
Visual Inference of Human Emotion and Behaviour

Shaogang Gong
Dept of Computer Science

Queen Mary College, London
England, UK

sgg@dcs.qmul.ac.uk

Caifeng Shan
Dept of Computer Science

Queen Mary College, London
England, UK

cfshan@dcs.qmul.ac.uk

Tao Xiang
Dept of Computer Science

Queen Mary College, London
England, UK

txiang@dcs.qmul.ac.uk

ABSTRACT
We address the problem of automatic interpretation of non-
exaggerated human facial and body behaviours captured in
video. We illustrate our approach by three examples. (1) We
introduce Canonical Correlation Analysis (CCA) and Ma-
trix Canonical Correlation Analysis (MCCA) for capturing
and analyzing spatial correlations among non-adjacent facial
parts for facial behaviour analysis. (2) We extend Canonical
Correlation Analysis to multimodality correlation for beba-
viour inference using both facial and body gestures. (3) We
model temporal correlation among human movement pat-
terns in a wider space using a mixture of Multi-Observation
Hidden Markov Model for human behaviour profiling and
behavioural anomaly detection.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Vision and Scene Understan-
ding—Motion, Perceptual reasoning, Video analysis; I.4 [Image
Processing and Computer Vision]: Scene Analysis—
Time-varying imagery, Object recognition

General Terms
Algorithms, Theory

Keywords
Human emotion recognition, intention inference, body lan-
guage recognition, behaviour profiling, anomaly detection

1. INTRODUCTION
To be able to visually infer automatically human beha-

viours is hugely desirable, not the least because its potential
applications in intelligent human machine interface, health-
care and visual surveillance for public wellbeing, security
and safety. There is an increasing demand for automatic
methods capable of analysing human emotions and activi-
ties using video media, both for better communication and
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for detecting abnormal behaviours, ranging from facial be-
haviours, body gestures to activities in a wider space. For
human behaviour analysis and inference, we advocate the
need for systematic modelling of spatial and temporal cor-
relations among facial/body parts and movement patterns
that can be extracted to facilitate meaningful interpretati-
on of behaviours. Our approach emphasises that behaviours
are better interpreted in a wider spatial and temporal con-
text. This is specially true for non-exaggerated natural and
necessarily subtle behaviours.

Despite recent advance in machine perception of human
emotion, much of the work remains single modality dri-
ven [28]. There has been an effort to combine images of
facial expression with audio information [27]. Kapoor and
Picard [18] also presented a multi-sensor affect recognition
system for classifying the affective state of interest in child-
ren solving puzzles. The extracted sensory information from
face videos, postures, and the state of the puzzle are combi-
ned using a Bayesian approach. Other forms of multimodal
information can also be exploited for human behaviour in-
ference. In particular, studies in psychology [1, 23] suggest
that combined visual channels of facial expressions and bo-
dy gestures are the most informative, and their integrati-
on is a mandatory step occurring early in human cognitive
process. Both facial and body characteristics contribute ho-
listically to conveying a more accurate emotional state of
an individual. Balomemos et al. [2] made tentative attempt
to analyze emotions from user facial expressions and hand
gestures. More recently, Gunes and Piccardi [13] reported
some preliminary results on combining face and body ge-
stures for emotion recognition. In our approach, we deploy
Canonical Correlation Analysis and Matrix Canonical Cor-
relation Analysis for (1) correlating spatially non-adjacent
facial parts in facial behaviour analysis, and (2) combining
different modalities using both facial and body gestures.

To infer human behaviour in a wider context requires
automatic behaviour profiling and discovery of underlying
spatial and in particular, temporal correlation among mo-
vement patterns. In this context, we define an anomaly as
an atypical behaviour pattern that is not represented by
sufficient samples in a training dataset but critically it satis-
fies the specificity constraint to an abnormal pattern. This
is because one of the main challenges for the model is to
differentiate anomaly from outliers caused by noisy visu-
al features used for behaviour representation. Much work
on abnormal behaviour detection took a supervised learning
approach [6,9,11,24,25] based on the assumption that the-
re exists well-defined and known a priori behaviour classes

22



(both normal and abnormal). However, natural spontaneous
behaviour and any anomaly are far from being well-defined,
resulting in insufficient clearly labelled data required for su-
pervised model building. In our work, an explicit model ba-
sed on a mixture of Multi-Observation Hidden Markov Mo-
del is constructed in an unsupervised manner to learn spe-
cific behaviour classes for automatic detection of abnorma-
lities on-the-fly given unseen data. We develop a principled
criterion for anomaly detection and normal behaviour reco-
gnition based on a run-time accumulative anomaly measure
and an online Likelihood Ratio Test (LRT) method origi-
nally proposed for key-words detection in speech recogniti-
on [31]. This makes our approach more robust to noise in
behaviour representation. This approach has two primary
advantages over previous approaches, e.g. [3,14], which are:
(1) it is based on constructing a generative behaviour mo-
del which scales well with the complexity of behaviour and
is robust to errors in behaviour representation; (2) it per-
forms on-the-fly anomaly detection and is therefore suitable
for real-time behaviour inference.

