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Abstract

An algorithm is described for modelling and recognising
temporal structures of visual activities. The method is based
on (1) learning prior probabilistic knowledge using Hid-
den Markov Models, (2) automatic temporal clustering of
hidden Markov states based on Expectation Maximisation
and (3) using observation augmented conditional density
distributions to reduce the number of samples required for
propagation and therefore improve recognition speed and
robustness.

1 Introduction

The underlying spatial and in particular temporal struc-
ture is important for the modelling of a dynamic visual phe-
nomenon arising from activities such as gestures and hu-
man actions. For the purpose of recognition, it is essential
to model the temporal structures. Such structures can be
extracted by representing the activities as “trajectories” in
a high dimensional feature space with its dimension deter-
mined by the number of visual measurements. These obser-
vations are often highly correlated. For example, a gesture
can be represented by the trajectory of an observation vec-
tor (x; y; dx; dy) given by the object-centred position and
displacement of the body part which performs the gesture.
In general, an observation vector can also include among
other features the positions and displacements of a set of
salient feature points describing the shape of the object of
interest, object colour distribution, its 3D pose and configu-
ration [10]. Provided that observations of activities such as
gestures can be represented as probabilistic spatio-temporal
trajectories in a feature space, gesture recognition can then
be performed by simply matching the trajectories as static
templates (spatio-temporal structures) in the feature space
[3, 9]. However, by and large modelling temporal struc-
tures as static templates can be very sensitive to noise and
ambiguities in observation trajectories. This is particularly

true in gesture recognition because gestures are rather arbi-
trary in their forms and probabilistic by nature. No person
let alone different subjects performs the same gesture in ex-
actly the same way twice. In addition to the “holistic static
shape” of a spatio-temporal trajectory, there are other fac-
tors contributing to the spatio-temporal structure of a ges-
ture, including (1) covariance in observation measurements
due to variations in object-centred spatial position and scale
plus measurement noise, (2) nonlinear temporal scaling due
to variations in the speed and duration of executing a ges-
ture, and (3) ambiguities in temporal segmentation required
for determining the start and end of a gesture.

To cope with such problems, one can introduce a set of
finite “hidden temporal states” which aim to capture and
explicitly model the salient “phases” of a temporal struc-
ture over time. Predicting state transitions then provides a
more robust means to cope with time scaling and avoid the
need for determining the starting and ending points. To this
end, Hidden Markov Models (HMMs) are widely used as a
probabilistic framework for modelling temporal structures.
HMMs have clear Bayesian semantics and efficient algo-
rithms. They can perform dynamic time warping for struc-
tures that have been stretched and squashed in time. HMMs
have been successfully applied to speech recognition [11],
visual focus of attention [12], learning object movement and
behaviour models [5, 8] and more recently gesture recogni-
tion [13, 2]. In the case of gesture recognition, the states are
usually selected so as to capture the locations along the ob-
servation trajectories where measurements undergo signifi-
cant change. Prior knowledge in the forms of state transition
probabilities and conditional observation covariances are
estimated from training examples. However, it is generally
the case that selecting a finite set of hidden Markov states
over time can be both arbitrary and rather over-committing.
This is particularly true in the case of gesture recognition.
More recently, conditional density propagation (CONDEN-
SATION) algorithm proposed by Isard and Blake [6, 7] sug-
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gests a more flexible framework to HMMs. Instead of mod-
elling observation probabilities conditional to a finite set of
states, they are continuously propagated over time. For ges-
ture recognition, CONDENSATION has been adopted by
Black and Jepson [1]. The model performs fix-sized local
linear template matching weighted by the conditional ob-
servation densities propagated according to CONDENSA-
TION therefore allowing for a global nonlinear time scal-
ing. Unfortunately, the model does not consider measure-
ments covariance (treated independently) therefore is sensi-
tive to noise. It also does not use any prior knowledge, apart
from the accumulated history of the trajectory being recog-
nised, on both the state distribution and the observations of
a structure. Consequently, a very large number of density
samples (over thousands) with localised uniform distribu-
tion are initialised and then propagated over time. State pre-
dictions are simply previous states plus arbitrary Gaussian
noise. This can lead to local minima and is computationally
expensive.

