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Abstract 
In order to understand the parallel computation of optic flow, 

we introduce here a novel algorithm to compute the flow field 
at certain locations in the image. These locations are on the 
gradient edges, which Brady calls seed8 [l]. Our Curve Motion 
Constraint Eqnation gives no an additional constraints to fully 
and locally estimate the flow field at seeds. Our initial compu- 
tational experiments have used the improved local flow as the 
initial input to Hildreth’s algorithm. Now we are exploring an 
algorithm to perform the whole computation in parallel, 

1 Introduction 
Horn and Schunck introduced the motion constraint equation to c o m  
pute “optic flow”, which is an apparent visual motion field in a two- 
dimensional successive image sequence. The equation corresponds to a 
first order Taylor’s series expansion of the image intensity function [9]. 
As it only provides one constraint on the optic flow vector at any PO- 
sition in the image, “aperture problem” exists in the computation. In 
order to fully constrain or estimate the optic flow, Horn and Schunck 
introduced an assumption that the physical world is locally smooth 
everywhere, as is the optic flow. By using the smoothness assumption 
to regularise the flow field (to achieve global minimisation), they sug- 
gested that the aperture problem can be overcome [9]. Under egomc- 
tions in which the camera moves against a static environment, the optic 
flow seems to be smooth everywhere. But in a general situation which 
the image contains at  least one moving object against a static back- 
ground, the flow won’t be smooth. Also, depth discontinuities give rise 
to two-dimensional motion field discontinuities [21], [20], [5]. To avoid 
the two-dimensional, namely all directions, smoothness assumption in 
the image, some other algorithms have been investigated [3], [24], [23], 
[%I, [21], [20]. Hildreth’s scheme [i’] only smoothes the flow along 
one-dimensional curves corresponding to the zero crossings of the im- 
age. The arguments for doing so are based on: physiological evidences 
[8], the numerical conditioning of the motion constraint equation and, 
the physical adequacy for assuming the smoothness along edges rather 
than everywhere in the image. Hildreth’s approach is supported by 
some experimental results (81, [5]. Though it is clearly one of the best 
schemes proposed for estimating optic flow (at least along curves), it is 
inherently sequential [5]. Alternatively, Scott’s Four Line Method [21] 
computes a dense optic flow similar to that of Horn and Schunck, but he 
argues that the flow field across a motion boundary won’t be smoothed 

out by his scheme and, furthermore, the match procedure being used is 
a local mechanism instead of a global regularisation. Therefore, i t  over- 
comes the eequential computation problem associated with Hildreth. 
In practice, compare with Horn and Schunck’s method, the four line al- 
gorithm improves the computation of a discontinuous flow field caused 
by the discontinuity of the three-dimensional depth of the object. But 
the match scheme employed in the algorithm tends to propagate the 
flow field into the static background region which has any local edge 
structure. This given the effect of a “wake” surrounding moving ob- 
jects, although it employs the novel idea of combining different kinds 
of motion computation within a single scheme [5]. 

Imposing observational assumptions, such as smoothness, about the 
physical world, are aimed at overcoming the aperture problem by in- 
troducing another constraint. But how has this additional constraint 
been established? Most people simply apply regularisation to achieve 
a global minimisation. There are hardly ideas about trying to find a 
local constraint which is able to let UB fully estimating the flow by only 
involving local computation. Koenderinck has carried out some theo- 
retical investigations from biological point of view [Ill, [12], [IO]. In 
computer vision, work has been carried out by Nagel in his second order 
Taylor series expansion of the intensity function. Nagel showed that at 
grey value corners, the full flow can be computed by his second order 
equation [14]. More recently, Nagel shows that employing the smooth- 

-ness assumption along the edges, such as Hildreth, or other kinds of 
‘oriented smoothness’ assumptions are implicitly employing the higher 
order of flrylor expansion of the intensity function [15]. Theoretically 
as well as practically, we have been inspired by Nagel’s work [14], [13], 

The work represented in this paper is to understand the degree of 
constraint on the optic flow computation at  the seed locations as we 
will describe later [l], [4]. We claim that at the seed locations, we can 
obtain an additional local constraint to fully estimate the optic flow 
locally. 

~51. 

