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Abstract 
In this paper, we present a novel learning-bused algo- 
rithm to super-resolve multiple partially occluded CCTV 
low-resolution face images. By integrating hierarchicui 
patch-wise alignment and inter-frame constraints into a 
Bayesian framework, we can pvobabilistically align m d  
tiple input images at diferent resolutions and recursively 
infer the high-resolution face image. We address the 
problem of firsing partial imagery information through 
multiple frames and discaiss the new algorithm’s efec- 
tiveness when encountering occluded low-resolution face 
images. We show promising results compared to that of 
existing face hallucination methods. 

1 Introduction 

Super-resolution aims to generate a higher resolution im- 
age given a single or a set of multiple low-resolution input 
images. The computation requires the recovering of lost 
high-frequency information occurring during the image 
formation process. In this paper, we focus on learning- 
based super-resolution, when applied to the human face, 
also commonly known as “hallucination”[3 3. 
Capel and Zisserman [SI used eigenface from a train- 
ing face database as model prior to constrain and super- 
resolve low-resolution face images. A similar method 
was proposed by Baker and Kanade [ 2 ] ,  they established 
the prior based on a set of training face images pixel by 
pixel using Gaussian, Laplacian and feature pyramids. 
Freeman and Pasztor [4] took a different approach for 
leaming-based super resolution. Specifically, they tried 
to recover the lost high-frequency information from low- 
level image primitives, which were learnt from several 
general training images, Liu and Shum [6] combined the 
PCA model-based approach and Freeman’s image prim- 
itive technique. In [8], the authors extended the work of 
[2 ]  to super-resolve a single human face video, using dif- 
ferent videos of the face of the same person as training 
data. However, all existing techniques have not addressed 
the problem of variable resolutions of partially occluded 
inputs often encountered in video, 
In a surveillant video, a sequence or some snapshots of 
a human face can be captured, where their resolutions 
are often too small and vary significantly over time. The 
images can also be partially occluded. Such conditions 
make the images less useful for automatic verification or 
identification. Existing techniques have not considered 
hallucinating a high-resolution face image under these 
conditions. 
In this paper, we define the problem of face hallucina- 

Figure 1 : Low resolution and partially occluded face im- 
age patches detected in realistic CCTV video. 

tion in video as how to super-resolve a face image with 
multiple partially occluded inputs of different resolutions. 
Fig. 1 shows low-resolution face image patches of differ- 
ent sizes automatically detected in a CCTV video. We 
wish to perform super-resolution when some or all of the 
low-resolution inputs are occluded in the face detection 
process as shown in Fig. 2 .  The underlying problems we 
aim to address are three folds: ( 1 )  how to align multi- 
ple inputs at different lower resolutions, ( 2 )  how to cross- 
refer and recover missing pixels due to occlusion, and 
(3) a unified algorithm to perform alignment and super- 
resolution of multiple low-resolution inputs. 

i 

Figure 2: An illustration of our CCTV video super- 
resolution process: LI  and L2 are occluded low- 
resolution inputs, Ti and T are intermediate templates, 
H is the final hallucination result of a higher resolution. 
(a) is the hierarchical image aligning process, and (b) is 
the process of patch learning and inter-frame constraint 
for estimating optimal intermediate template T.  

2 CCTV Face Video Super Resolu- 
tion 

We formulate our problem of video super-resolution of 
multiple CCTV low-resolution inputs of variable sizes 
by means of a Bayesian framework. Assuming Et 
is the high-resolution image needs to be constructed, 
L1 ,  Lz,. . . , LS are the low-resolution inputs with differ- 
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ent resolutions. The task comes as finding the Maximum 
A Posterior (MAP) estimation of H given L1: Lz, . . . , Ls. 
Let us first consider the problem of only two low- 
resolution inputs L1,  L2 (see Fig.2), which can be formu- 
lated as: 

Hhfap = argmaxlogP(HIL1,Lz) H (1) 

Furthermore, we define T as an unknown intermedi- 
ate template and I as the aligning parameter between 
low-resolution inputs L1 and Lz .  We can marginalize 
P(HIL1; L2) over these unknown parameters as: 

i j  

where i and j are possible choices for T and Z respec- 
tively* Assuming aligning parameter I will peak at the 
true value I*,  by applying the Bayes rule P(HIL.1, L z )  
can be written as 