In this work, we introduce a framework for the recog-
nition of temporal structures in state space and illustrate
the method through gesture recognition. The model utilises
HMMs (1) to learn prior knowledge on both state distribu-
tions and observation covariances of temporal structures (2)
to perform automatic state selection and segmentation using
temporal clustering on training examples and, (3) to contin-
uously propagate observation densities via hidden Markov
states under the constraint of the learned prior but also sub-
ject to augmentation by the current visual observation.

2 Learning prior on temporal structures

The temporal structures extracted from gestures are
probabilistic and ambiguous in nature. Learning prior
knowledge from examples plays an important role in mod-
elling such structures and this can be performed using
HMMs. A HMM can be seen as the quantisation of the
observation feature trajectories into a small set of discrete
hidden states. In fact most gestures are temporally ordered
therefore only first-order HMMs are usually required. Here
the observations are continuous therefore the conditional
observation probabilities at each state is given by a den-
sity distribution. More precisely, a HMM is defined by a
set of hidden statesq 2 fq1; q2; : : : qNg whereN is the
number of states. A model can be fully described by prob-
abilistic parameters� = (A;B; �) whereA 2 faijg are
the state transition probabilities,� 2 f�1; �2; : : : �Ng are
the initial probabilities of being in statei at time t = 1,
B 2 fbj(o)g are the observation density distributions at all
states. At each statej, bj(o) can be a Gaussian mixture
b(o) =

PK

k=1 ck G(o; �k ;�k) given by mixture coefficient
ck, mean�k and covariance�k.

If the prior of a gesture is to be learned using a HMM,

Figure 1. An example of a waving gesture. The plots
show the x-y motion centroid of a collection of waving
gestures performed by 3 subjects each repeating 4 times.

Figure 2. Gestures of drawing figures.

let us define the observation vector beingo = [x; y; dx; dy],
the object-centred position and its displacement of either the
mean body movement (Figure 1) or the movement of a par-
ticular part of the body such as one hand (Figure 2). Then a
gesture state vector can be defined as a specific gesture be-
ing in a particular hidden state given bys = [qt; l�], where



l� andqt are discrete values of model label and hidden state
index at timet respectively. Learning prior then involves (1)
automatic hidden state segmentation through temporal clus-
tering, the estimation of (2) hidden state transition distribu-
tions and (3) conditional observation density distribution at
each hidden state. For state segmentation, one aims to max-
imise the likelihoodP (Oj�) for a gesture� = (A;B; �),
whereO denotes an observation training set. This can be
achieved using the EM algorithm [4].

Given the number of hidden Markov states to beN ,
learning the locations of the states (automatic temporal seg-
mentation), their transition probabilities and the conditional
observation density distributions of each state can be per-
formed as follows: First, initialise� = f1; 0; : : :0g and the
state transition matrixA according to

1. For a first-order HMM, the average time in a state can
be estimated as the ratio between the mean durationT̂

of the training set and the number of statesN , t̂ = T̂
N

.

2. Assign the state transition probabilities according to
the average time a gesture remaining in a state

t̂ =

1X
n=1

nan�1ii (1� aii) =
1

1� aii
(1)

3. Initialise the state transition matrix as2
666664

a11 a12 � � � 0 0
0 a22 � � � 0 0
...

...
...

...
...

0 0 � � � aN�1N�1 aN�1N
0 0 � � � 0 1

3
777775

whereaii = 1� 1
t̂

andai i+1 = 1� aii.

Second, use the EM algorithm over a training set ofM

training examplesO = fO1; : : : OMg to iteratively perform
temporal clustering on the states and estimate model prob-
ability distributionsA, B and�. Figure 3 illustrate the it-
erative process of automatic clustering the hidden states for
a gesture drawing figure “5”. In this example, the number
of hidden states is set to 15. The mixture on conditional
observation density distribution is set to 1.

