and redundant features one
would wish to eliminate from the feature set. To that end, a
simple and intuitive yet effective feature selection method is
formulated below.

Our feature selection method measures the relevance of each
feature according to how much its value varies within each action
class and across different classes. Specifically, a feature is deemed
as being informative and relevant to the recognition task if its
value varies little for actions of the same class but varies
significantly for actions of different classes. First, given a training
set of A action classes, for the i-th feature fi in the a-th class, we
compute its mean and standard deviation within the class as ma

fi

and sa
fi

respectively. The relevant measure for feature fi is then
denoted as Rfi

and computed as:

Rfi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
A

PA
a ¼ 1ðma

fi
�m̂fi
Þ
2

q
1
A

PA
a ¼ 1 sa

fi

ð10Þ

where m̂fi
¼ ð1=AÞ

PA
a ¼ 1 ma

fi
is the inter-class mean of the A intra-

class feature means. The numerator and denominator of the
above equation correspond to the standard deviation of the
intra-class means, and the inter-class mean of the intra-class
standard deviations respectively. The former measures how the
feature value varies across different classes (the higher the value
is, the more informative the feature fi is); the latter tells us how
the value varies within each class (the lower the value, the more
informative the feature). Overall, features with higher Rfi

values
are preferred over those with lower ones. Finally, all features are
ranked according to their Rfi

and a decision is made as to how
many percent of the features are to be kept for recognition.

Our feature selection method, although intuitive, seems to
have a number of drawbacks. First, different features are selected
separately as if they were independent of each other. It has been
widely recognised that combining good features together does
not guarantee good recognition performance [28]. So, ideally we
would like to select the features collectively. However, this means
that the feature search space is too high for an exhaustive search
and even a sequential-search based approximation scheme is
considerably expensive. Second, more sophisticated relevance
measures such as mutual information [28] can be used. Never-
theless, compared with alternative feature selection approaches,
one of the advantages of our method is that it has an extremely
low computational cost. We also show empirically through
experiments (see Section 7.3) that our method is more effective
than a far more complicated state-of-the-art method [28].
Please cite this article as: M. Bregonzio, et al., Fusing appearance and
Pattern Recognition (2011), doi:10.1016/j.patcog.2011.08.014
5. Combining multi-scale clouds of interest point features

The Clouds of Interest Points (COP) features are of multiple (S)
temporal scales. Features of different scales may not be equally
informative in representing different actions. This is because each
class of actions have a specific temporal scale. In particular,
different actions are performed by moving body parts at different
speed. Most actions are periodic (e.g. running, walking, hand-
clapping) consisting of repetitive cycles. For them, the lengths of
their cycles are direct indications of their temporal scales. For
instance, in the KTH dataset at 25 Hz, a full cycle of the running,
hand-clapping and walking actions lasts around 20, 25, and 30
frames respectively. Intuitively, longer scale COP features are
more useful in describing longer scale (slower) actions. Therefore
it is necessary to weight the features of different scales according
to their relevance to the classification task, and different weight-
ings should be used for classifying different actions. Ideally these
weightings should be learned automatically from a training
dataset.

To this end, a multiple kernel learning (MKL) method is
formulated for learning the optimal weighting of COP features
of different scales for multi-class action classification. MKL was
first introduced in [2] to address the problem of selecting the
optimal combination of kernel functions for a specific feature for
Support Vector Machine (SVM) classification. Recently it has been
used in computer vision for addressing a closely related problem,
that is, given a specific kernel function but different features
capturing different aspects of a visual object, how to best combine
them together to achieve the optimal classification performance
[13,34]. In this work, we consider that COP features of different
scales capture the characteristics of an action class under multiple
temporal scales and MKL is adopted to learn the optimal combi-
nation of these features.

Let us formally define the multiple class action recognition
problem. Taking the one-vs-rest scheme, C binary classifiers are
learned to classify an action sequence into one of the C classes.
Assume we have a training set ðxi,yiÞi ¼ 1,...,N of N instances; each
training sample xi is a video sequence containing an action with a
class label yi. To represent the action, S features are extracted as
described in Section 4. Each feature is a histogram corresponding
to COP features at one specific scale. We denote the s-th scale
feature as fsðxÞ where fsð�Þ is the feature extraction function. Using
multiple kernel learning, a set of kernel functions is to be
computed, each of which is essentially a distance/similarity
measure. Specifically, a kernel function

ksðx,x0Þ ¼ kðfsðxÞ,fsðx
0ÞÞ ð11Þ

measures the similarity between a pair of action sequences
represented using the s-th scale COP features. For notational
convenience, given an action sequence x, we denote its kernel
response of the s-th feature to all N training samples as