2. FACIAL CORRELATION
Automatic facial expression and behaviour analysis has at-

tracted much attention in recent years [26]. As facial muscles
are contracted in unison to display expressions, different fa-
cial parts almost always show strong correlations. To be able
to capture and analyze these correlations can facilitate bet-
ter interpretation of facial behaviours. Most of the existing
work on facial expression analysis [5,21,30] do not explicitly
model such correlations. To this end, we employ Canonical
Correlation Analysis (CCA) [16] for mapping any two sets
of salient facial parts. To overcome intrinsic limitations of
CCA caused by the need for matrix to vector concatenati-
on, we further develop a novel Matrix Canonical Correlation
Analysis (MCCA) for correlation analysis of images in their
native 2D array form. Our experiments demonstrate that
MCCA can better measure correlations in 2D image data,
providing superior performance in regression and recogniti-
on tasks, whilst requiring much fewer canonical factors.

2.1 Canonical Correlation Analysis
CCA was developed originally by Hotelling [16] for mea-

suring linear relationships between two vector variables. It
finds pairs of base vectors, i.e. canonical factors, for two va-
riables such that the correlations between the projections of
these variables onto the canonical factors are mutually ma-
ximised. Similar to Principal Component Analysis (PCA)
and Linear Discriminant Analysis (LDA), CCA also reduces
the dimensionality of the original data. Whilst PCA aims
to minimise the reconstruction error and LDA aims to both
maximise between-class scatter and minimise within-class
scatter, CCA seeks for directions of two sets of vectors that
maximise their inter-correlation. Recently CCA has been ex-
ploited for solving computer vision and pattern recognition
problems [4,8,15,19].

Given two zero-mean random variables x ∈ Rm and y ∈
Rn, CCA finds pairs of directions wx and wy that maximise
the correlation between the projections x = wT

x x and y =
wT

y y. The projections x and y are called canonical variates.
More formally, CCA maximises the following function:

ρ =
E[xy]�

E[x2]E[y2]
=

E[wT
x xyT wy ]�

E[wT
x xxT wx]E[wT

y yyT wy]

=
wT

x Cxywy�
wT

x CxxwxwT
y Cyywy

(1)

where Cxx∈Rm×m and Cyy∈Rn×n are the within-set cova-
riance matrices of x and y, respectively, while Cxy ∈ Rm×n

denotes their between-sets covariance matrix. A maximum of
k = min(m, n) canonical factor pairs 〈wi

x,wi
y〉, i = 1, . . . , k,

can be obtained by successively solving arg maxwi
x,wi

y
{ρ}

subject to ρ(wj
x, wi

x) = ρ(wj
y,wi

y) = 0 for j = 1, . . . , i − 1,
i.e. the next pair of 〈wx,wy〉 are orthogonal to the pre-
vious ones. Canonical variates xi and yi (corresponding to
wi

x and wi
y) are uncorrelated with the previous pairs xj and

yj , j = 1, . . . , i − 1.
This maximisation problem can be solved by setting the

derivatives of Eqn. (1), with respect to wx and wy, equal to
zero, resulting in the following eigenvalue equations:�

C−1
xx CxyC

−1
yy Cyxwx = ρ2wx

C−1
yy CyxC

−1
xx Cxywy = ρ2wy

(2)

Matrix inversions need to be performed in Eqn. (2), leading
to numerical instability if Cxx and Cyy are rank deficient.
Alternatively, wx and wy can be obtained by computing
principal angles, as CCA is the statistical interpretation of
principal angles between two linear subspace [10].

2.2 Matrix Canonical Correlation Analysis
Existing CCA shares a number of problems with other

subspace analysis methods such as PCA and LDA. Apply-
ing CCA to images requires two-dimensional image arrays
concatenated into one-dimensional vectors. This matrix-to-
vector operation leads to two main problems. Firstly, the
intrinsic 2D structure of image matrices is removed, so the
spatial information stored therein is discarded. CCA based
on these vectors cannot fully capture correlations among the
original 2D image data. Secondly, each image sample is mo-
deled as a high-dimensional vector so that a large number
of training samples are needed to yield a reliable estimation
of the underlying data distribution. In reality, very limited
number of training data are usually available. To address
these problems, we introduce a novel Matrix Canonical Cor-
relation Analysis (MCCA) for correlation analysis of images
in their native 2D array form.