3 Recognition of temporal structures

For modelling a temporal structure, let us define a state
vector at timet asst = [qt; l�] given by the hidden Markov
stateqt of a modell�. Notice that this HMM based state
vector implicitly encodes the information on both phase
� and temporal scaling� used by Black and Jepson [1].
In general, at any timet, a temporal structure is fully de-
scribed by its state historySt = fs1; s2; : : : stg, its cur-
rent observationot and its observation history over time

Figure 3. Learning the spatio-temporal structure of
drawing figure “5” using HMM and EM clustering. The
process of iteration is shown from left to right. The
top row shows the clustering on object-centred positions
(first 3) and displacements (last 3). The second row
shows the corresponding density distributions over the
entire structure based on the clustered hidden states and
their distributions in space and time.

Ot = fo1; o2; : : : ; otg. However, if a temporal structure
only forms a first-order Markov chain, a state at timet de-
pends only on its previous state at timet�1 and is inde-
pendent from its historyp(stjSt�1) = p(stjst�1). This is
largely true for gestures. Based on the Bayes’ rule, gesture
recognition at timet can then be performed using the pos-
terior density given observation history

p(stjOt) = kt p(otjst) p(stjOt�1) (2)

wherep(stjOt�1) is the prior from the accumulated obser-
vation history up-to timet�1, p(otjst) is the observation
conditional density andkt is a normalisation factor. The
prior density from the observation historyp(stjOt�1) is es-
timated by multiple conditional density samplessi through
either uniform sampling at time zero or factored (prior
weighted) sampling thereafter. The weighted sample set
then approximates the prior through prediction

p(stjOt�1) =

Z
st�1

p(stjst�1) p(st�1jOt�1) (3)

wherep(stjst�1) is the state propagation density. This is
essentially CONDENSATION [6]. However, based on the
accumulated history of the current gesture sequence alone
without any prior knowledge, the state propagation density
p(stjst�1) can only be given as the previous estimation plus
arbitrary Gaussian noise and consequently, meaningful es-
timation of the history accumulated priorp(stjOt�1) can
only be obtained through propagating a very large sample
set of conditional densities (thousands) over time [1]. As a
result, the prediction can be both expensive and sensitive to
observation noise.

In order to reduce the required number of samples for
the propagation and also to cope with noise and variance



in observation, prior on gesture temporal structures learned
from training examples should be used. Let us assign the
state propagation densitiesp(stjst�1) to the hidden Markov
state transition probabilities of

p(st j st�1) = p(qt=j j qt�1= i; l�) = aij (4)

and the observation conditional densityp(ot j st) as the
Markov observation densities given by the prior on the mea-
surement covariance and mean at each hidden state

p(ot j st) = p(ot j qt=j; l�) = bj(ot) (5)

The observation covariance given by the density function
at each hidden Markov statebj(ot) enables the model to
cope with measurement variance and noise. It also encodes
scaling� used by [1].

4 Observation augmented densities

Recognition based on prior can be made more robust
if current observation is also taken into account before
prediction. Let us consider the state propagation density
p(stjst�1) in Equation (3) to be augmented by the cur-
rent observation, thereforep(stjst�1; ot). Assuming obser-
vations are independent over time and future observations
have no effect on past states, the prediction process of Equa-
tion (3) can then be replaced by

p(stjOt) =

Z
st�1

p(stjst�1; ot) p(st�1jOt�1)

=

Z
st�1

ktp(otjst)p(stjst�1)p(st�1jot�1) (6)

wherekt = 1
p(otjst�1)

and

p(stjst�1; ot) =
p(st; otjst�1)

p(otjst�1)
=

p(stjst�1)p(otjst; st�1)

p(otjst�1)

=
p(stjst�1)p(otjst)

p(otjst�1)
(7)

Given that the observation and state transitions are con-
strained by the underlying HMM, the state transition den-
sity is then given by

p(stjst�1; ot) = p(qt=jjqt�1= i; ot)

=
al�ij b

l�
j (ot)PN

n=1 a
l�
inb

l�
n (ot)

(8)

The observation augmented prediction unifies innovation
and prediction in CONDENSATION given by Equations (2)
and (3). Without augmentation, CONDENSATION per-
forms a “blind” prediction based on observation history
alone. Augmented prediction takes the current observa-
tion into account and adapts the prior to perform a “guided”
search in prediction. This improves the recognition rate and
reduces the number of samples required for propagation.