KsðxÞ ¼ ½ksðx,x1Þ,ksðx,x2Þ, . . . ,ksðx,xNÞ�
T ð12Þ

Now let us describe how different kernels corresponding to
different COP features are combined in an SVM framework. Using
MKL, the objective is to learn an optimal weighting so that the
combined kernel function has the following form:

knðx,x0Þ ¼
XS

s ¼ 1

bsksðx,x0Þ ð13Þ

where bs is the weight associated to the s-th temporal scale. To
learn an SVM for classifying one action class against the rest,
we have an optimisation problem with the following objective
distribution information of interest points for action recognition,
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function:

min
a,b,b

1

2

XS

s ¼ 1

bsaT KsaþC
XN

i ¼ 1

L yi,bþ
XS

s ¼ 1

bsKsðxÞ
Ta

 !

s:t:
XS

s ¼ 1

bs ¼ 1, bsZ0, s¼ 1, . . . ,S ð14Þ

where a is a N-dimensional feature vector which can be seen as
the weights of each training sample, b has a scalar value, Ks is
defined in Eq. (12), Lðy,zÞ denotes the Hinge Loss function [3]. The
two constraints put on bs are to make sure that the estimated
value of bs is sparse and interpretable (i.e. as weights, they should
be either zero or a positive number, and the sum of all weights
should be 1). Various methods can be used to solve the above
optimisation problem. In this work we adopted the semi-infinite
linear program (SILP) algorithm [33]. Conventionally the multiple
kernel learning problem is formulated as a convex quadratically
constrained quadratic program and solved using a local descent
algorithm such as Sequential Minimization Optimization (SMO).
However, it is slow and only feasible for small scale problems. The
method in [33] reformulates the multiple kernel learning problem
as a semi-infinite linear program (SLIP), which can be efficiently
solved using an off-the-shelf linear program solver and a standard
SVM implementation. Two linear program solvers are formulated
in [33]; one of them is a wrapper algorithm and the other a
chunking algorithm. The wrapper algorithm was used in our
implementation. Note that the regularisation constant C is deter-
mined via cross validation. Given the learned parameters bs, a,
and b, the final binary decision function of MKL is of the following
form:

FMKLðxÞ ¼ sign
XS

s ¼ 1

bsðKsðxÞ
TaþbÞ

 !
ð15Þ

where signð�Þ is a function that returns a value 1 if its parameter is
positive and �1 if otherwise, KsðxÞ is defined in Eq. (12) which
measures the similarity between the test data x with all N training
data samples (both positive and negative). If FMKLðxÞ assumes the
value 1, the test sequence x is deemed as being a member of the
target action classes for which the MKL binary classifier is trained.
Since we are dealing with a multiple class classification problem,
multiple binary classifier is trained and a test action sequence
is classified as the action class with the highest value ofPS

s ¼ 1 bsðKsðxÞ
TaþbÞ.
6. Appearance and distribution feature fusion

The proposed multi-scale COP features are fused with the
conventional BOW interest point features to form the final
representation of actions in our approach. This is because these
two types of features capture completely different yet comple-
mentary aspects of actions: the former contains global distribu-
tion information of interest points, whilst the latter represents
how each interest point looks like in terms of 3D texture and
localised motion characteristics.

This fusion problem can be considered as a feature combina-
tion problem and addressed using the same multiple kernel
learning method described in the preceding section. More speci-
fically, after interest points are extracted using the method
described in Section 3 and represented as a histogram of the
BOW features, we compute a kernel function denoted as kB and
form a linear combination with the S COP features. Now the
combined kernel function in Eq. (13) is rewritten as

knðx,x0Þ ¼
XS

s ¼ 1

bsksðx,x0ÞþbBkBðx,x0Þ ð16Þ
Please cite this article as: M. Bregonzio, et al., Fusing appearance and
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Similarly, the objective function to be optimised using the SLIP
algorithm [33] becomes

min
a,b,b

1

2

XS

s ¼ 1

bsaT KsaþbBaT KBa
 !