P(HII* ,  Ti, L1, L2)P(Tt lit, h! L2) 

(2) 

Assuming H exists and based on the basic image 
observation model, the low-resolution inputs can be 
independently sub-sampled from H ,  then we have 
P(L1.LzIH,I*,T,) = P(L11H)P(L21H).  By setting de- 
nominator as a constant C, P ( H I L l ,  b) can be rewritten 
as 

c~p(LIIH)P(L;,lH)P(HII*,T,)P(T,llf, L l , L 2 )  (3) 
z 

Although there could be many options for the interme- 
diate template T,, the one which is optimal maximizes 
the probability P(T,II*,L1,L2). We define it as ?’, and 
compute template by means of hierarchical low-level 
vision, similar to that of [2, XI. Then with (1) and (3), we 
maximize the following cost function for H ~ I A P :  

logP(L1(H)  + logP(L21H) + l o g P ( H I I * . F )  

+lOgP(qI* ,Ll ,L2)  (4) 

This resulting cost function is easily generalized from 
two to S inputs. 

2.1 Finding the Intermediate Template 

The basic idea for finding the intermediate template 
comes from [8]. As in (4), to find the best ?, we need to 
maximize the probability P(?lI*, L1,  L 2 ) .  By the Bayes 
rule we have 

P(+lI*, L1,L2) 01 P(Ll,L2Ii’,I*)P(F) 

Assuming L1 is the low-resolution input that aligning 
is based on, I *  defines the hierarchical patch-wise cor- 
respondence between L1 and La,  we factorize the low- 
resolution inputs into independent patches. The above 

likelihood can be derived as: 

N / M  \ 

where Lk, L: refer to the local patches in  L1 and L2, K 
and ill are their patch numbers respectively. Regarding 
each patch p for L1, there is only one matching q from 1 
to M .  Assuming I’ is known, we have the final likelihood 
function as: 

N N n P(L;,  L ; ~ F ~ ) P ( F )  = n P(L~~T~)P(L;~T”~)P(T) 
p=l p=l 

(5 1 
where the Lg stands for the hierarchically corresponding 
patch in LZ with regard to Lk. This expression can also 
be easily generalized to S low-resolution inputs. The first 
2hr terms in right-hand side of (5) give the basic idea for 
how to generate the intermediate template from the hier- 
archical patch matching perspective. But their constraints 
are still too weak considering each low-resolution patch 
could be generated from many high-resolution database 
patches. One remedy to this problem is to pool contextual 
information among patches. To this end, we used parent 
vector [ I ]  as locai feature structure to strengthen these 
constraints. The prior P(?) finally provides a spatial de- 
pendency constraint to refine the generated template. 

Aligning Multiple Low-Resolution Inputs. For deter- 
mining the aligning parameter I* ,  let us first consider the 
two inputs L1 and L2 again, Assuming Ll is the low- 
resolution input that aligning is based on, we sub-sample 
L1 to the resolution of La, and it becomes El. To com- 
pute the aligning parameter I * ,  we need to maximize the 
likelihood function P(IlL1, Lz). Assume patches in Ll 
are mutually independent, by applying the Bayes rule we 
yield 

P(ZIL1,Lz) = P ( L , L 2 1 I ) P ( I )  = l - IP ( i ; .L : l I )P( I )  
1 

16) 
where El and L: have similar meanings as L i  and Lz in 
( 5 ) .  Given any aligning parameter estimation, we define 
the above probability density function as 

where FL; and FL2 are local patch feature vectors to be 
defined. The valu; I* that maximizes the cost function 
(6) gives the optimal aligning parameter. Similarly we 
can generalize the two inputs case to that of S inputs. 