Given two matrix variables A ∈ Rm×n and B ∈ Rj×k

(we assume the variables are both zero-mean), MCCA finds
pairs of directions va ∈ Rm, wa ∈ Rn, vb ∈ Rj and wb ∈ Rk

that maximise the correlation between the projections a =
vT

a Awa and b = vT
b Bwb. Mathematically, we can formulate

this as the following maximisation problem: Find optimal
va, wa, vb and wb that maximise

ρ =
E[ab]�

E[a2]E[b2]
=

E[vT
a Awaw

T
b BT vb]�

E[vT
a AwawT

a AT va]E[vT
b BwbwT

b BT vb]
(3)

Here va (vb) and wa (wb) are canonical factors in two di-
mensions, acting as a two-sided linear transformation on the
data in matrix form. There is no closed-form solution for the
maximisation problem in Eqn. (3). Alternatively, we present
an iterative procedure for computing va, wa, vb and wb

as follows: Given an initial choice of wa and wb, we esti-
mate va and vb by computing canonical factors of a′ and
b′; with va and vb (corresponding to the largest canoni-
cal correlation), we then estimate wa and wb by compu-
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ting canonical factors of a′′ and b′′; wa and wb (correspon-
ding to the largest canonical correlation) are used iterative-
ly. This procedure is repeated until convergence such that a
maximum of q = min(m, j) left-side canonical factor pairs
〈v1

a,v1
b〉, . . . , 〈vq

a,vq
b〉 and p = min(n, k) right-side canonical

factor pairs 〈w1
a, w1

b〉, . . . , 〈wp
a,wp

b 〉 are computed.

3. MULTIMODAL CORRELATION
Single mode facial/body gestures are often highly ambi-

guous. Psychological studies [23] suggest that interpreting
facial expression and body gesture together is a mandato-
ry step occurring early in human cognitive process. In this
context, we are interested in modelling/discovering any cor-
relation between facial and body gestures at the feature re-
presentational level using CCA. For feature representation,
we employ spatial-temporal features based on space-time in-
terest point detection in video [7]. Previous studies [2, 13],
where tracked hand motion was applied to gesture recogniti-
on, rely upon intensive human supervision and are based on
assumptions that reliable hand tracking and segmentation
can be achieved therefore stable background with minimal
occlusion and appearance change are required. Our approach
makes no such assumptions about the observed video data.
Our experiments show that despite two instances of the same
body gestures may change in both appearance and motion,
due to variations across subjects, or within each individual,
the detected space-time interest point features are stable.

More precisely, given F = {x|x ∈ Rm} and B = {y|y ∈
Rn}, where x and y are the feature vectors extracted from
face and body respectively, we apply CCA to establish the
relationship between x and y. Suppose 〈wi

x, wi
y〉, i = 1, . . . , k

are the canonical factors pairs obtained, we can use d (1 ≤
d ≤ k) factor pairs to represent the correlation informa-
tion. With Wx = [w1

x, . . . ,wd
x] and Wy = [w1

y, . . . ,wd
y],

we project the original feature vectors as x′ = WT
x x =

[x1, . . . , xd]
T and y′ = WT

y y = [y1, . . . , yd]
T in the lower

dimensional correlation space. We then combine the projec-
ted feature vector x′ and y′ to form a new feature vector

z =
�x′

y′

�
=
�WT

x x

WT
y y

�
=
�Wx

0

0

Wy

�T�x

y

�
(4)

This fused feature vector effectively represents the bi-modal
information for emotion recognition.

4. BEHAVIOUR PROFILING
We define behaviour profiling as follows. Consider a trai-

ning dataset D consisting of N feature vectors:
D = {P1, . . . ,Pn, . . . ,PN}, where Pn is a set of features [32]
extracted from successive image frames representing a beha-
viour pattern captured by the nth video segment vn. The
problem to be addressed is to discover the natural grou-
ping/correlation of given training behaviour patterns upon
which a model for normal behaviour can be built. This is
essentially a data clustering problem with the number of
clusters unknown. There are a number of aspects that ma-
ke this problem challenging: (1) Each feature vector Pn can
be of different lengths. Conventional clustering approaches
such as K-means and mixture models require that each data
sample is represented as a fixed length feature vector. These
approaches thus cannot be applied directly. (2) A definiti-
on of a distance/affinity metric among these variable length