2 Seeds and its constraints 
Seeds are locations of twc-dimensional constraint [l], examples of which 
include Nagel’s grey value corners, or other kinds of models based on 
the changes of second order derivatives of the intensity function (61, 
[li’], [MI, etc. At seed locations, we have twc-dimensional constraint 
on the flow vector which means that in theory, we can fully estimate the 
flow locally. This observation has been noted previously [13], [15], [l]. 
In fact, in the case of estimating so called long range motion [22], by 
which first computing some kinds of token, such as a corner, and then 
matching these tokens to give a sparse flow in the image, is applying 
this concept implicitly. Less work has been carried out in the case of 
computing optic flow which can provide a denser flow field for three-. 
dimensional structure from motion. The question we addressed here is 
to ask what kind of reliable and local constraint on the optic flow we 
can get at the seed locations, in which order to support the parallel 
edge motion computation. 

Instead of trying to recover the optic flow field everywhere in the im- 
age by a single mechanism, we believe that there are different schemes 
associated with different intensity structures for estimating the flow. In 
an image, there are loci of different constraints, such as points within 
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regions of smooth change or constant intensity value, points of one- 
dimensional intensity discontinuity which are often associated with 
edges, and points of two-dimensional intensity discontinuity which are 
seeds. According to the degree of the constraint, there are degrees of 
locality. There are loci in the image at  which we can completely and 
locally compute the optic flow without global assumptions. But as the 
constraint decreasing, we need different scheme to estimate the flow 
which can not he computed locally. Therefore, the parallel computa- 
tion of twc-dimensional apparent motion can not be employed through 
out all the stages of the computation. It suggests that the computation 
of the optic flow should be a multi-level mechanism in the sense that 
different levels are associated with a certain degree of well-conditioning 
as well as of parallelism. The solution to the question of parallel compu- 
tation of visual motion is to maximally employ the degree of parallelism 
which are different in different stages of the computation, instead of 
trying to employ a single parallel computation mechanism all the way 
through. Similar suggestions are to be found in physiological and psy- 
chological experiments [18], [19]. 

3 Mathematical structure for the seed's 
flow 

The conditions in which we can locally compute both components of 
the optic flow along an edge has been studied mathematically and, 
it leads to an algorithm which has been implemented. Our initial 
computational experiments have simply used the improved local flow 
estimated as input to  an improved Hildreth's algorithm. The results 
from the experiments have shown us how a new algorithm, which will 
perform an entire computation in parallel, can be designed. 

We start fiom the Mofion Consirainf Equafion (m.c.e.): 

V I . p +  It = 0 (1) 

which derives from the assumption of temporally constant intensity. 
In the equation, VI is the first order spatial gradient. p is the optic 
flow vector, defined as: 

p = [ dz/dt dy/di  1' 
and I, is the temporal gradient a t  a pixel. The relationship between 

the spatial, temporal gradients and the optic flow vector is then: 

(3) 

where N = VI/llVIll is the unit vector in the direction of the spatial 
gradient. 

Equation 3 imposes one local constraint on the flow vector, but 
if the norm of spatial gradient llVIll is small, the computation will 
also be poorly-conditioned. This is exactly the numerical argument in 
favour of edge motion estimation proposed by Hildreth. Therefore, we 
restrict our attention to those image loci, edges, where exist high first- 
order spatial gradient (VzI = 0). At such an edge point, an edgel, the 
intensity gradient is orthogonal (in the image plane) to the (tangent to 
the) edge. 

If we examine an edge in a temporal sequence of images, we'll notice 
that in one representation, edgels are addressed by their image coordi- 
nates (z,y); and in another representation, the same point is accessed 
by its distance s along the edge. Add the time parameter t ,  we denote 
the quantities that feature in our analysis as follows: 

intensity of a pixel. 
intensity of an edgel. 
an edge. 
x coordinate of an edgel. 
y coordinate of an edgel. 
spatial gradient of a pixel. 
unit vector in the gradient direction. 
unit vector orthogonal to N. 
velocity vector of a pixel. 
Hessian matrix of a pixel. 