5 Experiments

In order to illustrate our approach we have used two sets
of gestures. Set A represents alphanumeric symbols similar
to that defined in [1] and they are the numerals “2”, “3”, “5”
and letter “l”. The gestures of set B represent natural ges-
tures that are defined within the context of an application in
visually mediated interaction and they are (1) pointing left,
(2) pointing right, (3) waving high up and (4) waving low
down [9]. In set B the object-centred position and displace-
ment(x; y; dx; dy) of a gesture in timet is determined using
moment features estimated from image motion as described
in [9]. In set A, in addition to image motion the skin colour
of the hand is also used for extracting the observation vec-
tor (x; y; dx; dy). As a result the gestures in set A are less
noisy than that of set B. A database of image sequences was
collected and for the purpose of these experiments we build
HMMs using four examples of each alphanumeric gesture
from set A and six examples of each subject performing
gestures from set B. Each sequence in sets A and B has on
average 40 frames captured at 12 Hz.

On robustness: Tables 1 and 2 show the results in the
form of confusion matrices. Using 40 density samples
and10% to initialise the recognition of gestures from set
A, observation augmented propagation of density functions
recognised all alphanumeric gestures correctly. When us-
ing only prior knowledge learned by HMMs without ob-
servation augmentation,100% of symbol “5” and75% of
symbols “2”, “3” and “l” were recognised. Using the CON-
DENSATION algorithm with observation vector(dx; dy),
only 25% of gestures “2” and50% of symbol “3” were
recognised,25% of gesture “5” were misclassified as “2”
and75% of gesture “5” were not recognised at all. Some
gestures are positional dependent (object-centred), e.g. be-
tween waving high and waving low. Modelling observation
on positions becomes necessary. The CONDENSATION
algorithm performed worse when(x; y; dx; dy) was used
as the observation vector with only gesture “l” and50% of
gesture “3” recognised. Similar relative performance can
be seen in Table 2 that describes the results of applying the
four algorithms in the waving and pointing gestures. Using
160 density samples and10% for initialisation, observation
augmented propagation of density functions only misclassi-
fied25% of “waving high” gesture for “pointing right”, and
33% of “waving low” gesture for “pointing right”. Using
only the prior knowledge learned through HMMs, there are
33% of “waving high” and41% of “waving low” gestures
misclassified as “pointing right”. However, using the CON-
DENSATION algorithm with observation vectors(dx; dy)
or (x; y; dx; dy) the system misclassified all “waving high”
gestures and misclassified32% of “waving low” gestures
for either “pointing right” or “waving high” and16% of
“pointing right” gestures for “waving low”. It is important



aug. (x; y; dx; dy) non-aug.(x; y; dx; dy)
% 2 3 5 l 2 3 5 l

2 100 0 0 0 75 0 0 0
3 0 100 0 0 0 75 0 0
5 0 0 100 0 0 0 100 0
l 0 0 0 100 0 0 0 75

Er 0 0 0 0 25 25 0 25

cond. (dx; dy) cond. (x; y; dx; dy)
% 2 3 5 l 2 3 5 l

2 25 0 25 0 0 0 0 0
3 0 50 0 0 0 50 0 0
5 0 0 0 0 0 0 0 0
l 0 0 0 100 0 0 0 100

Er 75 50 75 0 100 50 100 0

Table 1. Confusion matrices (CMs) for test sequences
of set A using 40 density samples. Good recognition per-
formances give diagonal CMs of high values.