feature vectors is nontrivial. Measuring affinity between fea-
ture vectors of variable length often involves Dynamic Time
Warping [20]. A standard dynamic time warping (DTW)
method used in computer vision community would attempt
to treat the feature vector Pn as a Ke dimensional trajec-
tory and measure the distance of two behaviour patterns
by finding correspondence between discrete vertices on two
trajectories. Since in our framework, a behaviour pattern
is represented as a set of temporal correlated visual featu-
res, i.e. a stochastic process, a stochastic modelling based
approach is more appropriate for distance measuring. Note
that in the case of matching two sequences of different lengt-
hs based on video object detection, the affinity of the most
similar pair of images from two sequences can be used for
sequence affinity measurement [29]. However, since we focus
on modelling behaviour that could involve multiple objects
interacting over space and time, the approach in [29] can
not be applied directly in our case. (3) Model selection needs
performed to determine the number of clusters. To overcome
these difficulties, we propose a spectral clustering algorithm
with feature and model selection based on modelling each
behaviour pattern using a Dynamic Bayesian Network.

4.1 Affinity Matrix
Dynamic Bayesian Networks (DBNs) provide a solution

for measuring the affinity between different behaviour pat-
terns. More specifically, each behaviour pattern in the trai-
ning set is modelled using a DBN. To measure the affinity
between two behaviour patterns represented as Pi and Pj ,
two DBNs denoted as Bi and Bj are trained on Pi and Pj

respectively using the EM algorithm. The affinity between
Pi and Pj is then computed as:

Sij =
1

2

�
1

Tj
log P (Pj |Bi) +

1

Ti
log P (Pi|Bj)

�
, (5)

where P (Pj |Bi) is the likelihood of observing Pj given Bi,
and Ti and Tj are the lengths of Pi and Pj respectively.

DBNs of different topologies can be employed. A straight-
forward choice would be a Hidden Markov Model (HMM).
However, a drawback of a HMM is that too many parame-
ters are needed to describe the model when the observation
variables are of high dimension. This makes a HMM vul-
nerable to overfitting therefore generating poorly to unseen
data. It is especially true in our case because a HMM needs
to be learned for every single behaviour pattern in the trai-
ning dataset which could be short in duration. To solve this
problem, we employ a Multi-Observation Hidden Markov
Model (MOHMM) [11]. Compared to a HMM, the obser-
vational space is factorised by assuming that each observed
feature (pk

nt) is independent of each other. Consequently, the
number of parameters for describing a MOHMM is much
lower than that for a HMM.

An N ×N affinity matrix S = [Sij ] where 1 ≤ i, j ≤ N
provides a new representation for the training dataset, de-
noted as Ds. In this representation, a behaviour pattern is
represented by its affinity to each behaviour pattern in the
training set. Specifically, the nth behaviour pattern is now
represented as the nth row of S, denoted as sn. The natu-
ral grouping of behaviour patterns in the training data set
is then discovered through a novel spectral clustering algo-
rithm which measure the relevance of each eigenvector and
performs clustering using only the selected relevant eigen-
vectors of the data affinity matrix [32].
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4.2 Behaviour as A Mixture of MOHMMs
To build a generative model for the observed/expected

behaviour, we first model the kth behaviour class using a
MOHMM Bk. The parameters of Bk, θBk are estimated
using all the patterns in the training set that belong to the
kth class. A behaviour model M is then formulated as a
mixture of the K MOHMMs. Given an unseen behaviour
pattern, represented as a behaviour pattern feature vector
P, the likelihood of observing P given M is

P (P|M) =
K�

k=1

Nk

N
P (P|Bk), (6)

where N is the total number of training behaviour patterns
and Nk is the number of patterns that belong to the kth
behaviour class.

4.3 Online Anomaly Detection
Once constructed, the generative behaviour model M can

be used to detect whether an unseen behaviour pattern is
normal using a run-time anomaly measure.

An unseen behaviour pattern of length T is represented as
P = [p1, . . . ,pt, . . . ,pT ]. At the tth frame, the accumulated
visual information for the behaviour pattern, represented as
Pt = [p1, . . . ,pt], is used for online reliable anomaly detec-
tion. First the normalised log-likelihood of observing P at
the tth frame given the behaviour model M is computed as

lt =
1

t
log P (Pt|M). (7)

lt can be easily computed online using the forward-backward
procedure [22]. Note that the complexity of computing lt is
O(Ke

2) and does not increase with t. We then measure the
anomaly of Pt using an online anomaly measure Qt:

Qt =

��
	

l1 if t = 1

(1 − α)Qt−1 + α(lt − lt−1) otherwise
(8)

where α is an accumulating factor determining how import-
ant the visual information extracted from the current frame
is for anomaly detection. We have 0 < α ≤ 1. Compared to
lt as an indicator of normality/anomaly, Qt could add more
weight to more recent observations. Anomaly is detected at
frame t if

Qt < ThA (9)

where ThA is the anomaly detection threshold. Note that
it takes a time delay for Qt to stabilise at the beginning
of evaluating a behaviour pattern due to the nature of the
forward-backward procedure. The length of this time period,
denoted as Tw is related to the complexity of the MOHMM.
We thus set Tw = 3Ke in our experiments to be reported
later in Section 5, i.e. the anomaly of a behaviour pattern is
only evaluated when t > Tw.