þC
XN

i ¼ 1

L yi,bþ
XS

s ¼ 1

bsKsðxÞ
TaþbBKBðxÞ

Ta
 !

s:t:
XS

s ¼ 1

bsþbB ¼ 1, bsZ0, s¼ 1, . . . ,S, bBZ0 ð17Þ

where bB is the weight of the BOW features. After parameter
estimation, the final binary decision function is

FMKLðxÞ ¼ sign
XS

s ¼ 1

bsðKsðxÞ
TaþbÞþbBðKBðxÞ

TaþbÞ

 !
ð18Þ

7. Experiments

7.1. Datasets

KTH Dataset—The KTH dataset was provided by Schuldt et al. [7]
in 2004 and is one of the largest public human activity video dataset.
It contains six types of actions (boxing, hand clapping, hand waving,
jogging, running and walking) performed by 25 subjects in four
different scenarios including indoor, outdoor, changes in clothing and
variations in scale. Each video clip contains one subject performing a
single action. Each subject is captured in a total of 23 or 24 clips,
giving a total of 599 video clips. Each clip has a frame rate of 25 Hz
and lasts between 10 and 15 s. The size of each image frame is 160 by
120 pixels. Examples of the KTH dataset are shown in Fig. 5.

WEIZMANN Dataset—The WEIZMANN dataset was introduced
by Blank et al. [4] in 2005. It contains 90 video clips from nine
different subjects. Again, each video clip contains one subject
performing a single action. There are 10 different action cate-
gories: walking, running, jumping, galloping sideways, bending,
one-hand-waving, two-hands-waving, jumping in place, jumping
jack, and skipping. Each clip lasts about 2 s at 25 Hz. The image
size is 180 by 144 pixels.

The same WEIZMANN group also provides a robustness test
dataset. It includes 11 walking sequences with partial occlusions
and non-rigid deformations (e.g. walking in skirt, walking with a
briefcase, knees up walking, limping man, occluded legs, walking
swinging a bag, sleepwalking, and walking with a dog). The
dataset also includes nine walking sequences captured from differ-
ent viewpoints (from 01 to 811 with 91 increments from the
horizontal plane). This dataset is ideal for testing the robustness
of an action recognition approach under occlusions, different views,
and non-rigid deformations. Examples of the two WEIZMANN
datasets can be seen in Fig. 5.

7.2. Experimental settings

All results were obtained using Leave-One-Out Cross-Validation
(LOOCV) unless otherwise stated. It involved employing a group of
clips from a single subject in a dataset as the testing data and the
remaining clips as the training data. This was repeated so that each
group of clips in the dataset is used once as the testing data. More
specifically, for the KTH dataset, the clips of 24 subjects were used
for training and the clips of the remaining subject was used for
testing. For the WEIZMANN action recognition dataset, the training
set contains eight subjects. As for the WEIZMANN robustness test
dataset, the whole WEIZMANN action recognition dataset was used
as training set, and each of the 20 robustness test sequences were
classified as one of the 10 action classes.
distribution information of interest points for action recognition,
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Fig. 5. From top to bottom: example frames from KTH dataset, WEIZMANN dataset and WEIZMANN robustness test dataset.

Table 1
Performance comparison between COP and

BOW representations.

Dataset BOW (%) COP (%)

KTH 85.33 92.83
WEIZMANN 90.00 96.66

Table 2
Performance comparison between MKL and concatenation

based feature combination.

Dataset Concatenation (%) MKL (%)

KTH 92.50 92.83
WEIZMANN 95.55 96.66
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For constructing the multi-scale interest point clouds, the
difference between two consecutive scales Ns was set to five
frames and the total number of scales S was set to six. This gave
us 50 features (8Sþ2), each of which was represented as a 50-bin
histogram (i.e. our COP features were represented in a 2500-
dimensional space). Twenty percent of these features was
removed using our feature selection method (See Section 4.3).

For extracting the BOW features after interest points have
been detected using our detector, we used the on-line available
toolbox3 implemented by Dollar [9] with the default setting.
Specifically, the 3D Gradients descriptor was adopted to represent
each interest point and a codebook was constructed by clustering
the descriptors. The codebook size of 300 was used for KTH and
250 for WEIZMANN. Note that the codebook was constructed
using a k-means clustering algorithm, which is sensitive to
initialisation. Therefore, results are reported as an average of 20
trials. For the proposed COP features, no such initialisation issue
exists, and different trials will give identical results. For the
formulated MKL classifier, Gaussian kernels with a width of three
were used. This parameter, as well as all other SVM parameters,
was determined automatically through cross validation.