Template Prior and Local Feature Structure. The 
Markov Random Field (MRF) model assigns a probabil- 
ity to each template patch configuration T ,  and according 
to the Hammersley-Clifford theorem, P(T)  is a product nIT,,+, $(T,,:Tn) of comparability function 4(Tm, T,) 
over all pairs of neighboring patches. The details as how 
to compute P ( T )  can be found in (81. 
Suppose L; is an image patch in low-resolution input 
L,, and T, is a random patch from the training database 
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which has already been sub-sampled to the resolution of 
L:. For each of these patches, we adopt the parent vector 
[ I ]  as their feature vectors, which stacks together local 
intensity, gradient and Laplacian image values at multi- 
ple scales. To each ofthe term P(L;IT,), we define the 
probability density function as 

where FL; and F F ~  are the feature vectors for L; and Fp. 
The final intermediate template T is estimated as: 

N 

a r g r n a x n  P ( L ~ , L ~ , . . .  J ~ S I T ~ )  ~ K C . , G )  ( 7 )  
p=l m,n 

2.2 Inferring the High-Resolution Image 

Suppose the acquisition of L1, Lz, . . . , LS should ob- 
serve the image observation model by blurring and sub- 
sampling the high-resolution H ,  we approximate the 
process as: 

L s  = ASH + V L ~  

where s = 1,. . . , S, A, is a sub-sampling model, and qL, 
is Gaussian noise. Assuming any L,  is pixel-wise inde- 
pendent, then we have 

(8) 
The final inference of H should be coherent with the in- 
termediate template T with a probability of P ( H / I ' ,  ?). 
We express the relationship as 

H = T + 7 j € l  

Assuming noise qH is. pixel-wise independent and 
Gaussian, we have 

Substitute (8) and (9) into the above objective function, 
we can finally infer high-resolution H by minimizing the 
following quadratic expression 

2.3 Hallucinating Multiple Occluded Face 
Images 

Another significant advantage of the Bayesian ffamework 
presented above is its ability in recovering missing data 
from occluded low-resolution face images. Given oc- 
cluded low-resolution inputs L1 ~ L a ? .  . . , Ls, the task here 
is to super-resolve the high-resoIution H ,  even at extreme 
case that none of the inputs captures a complete face. 
Within our Bayesian framework, we need first to estimate 

the aligning parameter I* ,  and then compute the interme- 
diate template T. Given T, we can infer the final high- 
resolution H by minimizing ( 1  0). 
Assuming L1 and L2 are two partially occluded images, 
even though not all patches from both images are present 
(i.e. partially missing) for alignment, a I* can still be 
estimated by maximizing (6). Given I*, we can simplify 
(7) as 

a r g m p n  P ( G Z  ITP) P ( G J  ITP) 

PZ PS 

n.(GkIG)P(G,ITP) n m m > T n )  (1  1) 
Pk m,n 

from which f' can be generated, where p L  stands for 
the patches in L1 without corresponding patches in Lz, 
p ,  stands for the patches in La without corresponding 
patches in L1, and p k  are those patches that are common 
in both L2 and L2.  The remaining process follows details 
in the above section. Fig2 illustrates the entire process 
for haltucinating occluded face images. 

3 Experimental Results 
Our face image database come from a subset of AR, 
FERET and Yale databases, and consist of 845 images of 
169 different individuals (60 women and 109 men). To 
build up a standard training patch database, we manually 
align these face images by hand marking the location of 
3 points: the centers of the eyeballs and the lower tip of 
the nose, and warp them to 56x46 canonical images. 
in our current experiments, instead of testing our al- 
gorithm on automatically detected face images in live 
video, we generated the testing images as follows. 
We first blurred any given high-resolution image from 
this database with different filters to introduce different 
Point Spread Functions (PSF) accordingly, and then sub- 
sampIed the blurred images to low-resolutions. We then 
added random translational motion to introduce a measur- 
able degree of random misalignment resulting from most 
automatic face detection process on live video feed. For 
selecting high-resolution face images to generate testing 
data, we used "leave-one-out" methodology: For any se- 
ries of generated testing low-resolution face images, we 
removed their corresponding high-resolution source from 
the database, and the remaining high-resolution images 
serve as the learning database. 