5. EXPERIMENTS

5.1 Facial Correlation Analysis
As a case study, we investigate correlations between the

mouth part (Mouth) and the right eye part (Eye) (as shown
in Figure 1). These two parts have strong and a range of
correlations corresponding to facial expressions. We conduc-
ted experiments on the Cohn-Kanade database [17] and face

expression image sequences we captured. We manually nor-
malized the faces based on three feature points, centers of
the two eyes and the mouth, using affine transformation. In
the normalized facial images (110×150 pixels), the mouth
part is 53×68 pixels, and the eye part is 45×51 pixels.

Figure 1: A case study on correlations between the mouth and
the right eye facial parts.

5.1.1 Facial Parts Synthesis
We wish to reconstruct (synthesize) Mouth from Eye or

vice versa using MCCA based regression. Specifically, to re-
construct image B from image A, we first employ MCCA
to establish their relationship, finding optimal projection di-
rections in the sense of correlation, and then map A to the
leading canonical variates by discarding directions with low
canonical correlation. Finally we perform regression of B by
taking these leading canonical variates of A. The procedure
of synthesis is as follows.

1. Compute the leading factor pairs Va,Wa,Vb,Wb from
N pairs of samples A = {A1,A2, . . . ,AN} and B =
{B1,B2, . . . ,BN}.

2. Map Ai (i = 1, . . . , N) to the reduced correlation space
Ai = VT
a AiWa.

3. Reshape 2D matrices 
Ai and Bi to 1D vectors ãi and

bi, and form data matrices 
A = [ã1, . . . , ãN ] and B =
[b1, . . . , bN ]; then compute the regression matrix R =

(
AT )−1BT .

4. Given a new input Anew, the corresponding Bnew is
reconstructed by:


Anew = VT
a AnewWa, 
Anew → ãnew (10)

bnew = RT ãnew , bnew → Bnew (11)

Here 
Anew → ãnew represents reshaping 2D matrix 
Anew to
1D vector ãnew , and bnew → Bnew is reshaping 1D vector
bnew to 2D matrix Bnew .

We selected more than 10 subjects from the Cohn-Kanade
database, each of which has around 70∼140 images of dif-
ferent facial expressions, in addition to the image sequences
we captured. For the image set of each subject, we random-
ly sampled one tenth of the images as the testing set, and
the remaining images as the training set. We applied MC-
CA, CCA, and the standard linear least-squares regression
(SR) approach to synthesize Mouth from Eye and vice ver-
sa on the testing set. We used 10 randomly selected trai-
ning/testing combinations for reporting reconstruction er-
rors. We observe that MCCA performs better than CCA
and SR in reconstructing one facial part from another. Mo-
reover, MCCA requires much fewer canonical factors to ob-
tain better reconstruction results. Reconstruction results for
six randomly selected subjects are shown in Table 1, with
optimal average pixel errors (with standard deviation) and
corresponding dimensions of canonical factors used. Some
reconstruction examples are shown in Figure 2. It is evident
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Subject (1) Subject (2) Subject (3) Subject (4) Subject (5) Subject (6)
Errors (Dims) Errors (Dims) Errors (Dims) Errors (Dims) Errors (Dims) Errors (Dims)

Eye MCCA 11.2±2.0 (66) 8.5±2.5 (54) 13.4±5.5 (45) 16.3±5.0 (39) 9.9±1.8 (28) 13.8±2.4 (28)
↓ CCA 16.7±4.4 (139) 13.0±6.0 (119) 16.2±8.8 (96) 24.5±9.8 (96) 12.9±4.4 (85) 17.2±8.5 (77)

Mouth SR 17.3±3.5 (-) 12.4±5.3 (-) 16.1±8.8 (-) 23.7±7.6 (-) 14.2±4.3 (-) 15.1±4.9 (-)

Mouth MCCA 8.8±1.2 (46) 8.4±1.8 (50) 10.0±3.3 (28) 19.5±6.0 (51) 10.5±2.5 (44) 12.6±2.9 (36)
↓ CCA 13.1±4.0 (139) 10.7±3.6 (119) 11.6±5.9 (96) 25.4±18.3 (96) 11.0±3.1 (85) 15.7±6.2 (77)

Eye SR 14.7±4.8 (-) 10.7±3.2 (-) 12.0±6.5 (-) 26.1±18.8 (-) 11.0±2.9 (-) 13.9±6.1 (-)

Table 1: Reconstruction results for six subjects: the optimal average pixel errors (with standard deviation) of the three algorithms, and
the corresponding dimensions of canonical factors used in MCCA and CCA.