7.3. Recognition performance evaluation

Clouds of Points (COP) vs Bag of Words (BOW)—We compared
the proposed COP with BOW representation. The recognition
results are presented in the form of average recognition rates in
Table 1 and confusion matrices in Fig. 7. Table 1 shows that the
COP representation achieves higher average recognition rate on
both datasets. Fig. 7 gives details on where the performance gain
3 http://vision.ucsd.edu/�pdollar/research/research.html.

Please cite this article as: M. Bregonzio, et al., Fusing appearance and
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was obtained. It is noted that the COP representation is particu-
larly strong in recognising jogging, running, and walking in the
KTH dataset (comparing Fig. 7(b) with (a)), and running, skipping, and
walking in the WEIZMANN dataset (comparing Fig. 7(e) with (d)).
These actions are similar in terms of shape and motion appearance,
but differ in terms of action speed and temporal evolution which can
be measured globally and over different temporal scales. The BOW
representation, based on interest point appearance only, is unable to
capture these differences effectively; thus its performance is inferior.
On the contrary, the proposed COP representation measures explicitly
and globally the spatial and temporal distribution information. More-
over, it describes actions over multiple temporal scales,

Multi-scale recognition: MKL vs concatenation—Our COP repre-
sentation contains features of multiple scales. Experiments were
carried out to compare two ways of combining these multi-scale
features: the proposed MKL method and the simple concatenation
method. The former learns the optimal weighting from a training
dataset, whilst the latter gives an equal weight to different feature
scales. The obtained result, as shown in Table 2, indicates that
MKL compares favourably with concatenation for combining COP
features of different scales.

Fig. 6 shows the weight distributions over the multiple scale COP
features learned by MKL. It can be seen that different weights are
assigned to COP features of different scales, and the weight
distributions vary for different actions. In particular, the results
show that the learned weights are affected by the temporal scales of
different actions. Let us look at the weight of the same features
across different action classes in Fig. 6. It is noted that the weight for
a longer scale feature is smaller for a faster action. This is because
that for representing faster actions, long scale features become less
informative than they are for slower actions. For instance, for the
KTH dataset (Fig. 6(a)) the weight for the 30 frame scale COP feature
is decreased when the action changes from walking to jogging, then
distribution information of interest points for action recognition,
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Fig. 6. Weight distribution of six multi-scale COP features learned using MKL. (a) KTH dataset. (b) WEIZMANN dataset.

Table 3
Effect of feature fusion.

Dataset BOW (%) COP (%) Concatenation (%) MKL fusion (%)

KTH 85.33 92.83 92.66 94.33
WEIZMANN 90.00 96.66 94.44 96.66

4 Note that to obtain the Dollar et al. [9] detector results in Table 5, we used

the same detector as in [9], but the representation after interest point detection is

different.
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to running (i.e. getting faster). In the meantime, the short scale
features have the opposite trend—the 5/10 frame scale COP features
receive larger weight for running compared to jogging and walking.
A similar trend can be observed for the WEIZMANN dataset. For
example, Fig. 6(b) shows that the 30 frame COP feature (long scale)
receives smaller weight for running than walking because running is
faster than walking. By exploiting the different discriminative power
of different feature scales, our MKL based feature combination
is able to produce superior recognition performance than simple
feature concatenation.

Effectiveness of feature fusion—Table 3 and Fig. 7 present a
performance comparison between using a single type of features,
either BOW and COP, and the fusion of them using MKL. Table 3
shows that an improvement is obtained by fusing the two
complementary features together on the KTH dataset. Specifically,
Fig. 7 shows that with feature fusion, the recognition rates for all
six classes except handwaving were increased. It can also be seen
in Table 3 that a simple concatenation based fusion has a negative
effect on the recognition performance on both datasets.

Fig. 8 shows that different weight distributions were learned
using MKL for different action classes. In general, the weights given
to the BOW features are higher than those given to each single
scale COP features, although overall more weights were given to
COP features. It is interesting to note that the weighting distribu-
tion seems to be related to the temporal scale of different actions.
In particular, for the KTH dataset, BOW features are given less
weight for actions with shorter temporal scales (faster). For
Please cite this article as: M. Bregonzio, et al., Fusing appearance and
Pattern Recognition (2011), doi:10.1016/j.patcog.2011.08.014
instance, Fig. 8(a) shows that the weights of BOW features for
walking, jogging and running are descending in that order as the
action gets faster. This is because when an action is performed with
high motion intensity the computation of local appearance descrip-
tors become unreliable, which decreases the discriminative power
of the BOW features. However, due to factors such as noise, outliers
and other non-linearities in the dataset, it is difficult to establish a
clear trend on the feature weighting learned by MKL.