The position along an edge is given by s At any instant time t , ,  
and at  any particular point on the curve, we have: 

T = where y = ? ( s , t )  

In other wards: 

T =  [ allas  ay/as 1' (4) 

After the statements have been cleared, it can be shown what the 
tangential component of the flow vector along an edge should be. First 
we have the Taylor expansion of tltc optic flow along an edge: 

Similarly, the Taylor expansion of VI and It along an edge should 
be : 

Ignore the triple and higher order of As in the above equations, we 
have: 

p(s + As) = p(s )  + ap -AS + a z p  -As2 
a s  as2 

(5) 

( 6 )  
VI(S + AS) = VI(S) + a v 1  -As + S A S '  

8.9 
and 

(7) 

Consider the m.c.e. in the neighbourhood of an edgel at distance s 
along the edge, which is: 

VI(S + AS) . P(S  + AS) + I ~ ( S  + AS) = 0 (8) 

Therefore, substitute equations 5, 6 and 7 into this neighbourhood 
m.c.e.; then ignoring the triple and higher order of As gives: 

(VI .  p + I t )  + (VI.* + 

as as asz as2 as 

. /I + %)AS as 
B S  

+ ( - . - + ~ - + V I . - + + ) ( A S ) ~  BvI 8/.1 @VI a2p @ I t  = 0 

The partial derivatives of intensity and velocity with respect to a 
spatial coordinate are constant. Therefore, to satisfy the above equa- 
tion, the coefficients of zero, first and second order in As should re- 
spectively be 0. This leads to: 

V I . p +  I t  = 0 (9) 

and 

Equation 9 is the m.c.e.. Equations 10 and 11 provide two new 
relationships between the intensity and the flow along an edge. What 
do equation 10 and 11 tell us ? 

Applying the two different coordinate representations introduced 
before, will lead equation 10 and 11 into: 

( T ~ H N ) ( N .  p )  + ( T ~ H T ) ( T .  p )  - (T'H~) = o (12) 
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and 

(TTHN){(TTHp) + ( V I t .  T)} = 0. (13) 
respectively (the detailed proof can be found in the Appendix). 

Where VIt is the temporal gradient of the spatial gradient. Clearly, 
equation 12 provides no additional information. However, equation 13 
links the tangential and normal components of the optic flow along the 
edge. This will be seen in more detail from the following. 

From equation 13, we have either: 

T T H N  = 0 or (TTHp) + ( V Q .  T )  = 0 

If (TTHN)  is zero, then either H T  is parallel to T or, is 0. Now: 

2. Secondly, as: 

8 N  - = -  'VI ""B","N + I l V Z l l z  
as 

= ( T ~ H N ) N  + ( T ~ H T ) T  = HT 

So, in general, (HT) is not parallel to  T, nor is it equal to  0. In 
other words, generally we have the Curve Motion Constraint Equation 
(c.m.c.e) as the following: 

( T ~ H N ) ( N .  p)  + ( T ~ H T ) ( T .  p) = - (VI t .  T) 

( T ~ H N ) N  + ( T ~ H T ) T  = HT 

(14) 
Is there any special case for which T T H N  vanishes? As: 

which means if, 

T T H N = O  H T = ( T T H T ) T  

As we have: 

which IC is the curvature of the edge, therefore: 

H T  = -K~~VIIIT 

If H T  is parallel to T, T T H N  equals to 0. In fact, we found 
analytically that this situation happens along a circular edge. This 
may explain why we can not compute a circular object's rotation about 
its centre, for which all the full flow vectors on the edge only have 
tangential component. 

Except for the case that H T  is parallel to T, furthermore, being 0 
- in other words, edge is a straight line, also makes T T H N  vanishing. 
This gives: 

0 = [ BZ./Bs BZ,/Bs 1' = H T  (15) 
which means that both 8Z,/Bs and 8ZU/8s are equal to zero. It 

gives the following: 

1. At first, equation 15 can be more explicitly written as: 

namely, 

Z,,I, - I,,Z, = 0, Z,,Z, - Z,,Zr = 0 

This obviously gives us: I,&,, = ZZ,. Therefore, where the edge 
is straight, we have: 

detH = 0 

which means where the edge is straight, c.m.c.e doesn't hold. 