MCCA

CCA

SR

Ground Truth

Figure 2: Some examples of facial parts synthesis using MCCA, CCA, and SR.

that MCCA outperforms CCA and SR consistently in fa-
cial parts synthesis. Crucially, the dimension of canonical
factors needed in MCCA is always less than 50% of that
of CCA. So MCCA can describe correlations among facial
parts with better accuracy using much less canonical fac-
tors. The strength of MCCA is also reflected by the average
standard deviation. As shown in Table 1, MCCA always pro-
duces the smallest deviation, which suggests that MCCA is
much more robust.

5.1.2 Expression Recognition by Correlation
We also carried out experiments on facial expression reco-

gnition solely based on correlations between Mouth and Eye.
Given image sets of different facial expressions I1, . . . , Ic (c
is the number of classes), we derive the leading factor pairs
(Vi

a,Wi
a,Vi

b,W
i
b), i=1 . . . c of parts Mouth (denoted by B)

and Eye (denoted by A) for each class using MCCA. We
then compute the regression parameters for reconstructing
B from A in the reduced correlation space in the training
set. Given a test image Inew of an unknown class, we map its

2-Class 3-Class 4-Class
MCCA 96.1±3.6 80.8±6.4 67.9±4.8
CCA 63.2±10.5 55.6±7.8 48.7±6.7

Table 2: Facial expression recognition based on correlations of
Mouth and Eye modeled by MCCA and CCA.

Eye Anew and Mouth Bnew to the reduced correlation space

of class i as 
Ai = (Vi
a)T AnewWi

a and 
Bi = (Vi
b)

T BnewWi
b,

and then calculate the error err(i) of reconstructing 
Bi

from 
Ai with the regression parameters of this correlati-
on space. After computing the reconstruction error of each
class err(i), i = 1 . . . c, we classify the test image as the class

having the smallest reconstruction error

î = arg min
i

err(i) (12)

For our experiments, we selected 732 image of basic emotions
(Anger, Disgust, Joy, and Surprise) from the Cohn-Kanade
database. The sequences come from 96 subjects, with 1 to
4 emotions per subject. We first considered a 2-class (Joy
and Surprise) recognition problem, then included Anger for
a 3-class problem, and finally considered four expressions
for classification (incrementally making the recognition task
harder). To evaluate generalization performance, a 10-fold
Cross-Validation testing scheme was adopted. The recogni-
tion results using MCCA and CCA are shown in Table 2. It
is evident that expressions can be better classified using MC-
CA, demonstrating again that MCCA outperform CCA in
capturing correlations in facial parts. It is also evident that
by modeling correlations between only two facial parts, the
recognition accuracy degrades quickly for multi-class reco-
gnition. By considering correlations of multiple facial parts,
we should be able to improve these recognition results.

5.2 Multimodal Emotion Recognition
Gunes and Piccardi [12] collected the first bimodal face

and body gesture database (FABO), in which video sequences
were recorded simultaneously using two cameras, one cap-
turing the head and the other capturing upper-body move-
ments. The database includes 23 subjects aged from 18 to
50. In total there are 1900 videos. In our experiments, we
selected 262 videos of seven emotions (Anger, Anxiety, Bo-
redom, Disgust, Joy, Puzzle, and Surprise) from 23 subjects.
Gunes and Piccardi [13] reported results using a smaller set
of 54 videos from 4 subjects.
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Figure 3: Confusion matrices of facial expression recognition using
(left) 1-nearest neighbor classifier and (right) SVM classifier.
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Figure 4: Confusion matrices of body gesture recognition with
(left) 1-nearest neighbor classifier and (right) SVM classifier.

In our experiment, we first show classification performan-
ce using single modality only (facial or body features alone).
The confusion matrices from two classifiers are shown in Fi-
gures 3 and 4. The error rates of SVM and 1-nearest neigh-
bor classification of facial expression are 20.8% and 25.2%
respectively, and the corresponding error rates in classify-
ing body expression are 27.4% and 31.4% respectively. For
multimodality recognition, we then extracted the spatial-
temporal features from the face video and the body video
simultaneously, and then fuse the two modalities at the fea-
ture level using CCA. For comparison, we also carried out
experiments using direct feature fusion, i.e. concatenating
the original face and body feature vectors to derive a single
feature vector. Our results are shown in Figure 5, where the
average error rates of CCA-based feature fusion and the di-
rect feature fusion are 11.5% and 18.1% respectively. This
shows whilst a direct feature fusion by concatenation yields
only slight performance improvement over a single modality,
a multimodality correlated representation using CCA fea-
ture fusion provides much improved recognition rate. This
is because CCA captures underlying relationship between
the feature sets in different modality spaces.