Table 4 also compares our results with the existing approaches
proposed recently, which are not restricted to interest points
based methods. It shows that our results are close to the best
results reported so far on each dataset, and outperform most of
the recently proposed methods, especially those tested on both
datasets.

Interest point detector evaluation—The proposed interest point
detector (Section 3) was initially compared with the widely used
Dollar et al. [9] detector and the result is shown in Table 5.4 As
can be seen, with the same representation (COP and BOW fusion),
our detector outperforms the Dollar et al. [9] detector on both the
KTH and WEIZMANN datasets. This is because our detector is less
sensitive to dynamic backgrounds and camera movements. More-
over, it tends to select more meaningful points located near the
moving body parts (see Fig. 2). The improvement is particularly
significant for the KTH dataset where dynamic background and
camera motions appear frequently. Note that our detector differs
from the Dollar et al. [9] detector in both the way the Gabor filters
are designed and the use of frame differencing as a pre-processing
step. To investigate the effect of each difference individually we
also applied frame differencing to the Dollar et al. [9] detector.
The result in Table 5 shows that an improvement can be obtained.
distribution information of interest points for action recognition,
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Fig. 7. Recognition performance measured using confusion matrices: (a) KTH dataset, BOW representation, accuracy: 85.33%; (b) KTH dataset, COP, accuracy: 92.83%;

(c) KTH dataset, BOWþCOP, accuracy: 94.33%; (d) WEIZMANN dataset, BOW representation, accuracy: 90.00%; (e) WEIZMANN dataset, COP, accuracy: 96.66%;

(f) WEIZMANN dataset, BOWþCOP, accuracy: 96.66%.

Fig. 8. Weight distribution between BOW and COP features. (a) KTH dataset and (b) WEIZMANN dataset.
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However, the result is still worse than that of our detector. This
suggests that the advantage of our detector is due to both the use
of frame differencing and the way the Gabor filters are designed.
Please cite this article as: M. Bregonzio, et al., Fusing appearance and
Pattern Recognition (2011), doi:10.1016/j.patcog.2011.08.014
We also compared our detector with another popular detector,
the 3D Harris interest point detector proposed by Laptev [18]
which is a 3D extension of the Harris corner detector. In a recent
distribution information of interest points for action recognition,
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Table 4
Comparison with other methods. All methods used Leave-One-Out Cross-Valida-

tion (LOOCV), i.e. the same setting used in our experiments.

Method KTH (%) WEIZMANN (%)

Our approach 94.33 96.66
Sun et al. [35] 94.00 97.80

Ikizler et al. [17] 94.00 –

Lin et al. [22] 93.43 –

Wang et al. [38] 92.51 100

Lui [25] 92.30 –

Kläser et al. [20] 91.40 84.30

Niebles et al. [26] 83.30 90.00

Dollar et al. [9] 81.17 85.20

Liu et al. [23] 94.16 –

Zhao et al. [44] 91.17 –

Savarese et al. [31] 86.83 –

Table 5
Performance comparison between our interest point detector and the one

presented by Dollar et al. [9] with and without frame differencing (FD). The

experiment uses the same COP and BOW fusion representation with three

different point detectors.

Dataset Dollar et al. [9]

detector (%)

Dollar et al. [9]

detector with FD (%)

Our detector (%)

KTH 90.20 92.83 94.33
WEIZMANN 93.33 95.55 96.66

Table 6
Performance comparison between the Laptev interest point detector [18] and our

approach.

Dataset Laptev detector [18] (%) Our detector (%)

KTH 92.33 94.33
WEIZMANN 84.44 96.66

Table 7
Performance comparison between different feature selection approaches.

Dataset No feature

selection (%)

mRMR [28] (%) Our method (%)

KTH 93.00 92.83 94.34
WEIZMANN 93.33 94.44 96.66
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comparative study [36], it has been shown that this detector
outperforms a number of alternatives including the Dollar et al.
detector. In our experiment, we also compared this detector with
our detector using the same action representation (COP and BOW
fusion) over both KTH and WEIZMANN datasets. The original
implementation for 3D Harris interest point detector was
employed,5 with the default parameter setting. Table 6 shows
that our detector outperforms the Laptev detector. The Laptev
detector particularly struggled with the WEIZMANN dataset
which has larger number of action classes and less training
samples. It is noted that without frame differencing, the Laptev
detector is indeed more effective for KTH dataset compared to the
Dollar detector. However, although it is more robust against
camera movements, it still suffers from the problems of being
unable to capture slow movements, and sensitive to highly
textured areas in background.