By this stage, we have determined a relationship between the edge's 
This can be optic flow and the corresponding intensity structure. 

briefly summaried as: 

conditions if we assume: in general, the second order derivatives of 
the intensity function ezisi locally, then we have: 

1. To require an edge being straight, means that the determi- 
nant of the local Hessian matrix equals to zero. 

2. Theoretically, we can estimate both components of optic 
flow locally along edges wherever the edge is not straight, 
though we still can not estimate the circular objects rotat- 
ing according to  its centre. Practically, we need to con- 
cern ourselves with the numerical condition of the c.m.c.e.. 
It is very similar to  the situation that arises in using the 
m.c.e.. For the m.c.e., it is judged by the norm of the 
gradient. For the c.m.c.e., it is judged by detH. In fact, 
detH = K ~ K ~ ( E G -  F2), in which E, F and C are the com- 
ponents of the first fundamental form [lq, which suggested 
that the intensity surface shape can be basically classified 
into three types based on the value of detH. That is: 

detH < 0, hyperbolic point; 
detH > 0, elliptic point; 
detH = 0, parabolic point. 

The parabolic points are associated with the straight edges 
in the intensity surface, but both hyperbolic and elliptic 
points are associated with seed locations. 

3. Furthermore, where the detH equals to  zero, the optic flow 
estimation reverts to be an under-determined problem. 

What can deduce from the c.m.c.e. ? First of all, we can write the 
c.m.c.e. in a more general form as: q5(T . p)  + cp(N . p) + X = 0. So the 
equation gives the correct solution in two kinds of extreme situations 
(figure 1). 

Secondly, we see that Hessian matrix plays a central role here. In 
practice, we only can compute the T . p where H is well-conditioned. 
H is associated with the surface curvature of the intensity function [25], 
[14], [17]. In fact, large Hessian determinant is associated with the loci 
of local maximum surface curvature on the intensity surface, which 
are the loci of twedimensional constraint. Therefore, they correspond 

when Ivl = T.v. 
SO: N.v = 0 

when Ivl = N.v. 
SO: T.v = 0 

Figure 1: Two extreme situations for the flow field computation. 
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to  the loci of seeds, where we can give a full value for the optic flow. 
Though it seems to be similar to Nagel's grey value comers, we derived 
here an explicit connection between the structure of intensity on the 
edge and the constraint for computing the optic flow a t  these locations. 
This connection generalises Nagel's method by giving explicit detail 
about not only dealing with the flow of two-dimensional constraint loci 
- grey value corners; but also dealing with the flow of one-dimensional 
constraint loci - edges, and about the degree of numerical reliability 
for local flow computation on these edges. 

4 Improved local flow for the edge's flow 
Our first application of the c.m.c.e. is to give an improved local flow 
as the initial data for Hildreth's scheme. First we give an improved 
model which is based on the Hildreth's original approach but consider 
the new local information from c.m.c.e.. 

In general, there will be error in both the local computation of N . p,  
which is denoted as pL, and T . p denoted as pT, which are caused by 
image quantisation and by image noise, etc. Therefore, in practice, we 
require that the flow only obey these local constraints approximately. 
Combining this approximate requirement with the general smoothness 
assumption along the edge direction, we have the following functional 
to  be minimised: 

Minimising the second and third terms in the above equation cor& 
sponds to  the approximate requirement of local normal and tangential 
flow constraint, respectively. The parameter Q is a weighting factor 
which expresses the degree of confidence in the local computation of 
normal flow from the m.c.e.. p is another weighting factor for the local 
tangential flow. We set a to  be a constant along edges, but set p to be 
a function of the local Hessian matrix which is varying along the edge. 

detH p =  - 
z 

This function represents two aspects of error sources in the tangen- 
tial flow computation, where E expresses the degree of confidence in 
the computation of Hessian matrix itself, the determinant of Hessian 
represents the degree of confidence in using the c.m.c.e.. In general, 
E should be the condition number of the Hessian matrix (see [2] for 
condition number of the matrix). 

where E equals to 1 corresponding to well-conditioned, and 03 corre- 
sponding to singular. The smaller value of E assocites with better con- 
ditioning which makes p bigger. Also, in general, p should be smaller 
than a, as the error in the computation of second order intensity deriva- 
tives are bigger than in the first order derivative's computation. The 
discrete functions for the first, second and third term in the functional 
of equation 17 are as follows: 

el = C[(P=. - P ~ , - , ) ~  +(pY. - P ~ , - ~ Y I +  [(pr, - Pr.)' + (py1 -F~.)'I 
i = Z  

detH 
0 3  = -&.Tz, + py.Ty, - pT]' 

i=l 

From 01, 0 2  and 0 3 ,  we have the discrete formula for equation 17 
as: 