5.3 Behaviour Profiling / Anomaly Detection
A CCTV camera was mounted on the ceiling of an office

entrance/exit corridor, monitoring people entering and lea-
ving an office area (see Figure 6). The office area is secured
by an entrance-door which can only be opened by scanning
an entry card on the wall next to the door (see middle fra-
me in row (b) of Figure 6). Two side-doors were also located
at the right hand side of the corridor. People from both in-
side and outside the office area have access to those two
side-doors. Typical behaviour occurring in the scene would
be people entering or leaving either the office area or the
side-doors, and walking towards the camera. Each behaviour
pattern would normally last a few seconds. For this experi-
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Figure 5: Confusion matrices of fusing facial expressions and body
gestures recognition. (left) Direct feature fusion; (right) CCA-
based feature fusion.

(a) C1 (b) C2

(c) C3 (d) C4

(e) C5 (f) C6

Figure 6: Behaviour patterns in a corridor entrance/exit scene.
(a)–(f) show image frames of typical behaviour patterns belon-
ging to the 6 behaviour classes listed in Table 3. The four clas-
ses of visual events detected automatically, ‘entering/leaving the
near end of the corridor’, ‘entering/leaving the entry-door’, ‘ente-
ring/leaving the side-doors’, and ‘in corridor with the entry door
closed’, are highlighted in the image frames using bounding boxes
in blue, cyan, green and red respectively. The same colour scheme
will be used for illustrating detected events in Figure 7.

ment, a dataset was collected over 5 different days consisting
of 6 hours of video totalling 432000 frames captured at 20Hz
with 320×240 pixels per frame. This dataset was then seg-
mented into sections separated by any motionless intervals
lasting for more than 30 frames. This resulted in 142 video
segments of actual behaviour pattern instances. Each seg-
ment has on average 121 frames with the shortest 42 and
longest 394.

C1 From the office area to the near end of the corridor

C2 From the near end of the corridor to the office area

C3 From the office area to the side-doors

C4 From the side-doors to the office area

C5 From the near end of the corridor to the side-doors

C6 From the side-doors to the near end of the corridor

Table 3: The 6 classes of behaviour patterns that most commonly
occurred in a corridor entrance/exit scene.

A training set consisting of 80 video segments was ran-
domly selected from the overall 142 segments without any
behaviour class labelling of the video segments. The remai-
ning 62 segments were used for testing the trained model
later. This model training exercise was repeated 20 times
and in each trial a different model was trained using a dif-
ferent random training set. This is in order to avoid any
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bias in the anomaly detection and normal behaviour reco-
gnition results to be discussed later. For these unlabelled
model training over the 20 trials, the number of clusters for
each training set was determined automatically as 6 in eve-
ry trial. By observation, each discovered data cluster mainly
contained samples corresponding to one of the 6 behaviour
classes listed in Table 3. For each unlabelled training set, a
normal behaviour model was constructed as a mixture of 6
MOHMMs as described in Section 4.2.

For comparative evaluation, alternative models were also
trained using labelled datasets as follows. For each of the 20
training sessions above, a model was trained using identical
training sets as above. However, each behaviour pattern in
the training sets was also manually labelled as one of the
manually identified behaviour classes. On average 12 beha-
viour classes were manually identified for the labelled trai-
ning sets in each trial. Six classes were always identified in
each training set (see Table 3). On average they accounted
for 83% of the labelled training data. A normal behaviour
model was built as a mixture of MOHMMs with the number
of mixture components determined by the number of manu-
ally identified behaviour classes. Each MOHMM component
was trained using the data samples corresponding to one
class of manually identified behaviour in each training set.

Given a training set, discrete visual events were detected
and classified using automatic model order selection in clu-
stering, resulting in four classes of events corresponding to
the common constituents of all behaviour in this scene: ‘ente-
ring/leaving the near end of the corridor’, ‘entering/leaving
the entrance-door’, ‘entering/leaving the side-doors’, and ‘in
corridor with the entrance-door closed’. Examples of detec-
ted events are shown in Figure 6 using colour-coded boun-
ding boxes. It is evident that that due to the narrow view
nature of the scene, differences between the four common
events are rather subtle and can be mis-identified based on
local information (space and time) alone, resulting in lar-
ge error margin in event detection. These events being also
common constituents to different behaviour patterns rein-
forces the assumption that local events treated in isolation
hold little discriminative information for behaviour profiling.