Effects of feature selection—Our MKL fusion method was
evaluated in three scenarios: without feature selection, with the
proposed feature selection approach (Section 4.3), and with a
more complex minimal-redundancy-maximal-relevance (mRMR)
algorithm proposed in [28]. Table 7 shows that feature selection
improves the recognition performance and the best performance
is obtained when the proposed feature selection method is
employed. Note that a major attraction of the mRMR method, as
compared with other existing feature selection methods, is its low
computational cost. Our feature selection has an even lower
5 www.irisa.fr/vista/Equipe/People/Laptev/download.html

Please cite this article as: M. Bregonzio, et al., Fusing appearance and
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computational cost. Specifically, our method took less than one
twelfth of the time used by the mRMR method for selecting the
same amount of features (7.1 s using our method to measure and
rank 2500 features, as compared with 90 s using mRMR on a 2.1G
PC platform with 4G RAM).

Each selected feature belongs to either one of the eight scale
dependent feature types, defined in Eq. (9), or the two scale-
independent features (Or

t and OSp
t ). Fig. 9 indicates which types of

features are more informative than others, according to how many
percent of the final selected features they account for. The result
seems to suggest that all features are useful. There are, however,
some features that are selected relatively more frequently than the
other features for both datasets. For instance, OSp

t measures the
absolute speed of the actor in the image frame. In both the KTH and
WEIZMANN dataset, the action classes fall in two broad categories:
actions involving global body movements (e.g. walking, galloping,
skipping) and actions involving localised movements (e.g. waving,
jumping bending). For an action in the former category, the actor
moves from one side of the image frame to another, whilst in an
action from the latter category, the actor remains near the centre of
the frame. As a result, global actions such as walking will have a long
‘tail’ of interest point cloud with a low density. In contrast, localised
actions such as hand-clapping will have a denser cloud centred near
the actor (see Fig. 4). Therefore, actions belonging to the two
different categories will have very different OSp

t values because for
the localised movement actions, OSp

t will be very close to zero. This
means that OSp

t will be a good feature for separating these two
categories of actions and should be selected more for action
recognition. Similarly, CD

s (cloud density) and CVd
s (vertical distance

between target and cloud) are also good features for separating
these two categories of actions, and a relatively high percentage of
the final selected features are from them as shown in Fig. 9.

Evaluation of the outliers filtering parameter—As described in
Section 4.2, to remove erroneous interest points from the back-
ground area, an outlier filtering step is employed before the feature
extraction phase. Specifically, if the distance between an interest
point and the cloud centroid is greater than l times the average
distance over all points, it is deemed as an outlier and removed
subsequently. In the experiments reported so far, we set the value
of l to be 4. In Fig. 10 we investigate how different values of l will
affect the recognition performance. It can be seen that the recogni-
tion performance is in general insensitive to the parameter l.

Effect of the codebook size for BOW representation—As mentioned
in Section 7.2, the Bag of Words (BOW) features are extracted by
computing a 3D Gradient descriptor for each interest point and
constructing a codebook using k-means clustering. The codebook
sizes used in different existing works vary drastically. In this work,
we set the size of codebook to be 300 for KTH and 250 for
WEIZMANN for the BOW representation. This is based on the
suggestion by Dollar et al. [9]. They empirically found out that a
codebook size of between 200 and 500 is suitable for action
representation. We have carried out a similar evaluation on the
effect of different codebook size on the recognition performance.
As can be seen in Fig. 11, our finding is similar to that in [9]. That is,
the optimal size is most likely to be within the range of 200–500.

Effects of less training data—In order to investigate the perfor-
mance of our approach given less training data, in this experiment,
distribution information of interest points for action recognition,
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Fig. 9. The percentage of each type of features selected for the final COP representation.

Fig. 10. Effect of the interest point outliers detection threshold on the action

recognition performance.

Fig. 11. Influence of the BOW codebook size on the recognition performance.