0 = o1 +ez+ e3 
Now, the question of minimising equation 17 leads to  the question 

of finding a set of z and y components of the flow, which minimise 

(18) 

the discrete function 9. This gives a set of Pn linear equations to be 
solved, which are: 

z=o, =- - 0  ' I < i < n .  (19) 
From the partial derivatives with respect to the z component of 

function 9, we have: 

From the partial derivatives with respect to the y component of 
function 0, we have: 

These two equations constitute an improved model relative to Hil- 
dreth's original %heme 171, [SI. It uses more local information both 
from the m.c.e. and the c.m.c.e. to give a faster algorithm. 

5 Experimental results 
In order to show that our model works on practical images, we show the 
results of some initial experiments. First we give some results which 
are for testing the c.m.c.e.. Secondly, we show some results from our 
improved version of Hildreth's algorithm. 

We first explain the pictures been used. The aim of this part of the 
experiment is to show whether the equation works, based on the degree 
of curving on the edges which we have shown theoretically. Therefore. 
we try to use a kind of image which has less influence from other as- 
pects, such as noise in the image which leads to errors in edge detection 
and so on. This leads us to  use a sequence of synthetic ellipse images 
which has different curvature along its boundary. The image sequences 
include translation, rotation and deformation (figure 2). The size of 
the images is 128 x 128. 

rocation - 3 degrfxr clockwise smud m a i m  

Figure 2: Synthetic image sequences for the experiment of c.m.c.e.. 
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The flow fields are shown in figures 3, 4, 5 and 6. Each figure also 
shows a result from Hildreth's method, but all of them are about ten 
times slower. We note that most time consuming in the computation 
spends on computing all the derivatives for which we are using rela- 
tively large masks (7 x 7 and 9 x 9) because the computation of the 
second order derivatives are very sensitive in general. On the other 
hand, the computing time in Hildreth's method is mostly spent in the 
iteration stage which is inherently sequential. Therefore we can further 
speed up the seed motion computation considerably and easily by using 
a hardware image processing array. In figure 3, we have a translation 
in which the local normal flow of the loci of seed are useless. The re- 
covered local tangential flow complement the local full flow rather well. 
This associates with the two extreme situations we mentioned before. 
Here, the tangential flow gives a reasonably accurate contribution to 
the full flow at the seed loci. Figure 4 gives a three degrees clockwise 
rotation and, figure 5 shows a motion of rotation in three degrees clock- 
wise and translation of two pixels in both x and y directions. Finally, 
figure 6 has a flow associated with a motion of two pixels deforming in 
all directions. In the final two more general situations, the c.m.c.e still 
gives a quite reasonable local tangential flow. 

full flow fmn cm.C.C. full flow f" H i d l ' r  

Figure 3: Synthetic translation - 2 pixels down the y direction. 

Figure 4: Synthetic rotation - 3' clockwise. 

OQcllyl flow U0genti.l f h w  

uagcluial flow Mmul flow 

full flow fmm cm.rc. full flow fmn HildrcB'r 

Figure 6: Synthetic deformation - 2 pixels in all directions. 

We have demonstrated the adequacy on sequences of synthetic i m  
ages. But these are images that have simple structure. For real images, 
the situation is different simply as, on one hand, there are lots of noises 
both from the original image, and from the image quantisation; and 
on the other hand, the computation of second order derivatives are 
well known to be sensitive to  noise. Therefore, we consider the local 
tangential flow as an appruzimate local constraint for the full flow com- 
putation, as in equation 17 rather than aa a precise calculation. The 
result from applying our improved Hildreth's method on the real i m  
age sequence is shown in figure 7. This result didn't show us a great 
change in the time consuming (about two third the iterations as Bil- 
dreth's does). The reason can be explained as there are not enough 
seeds along the edges; also we don't fix their tangential flow as bound- 
ary conditions which turns out that the seed's contributions are buried 
in or smoothed by the non-seed's normal flow. This leads to our fol- 
lowing consideration of an  alternative way for applying the c.m.c.e.. 