3.1 Comparison with Existing Methods 
Significantly, the advantage of our multiple inputs based 
approach over existing hallucination methods becomes 
dramatic when low-resolution input images are partially 
occluded with missing parts. Such input images are com- 
mon when detecting and tracking face images of mov- 
ing targets in live video. In other words, if many of the 
low-resolution inputs at different resolutions miss pixels 
due to occlusion (or pool lighting and viewpoint), it be- 
comes essential to align them before super-resolving a 
high-resolution image takes place. Given any 56x46 im- 
age in this experiment, we first randomly removed part of 
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Figure 3: Super-resolution of partially occluded and 
motion-blurred face images: (a) Occluded face images 
with resolution of 14x 1 I and 7 x 5 ,  (b) Results using the 
occluded 14x11 input only, (c) Results using the oc- 
cluded 7x5 input only, (d) Results based on fusing the 
partial face images in column (b) and (c) by pixel averag- 
ing at overlapped parts, (e) Our hallucination results. 

Figure 4: Average root Sum of Squared Error (SSE) per 
pixel w.r.t. ground truth of hallucination results. The 
solid line represents error from our hallucination results, 
the dotted line represents error from partially hallucinated 
parts using occluded 14x 1 I inputs, the dashed line rep- 
resents error from partially hallucinated parts using oc- 
cluded 7 x 5  inputs, and the dash-dot line shows error 
from fusing the partially hallucinated results using oc- 
cluded 14x 1 1 and 7x5 input images respectively by pixel 
averaging at overlapped parts. 

it to simulate the face image being partially occluded, and 
then generated the first occluded testing image with the 
frame resolution of 14x 1 1. By the same token we could 
yield another testing image with frame resolution of 7 x  5. 
Some examples are shown in column (a) of Fig.3. 
With existing learning-based super-resolution tech- 
niques, none of these two partially occluded low- 
resolution input images can provide sufficient informa- 
tion for recovering a complete face image at a higher res- 
olution. Fig.3 shows example results using single-image 
face hallucination technique similar as in [2,8] given par- 
tially occluded low-resolution input images of 14x 11 (b) 
and 7 x 5 (c )  respectively. Furthermore, we show results 
in column (d) based on fusing the partially hallucinated 
face images from columns (b) and (c) of Fig.3. It shows 

.s 

clearky that motion and illumination variations between 
different occluded input images at different lower resolu- 
tions make simple fusing a poor solution. On the other 
hand, our results shown in (e) improve significantly those 
of either (b) or (c) at the resolution of 56x46. It is also 
worth pointing out that given that our inputs were par- 
tially occluded with significant missing parts at the res- 
olutions of 7 x 5  and 14x 11, our magnification factor is 
effectively over 8x8  which goes beyond the existing 4x4 
limit (to obtain a desired high-resolution result) for the 
current hallucination techniques. 
To quantify the performances of different techniques, we 
measured the average root Sum o f  Squared Error (SSE) 
per pixel w.r.t. the original high-resolution image ground 
truth, as shown in Fig.4, which suggests that the results 
based on fusing the partially hallucinated parts by pixel 
averaging (represented by dash-dot line) are much worse 
than our results. To explain this, we should notice that, 
although the partial face images in columns (b) and (c) 
of Fig,3 (corresponding to the dotted and dashed lines in 
Fig.4) are already independently aligned into general face 
frames with reference to the training database, they are 
essentially pixel-wise uncorrelated. The occluded low- 
resolution inputs were respectively super-resolved into 
partial high-resolution face images without considering 
the motion and illumination variations between them. In- 
deed it is these variations at low-resolution that make 
aligning and hs ing  at high-resolution fail. 

4 Conclusion 
In summary, by introducing an intermediate template 
recursively estimated into a Bayesian framework, we 
present a novel model to super-resolve face images with 
multiple occluded inputs at different lower resolutions. 
The model in essence performs hierarchical patch-wise 
alignment and global Baysesian inference. Beyond the 
classic face hallucination algorithms, we both consider 
the spatial constraints and exploit the inter-frame con- 
straints across multiple face images of different resolu- 
tions. As a consequence, the new algorithm is more ef- 
fective for dealing with occluded low-resolution face im- 
ages. We showed significantly improved results over ex- 
isting face hallucination methods. 
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