Fig. 12. Confusion matrix on the KTH dataset with less training data (16 subjects

for training and nine for testing).
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the training set consists of action sequences of 16 subjects instead
of 24 for the default Leave-One-Out setting. An average recognition
rate of 93.98% is obtained for the KTH dataset and the confusion
matrix is presented in Fig. 12. As expected, with less training data,
the performance is worse (compared with 94.33% obtained using
25 subjects for training). However, the decrease in performance is
very small. In contrast, when we use the Laptev detector, the
performance decreases from 92.33% to 87.50% when less training
data is used, which is a much larger decrease. This suggests that
our detector is less sensitive to the small training data size.

Processing time—During training, most of the computation
time was spent on feature extraction. Specifically for each
leave-one-out run, on average the amount of time required for
Please cite this article as: M. Bregonzio, et al., Fusing appearance and
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feature extraction was 1106.30 s for WEIZMANN and 37 399.10 s
for KTH (there are much more training clips in KTH than
WEIZMANN). After feature extraction and selection, the training
of the multiple kernel SVM classifier was much faster, needing on
average 0.34 s for WEIZMANN and 3.34 s for KTH. During testing,
the average processing times for each test clip on the WEIZMANN
dataset were: 12.80 s on feature extraction and 0.0017 s for
classification. For the KTH dataset those numbers became 64.92
and 0.0019 respectively. All implementations were in Matlab on a
2.1G PC platform with 4G RAM.

7.4. Robustness evaluation

The robustness of our method was evaluated using the
WEIZMANN robustness test sequences. Examples of the detected
clouds of interest points are shown in Fig. 13. The result is
reported in Table 8. It can be seen that the BOW based repre-
sentation is very sensitive to view angle, variations in action, and
occlusions, with only half of the test sequences being recognised
distribution information of interest points for action recognition,
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Fig. 13. Example of Clouds of Points detected in the sequences used in the robustness test experiments. (a) Walking along 451, (b) sleepwalking, (c) walking with occluded

legs, (d) walking with a dog.

Table 8
Robustness test result.

Dataset Correct recognition

COPþBOW 20 out of 20
COP 19 out of 20

BOW 10 out of 20

Blank et al. [4] 19 out of 20

Wang et al. [37] 18 out of 20
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correctly. In contrast, the proposed COP representation is much
more robust, with only a single misclassified sequence (a person
walking with a dog was recognised as skipping). In the sequence,
the most informative human body part for the action (i.e. the legs)
overlapped with another object (the dog), which was also walking
but in a very different way (see Fig. 13(d)). With COP and BOW
feature fusion, all the sequences are correctly classified. This
result suggests that BOW and COP feature fusion applied in
real-world complex scenarios improves the robustness of action
recognition. In particular, by merging two complementary repre-
sentations such as COP and BOW, it is possible to overcome
partial occlusions and action distortions caused by other objects
(for example, those caused by the dog in the walking-with-the-
dog sequence). Table 8 shows that our method also outperforms
existing action recognition approaches that have reported results
on this robustness test dataset.

7.5. Addressing more challenging action recognition problems

As the final experiment, we tested the proposed framework on
a more challenging dataset, namely the YouTube ‘‘action in the
wild’’ dataset [24]. It is the most extensive realistic action dataset
available to public. The dataset is composed of 1168 videos
collected from YouTube. These videos contain a representative
Please cite this article as: M. Bregonzio, et al., Fusing appearance and
Pattern Recognition (2011), doi:10.1016/j.patcog.2011.08.014
collection of real world challenges such as shaky cameras,
cluttered background, variation in object scale, variable and
changing view-point and illumination, and low resolution. Parti-
cularly, since these videos are mostly captured by hand-held
cameras, the camera movements are much more drastic and
unpredictable compared the other two datasets. The YouTube
dataset contains 11 action categories: basketball shooting, volley-
ball spiking, trampoline jumping, soccer juggling, horse-back
riding, cycling, diving, swinging, golf, swinging, tennis swinging,
and walking. Clips have different frame rates but a fixed frame
size of 320 by 240 pixels. The clips last between 3 and 15 s.

We obtained an average recognition accuracy of 55.04% using
the proposed method. The confusion matrix is shown in Fig. 14(a).
This performance is inferior to that best result reported in [24]
(71.2%). This is not surprising because our method is not designed
for coping with the drastic camera motions and dynamic back-
ground featured in the YouTube dataset. In particular, it is
observed that when the camera movements and moving back-
ground objects are less an issue (e.g. horse-back riding, soccer
juggling and swinging), our method outperforms that in [24].