Currently, we compute a fairly good approximation to the local 
tangential flow at the seed loci, or we compute the tangential flow ev- 
erywhere on the edge by setting the threshold of delH to zero, which 
will give us a very low confidence about the tangential flow at the loci of 
low detH. Consequently, our current investigations start from finding 
how to build up the local tangential flow all along the edge by propa- 
gating, instead of directly computing from equation 14, the tangential 
flow at the loci of seed to  the loci of low d e t H .  This should give us a 
more confident tangential flow at those loci of detH. Although these 
propagated tangential flows along the edge still can only be approx- 
imate, they will have greater confidence. We are currently exploring 
the possibility of using wavediffusion processing (based on the assump 
tion that the change of tangential flow is continuous along the edge) to 
give us a fast propagation along the edge. This processing will again 
be inherently parallel. After we have the tangential flow everywhere 
on the edge, we combine them locally with the normal flow, to give 
us a very close approximation to  this edgel's full flow. By this stage, 
we only need a few final iterations to smooth the whole flow globally 
to overcome the initial error that derives from noise rather than from 
insuflcient constraint. In this way, we use the local computation as 
much as we can to minimise the involvement with the global compu- 
tation. Therefore, most of our computation can be done in parallel. 
The reasons for doing so is to understand how we can propagate the 
reliable optic flow into less constrained regions and at the same time 
how much parallelism can be achieved. The ultimate goal is to under- 
stand the multi-level optic flow computation structure. Answering the 
questions such as how much parallelism is associated with a certain 
level's computation, how we can maximally apply it, and finally, how 
much parallelism is in the whole optic flow computation, will bring us 
to a better understanding of the parallel computation of visual motion. 

full f b w  hrm cm.C.c. full fbw Imn H i l d d r  

Figure 5: Synthetic general motion - translating 2 pixels in both x 
and y directions; also rotating 3' clockwise. 
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Frame 1 

h e  2 

I i 
i 

Figure 7: A cup in a general motion (include a rotation by the centre 
of the cup and a translation towards the lower right hand corner). 
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Appendix 
Before we start to derive equations 12 and 13, it is important to note 
the basic definitions in equations 2 and 4. We start from giving a few 
lemmas which are essential for our demanding result. 

Lemma 1. if we assume that 2 = (I/$) = eonst., which in general 
will be true, we have: 

a P  - dT 
as dt 

Proof. From equations 2 and 4, we fiiid: 

d 
= - [ a+/as ay/& 1’ 

d t  
a2xfi3sat  + 02zfds2 .dsfdt  
a2yfasat + a2yfas2. ds fd t  

The lemma follows. 

Lemma 2. Along an edge as defined by I,, + I,, = 0 ,  

and 

where H is the image Hessian 

The proof of the lemma simply consists of expanding both sides 
of the equation. 0 

From lemma 2, it follows: 

Lemma 3. 

Proof. From the definition of gradient, we have: 

As T is orthogonal to  N, therefore: 

Taking partial derivatives with respect to s and t of equation 26, 
gives the following: 

We now take scalar products with N in these two equations. 
From the second one, we have: 

aT 1 
(27) - = -- 

at lloIll(T ’ V1t)N 

Applying lemma 2 to the first equation, we have: 
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Lemma 5. 

which gives, 

(TTHT)N (28) 
aT - = -- 
as llV4l 

Again, take partial derivatives with respect to z and y on both 
sides of equation 26, and then form scalar products with N, we 
find: 

8T 1 I l v I l l z  ' N = -(IryIr - IrrIu) IlIll 
and 

Now, as: 

aN 1 - = - (T~HT)T 
as IlVIll 

Proof. From the Frenet-Serret equations, we have: 

aT - = K N  
8s 

aN = -KT 
BS 

Substituting equation 28 into 35 will give: 

Combining this with equation 36 completes the proof. 0 

From lemma 4 and 5, therefore: 

Lemma 6. 

(34) 

(35) 

(36) 

U 

By now, applying lemma 1, lemma 6 and equations 31,32 into equa- 
tion 10 will give us equation 12. In the same way, without equation 32, 
we can derive equation 13 from equation 11. 
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