to point out that the CONDENSATION based recognition
has to be based on a set of carefully chosen noise parame-
ters for prediction due to the lack of modelling prior on both
state transitions and observation covariance. These param-
eters are sensitive to observation changes and ratherad hoc.

aug. (x; y; dx; dy) non-aug.(x; y; dx; dy)
% PL PR WH WL PL PR WH WL

PL 83 0 0 0 90 0 0 0
PR 0 75 25 33 0 83 33 41
WH 0 0 75 0 0 0 67 0
WL 0 0 0 59 0 0 0 33
Er. 17 25 0 8 10 17 0 26

cond. (dx; dy) cond. (x; y; dx; dy)
% PL PR WH WL PL PR WH WL

PL 91 0 58 0 100 0 33 0
PR 0 59 0 16 0 68 9 16
WH 0 9 0 16 0 0 0 16
WL 0 16 42 59 0 16 42 59
Er 9 16 0 9 0 16 16 9

Table 2. Confusion matrices for test sequences of set
B (PL: point left, PR: point right, WH: wave high, WL:
wave low) using 160 density samples.

Figure 4. Frames 20, 50, 85, 100, 135 and 160 from a
test sequence in which a novel subject points left, waves
and then points right.

On continuous, multiple gestures: Figure 4 shows an
example test sequence in which a novel subject points left,

waves low, waves high and points right continuously. Fig-
ure 5 shows the gesture likelihoods computed by match-
ing the gesture models to this sequence using (1) observa-
tion augmented propagation of densities using prior (two
top rows), (2) non-augmented propagation of densities us-
ing prior (two middle rows), (3) a CONDENSATION-
based algorithm (two bottom rows). For each algorithm
we have shown the model probability estimation for each
gesture and the final probability estimation. The results
illustrate that the CONDENSATION-based algorithm con-
fused gestures ”waving high” and ”pointing right”, the non-
augmented algorithm was not able to classify the ”waving
high” and ”pointing right” gestures. The observation aug-
mented algorithm classified all gestures.

On recognition rate: Figure 6 (top) shows the recogni-
tion rate of all the alphanumeric gestures using augmented,
non-augmented, and the CONDENSATION algorithm with
window sizew = 1 andw = 5. Using the observation
augmented algorithm a100% recognition rate was achieved
using only 40 samples, compared to the 150 samples re-
quired for the non augmented algorithm. In contrast the
CONDENSATION algorithm only achieved80% recogni-
tion rate when 360 samples were used. It is important
to note that the CONDENSATION algorithm performed
worse when window sizew = 5 is used.

Similar results can be seen in Figure 6 (bottom) for the
pointing and waving gestures. A75% recognition rate was
achieved using the observation augmented algorithm using
only 80 samples. A similar recognition rate was achieved
without augmentation using 160 samples. The CONDEN-
SATION algorithm was only able to achieve a50% recog-
nition rate even when 360 samples were used.

6 Conclusion

In this work, we introduced a new framework to model
and recognise temporal structures of human activities such
as gestures based on conditional density propagation via
learned prior knowledge on the structures. Prior knowledge
is learned from training examples using methods adapted
from both Hidden Markov Models and Expectation Max-
imisation based clustering.

From these experiments, we have shown that using
learned prior we can achieve a recognition rate that is about
25% higher compared to that achieved using methods with-
out prior based on CONDENSATION. It is significant that
such performance improvement is achieved with less com-
putational cost since it only requires a smaller number of
samples. Introducing online observation augmented density
propagation further allows us to use only25% of the num-
ber of samples used with the non augmented algorithm and
10% of the number of samples used with the CONDENSA-
TION algorithm without any loss of recognition rate.



Figure 5. Gesture likelihoods estimated from the wav-
ing sequence using observation augmented propagation
of density functions (top two rows), propagation of den-
sity functions using only prior (middle two rows), the
CONDENSATION algorithm (bottom two rows). The
number of density samples used for propagation is 40.
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