Anomaly Det. (%) Fal. Alarm (%)
Unlabelled 85.4 ± 2.9 6.1 ± 3.1
Labelled 73.1 ± 12.9 8.4 ± 5.3

Table 4: The mean and standard deviation of the anomaly detecti-
on rate and false alarm rates for corridor entrance/exit behaviour
models trained using unlabelled and labelled data. The results
were obtained over 20 trials with ThA = −0.2.

The behaviour models built using both labelled and un-
labelled behaviour patterns were used to perform online an-
omaly detection. To measure the performance of the lear-
ned models on anomaly detection, each behaviour pattern
in the testing sets was manually labelled as normal if the-
re were similar patterns in the corresponding training sets
and abnormal otherwise. A testing pattern was detected as
being abnormal when Eqn. (9) was satisfied at any time af-
ter Tw = 3Ke = 12 frames. The accumulating factor α for
computing Qt was set to 0.1. We measure the performance
of anomaly detection using anomaly detection rate and false
alarm rate. The detection rate and false alarm rate of an-
omaly detection are shown in Table 4. This suggests that the
models trained using unlabelled data clearly outperformed
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Figure 7: Examples of anomaly detection in the corridor entran-
ce/exit scene. (a)&(c): An abnormal behaviour pattern was detec-
ted as being abnormal by the model trained using an unlabelled
dataset, while it was detected as being normal by the model trai-
ned using the same but labelled dataset. It shows a person snea-
king into the office area without using an entry card. (b)&(d):
A normal behaviour pattern which was detected correctly by the
model trained using an unlabelled dataset, but detected as being
abnormal by the model trained using the same but labelled da-
taset. The third frame from left in (b) shows an error in event
detection (an ‘in corridor with the entrance-door closed’ event
was detected as an ‘entering/leaving the side-doors’ event). Note
that a smaller value of Qt means that it is more likely for the
behaviour pattern to be abnormal. ThA was set to −0.2.

those trained using labelled data. In particular, it is found
that given the same ThA the models trained using unlabelled
datasets achieved higher anomaly detection rate and lower
false alarm rate compared to those trained using labelled
datasets. Figure 7 shows examples of false alarm and mis-
detection by models trained using labelled data. The lower
tolerance towards event detection error was the main rea-
son for the higher false alarm rate of models trained using
labelled data (see Figure 7(b)&(d) for an example).

6. CONCLUSION
In summary, we presented an approach to systematic mo-

delling of spatial and temporal correlations among facial/body
parts and movement patterns for facilitating meaningful in-
terpretation of human behaviour. Our approach emphasises
that behaviour is better interpreted in a wider spatial and
temporal context. This is specially true for non-exaggerated
natural behaviours. In particular, we introduced Canoni-
cal Correlation Analysis and Matrix Canonical Correlati-
on Analysis for capturing and analyzing spatial correlations
among non-adjacent facial parts for facial behaviour ana-
lysis. As facial muscles are contracted in unison to display
expressions, different facial parts almost always show strong
correlations. To be able to capture and analyze these correla-
tions can facilitate better interpretation of facial behaviour.
Moreover, for visual interpretation of human emotion, both
facial and body characteristics contribute holistically to con-
veying a more accurate emotional state of a person. To this
end, we investigated ways to correlate multimodal visual fea-
tures for more holistic and reliable emotion recognition. To
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improve model sensitivity, we are currently investigating the
effects of correlating multiple facial and body components
in space and over time. In a wider context, we further de-
veloped an approach for robust human behaviour profiling
and anomaly detection using temporal correlation of auto-
discovered multiple visual features and associated events.
The framework is fully unsupervised. The effectiveness and
robustness of our approach is demonstrated through expe-
riments using datasets collected from natural public scenes
where spontaneous behaviours are monitored.

To conclude, despite the best efforts from an increasing
number of researchers, we are still at the very early sta-
ge of quantifying human behaviour, especially spontaneous
and natural behaviours. Many basic questions remain to be
answered. One of the questions is how to extract and make
use of cross-modality domain knowledge. How can a machi-
ne discover inherent common structures and trends hidden
in multimodal data exhibiting different apparent characte-
ristics? How information in one domain can be mapped to
others? Human cognitive process has the ability to associa-
te and generalise observations across domain and modality,
so that visually subtle behaviour changes can be detected
and interpreted in the appropriate context. How to enable a
machine to possess the same ability? We envisage that these
questions will captivate researchers for years to come.
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