There are various possible techniques that can be considered to
make our method more suitable to a more challenging action
recognition task. In particular, as suggested in [24], the following
steps have proven to be effective in dealing with camera motions
and dynamic background: (1) detecting dense 2D static appearance
features, and fusing with space-time interest point based features,
(2) performing feature pruning and feature mining/ranking,
(3) semantic visual vocabulary learning, and (4) detecting a region
of interest. All four steps could be integrated with the proposed
method to improve the performance. To demonstrate this, we have
implemented a simple method on region of interest (ROI) detection
as proposed in [6]. Specifically, in each frame the ROI centroid ðx̂,ŷÞ
is computed by averaging spatial coordinates of all interest points
detected; then the ROI dimensions are given by Dx ¼ 2

ffiffiffiffiffiffiffiffiffi
2cxx

p
and
distribution information of interest points for action recognition,
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Fig. 14. Confusion matrix obtained on the YouTube dataset [24]. (a) An average recognition rate of 55.04% was obtained using the proposed method and (b) with an
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Dy¼ 2
ffiffiffiffiffiffiffiffiffi
2cyy

p
where cxx and cyy are the second central moments of

the points. With this simple pre-processing step, the average
recognition rate was increased to 61.07% (see Fig. 14(b)).
8. Discussions and conclusions

We have proposed a novel action representation method
which differs significantly from the existing interest point based
representation in that only the global distribution information of
interest points is exploited. In particular holistic features from
clouds of interest points accumulated over multiple temporal
scales are extracted. Since the proposed spatio-temporal distribu-
tion representation contains different but complementary infor-
mation to the conventional Bag of Words (BOW) representation,
we formulate a feature fusion method based on multiple kernel
learning. Experiments using the KTH and WEIZMANN datasets
demonstrate that our approach outperforms most existing meth-
ods in particular under occlusion and changes in view angle,
clothing, and carrying condition.

Failure mode—For the KTH dataset, the errors made by our
approach come mainly from three classes: jogging, running, and
walking which are visually very similar. With the global features
extracted using our Clouds of Points representation, less errors
were made compared to a conventional interest point based
method (see Fig. 7). However, there are still misclassifications
between jogging and running because there is no clear separation
between these two action classes—running slowly becomes
jogging and how slow it should be depends on human interpreta-
tion thus is subjective. As for the WEIZMANN dataset, our method
tends to mistaken skipping as jumping or running, and side
walking as walking. Again skipping is a combination of jumping
and running, and side walking is visually very similar to walking.
In order to avoid these mistakes, one could build a human body
model and separate different body parts in the representation.
Alternatively, one could extract features from 3D human body
shapes. However, as we stated in Section 2, both model tracking
based approaches and spatio-temporal shape template based
approaches require highly detailed silhouettes to be extracted.
They thus stand no chance on noisy data such as the KTH dataset.

Action classification vs action detection—Similar to most existing
action recognition work, the approach described in this paper is
designed to address the action classification problem. In particular,
it is assumed that each video clip contains a single action belonging
to one of the known categories. In other words, it is assumed that
Please cite this article as: M. Bregonzio, et al., Fusing appearance and
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temporal segmentation is done and there are no multiple different
actions co-existing in the clip. For these methods, the decision is
made for the whole clip and only after the whole clip is observed.
Note that some of these approaches can also be applied for online
detection (e.g. [26]). More recently researchers start to look at the
problem of action detection, that is to recognise and localise
actions both spatially and temporally with other actions performed
in the background [39,16,42]. They in general adopt a 3D sliding
window approach similar to the 2D sliding window approach used
for static object detection in images. The proposed method could
be extended to address the action detection problem by adopting a
3D sliding window strategy.

Future work—There are a number of areas that require further
investigation. First, the current work only considers fusion of
features extracted from interest points. Recently it has been
demonstrated that alternative features such as Bag of Optical
Flows (BOF), feature trajectory context, and higher-level contex-
tual features such as object detector scores and scene context give
strong performance on benchmarking datasets [24,34]. These
features could contain information that is highly complementary
to interest point based features and thus should be combined
together. Second, although our feature selection method is effec-
tive in removing irrelevant features and improving recognition
performance, it selects a single set of features for all action
classes. Nevertheless, the optimal set of features for distinguish-
ing different set of action classes could be different. Therefore a
more fine-grained feature selection method needs to be investi-
gated. Finally, as we mentioned earlier, our approach is unable to
cope with actions performed by multiple objects simultaneously
and in front of a dynamic crowded background since it is an
action classification method. Ongoing work includes developing
an action detector based on the Clouds of Points representation
proposed in this paper.
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