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Abstract

In this paper, we present a novel learning-based algorithm
to super-resolve multiple partially occluded CCTV low-
resolution face images. By integrating hierarchical patch-
wise alignment and inter-frame constraints into a Bayesian
framework, we can probabilistically align multiple input
images at different resolutions and recursively infer the
high-resolution face image. We address the problem of fus-
ing partial imagery information through multiple frames
and discuss the new algorithm’s effectiveness when en-
countering occluded low-resolution face images. We show
promising results compared to that of existing face halluci-
nation methods.

1. Introduction
Super-resolution aims to generate a higher resolution im-
age given a single or a set of multiple low-resolution input
images. The computation requires the recovering of lost
high-frequency information occurring during the image for-
mation process. In this paper, we focus on learning-based
super-resolution, when applied to the human face, also com-
monly known as “hallucination”[3].

Capel and Zisserman [5] used eigenface from a training
face database as model prior to constrain and super-resolve
low-resolution face images. A similar method was pro-
posed by Baker and Kanade [2], they established the prior
based on a set of training face images pixel by pixel using
Gaussian, Laplacian and feature pyramids. Freeman and
Pasztor [4] took a different approach for learning-based su-
per resolution. Specifically, they tried to recover the lost
high-frequency information from low-level image primi-
tives, which were learnt from several general training im-
ages. Liu and Shum [6] combined the PCA model-based
approach and Freeman’s image primitive technique. In [8],
the authors extended the work of [2] to super-resolve a sin-
gle human face video, using different videos of the face
of the same person as training data. However, all existing
techniques have not addressed the problem of variable res-

Figure 1: Low resolution and partially occluded face image
patches detected in realistic CCTV video.

olutions of partially occluded inputs often encountered in
video.

In a surveillant video, a sequence or some snapshots of a
human face can be captured, where their resolutions are of-
ten too small and vary significantly over time. The images
can also be partially occluded. Such conditions make the
images less useful for automatic verification or identifica-
tion. Existing techniques have not considered hallucinating
a high-resolution face image under these conditions.

In this paper, we define the problem of face hallucina-
tion in video as how to super-resolve a face image with
multiple partially occluded inputs of different resolutions.
Fig. 1 shows low-resolution face image patches of differ-
ent sizes automatically detected in a CCTV video. We wish
to perform super-resolution when some or all of the low-
resolution inputs are occluded in the face detection process
as shown in Fig. 2. The underlying problems we aim to ad-
dress are three folds: (1) how to align multiple inputs at dif-
ferent lower resolutions, (2) how to cross-refer and recover
missing pixels due to occlusion, and (3) a unified algorithm
to perform alignment and super-resolution of multiple low-
resolution inputs.
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Figure 2: An illustration of our CCTV face image super-resolution process:L1 andL2 are occluded low-resolution inputs,
Ti andT̂ are intermediate templates,H is the final hallucination result of a higher resolution. (a) is the hierarchical image
aligning process, and (b) is the process of patch learning and inter-frame constraint for estimating optimal intermediate
templateT̂ .

2 CCTV Face Images Super Resolu-
tion

We formulate our problem of face image super-resolution
of multiple low-resolution CCTV inputs of variable sizes by
means of a Bayesian framework. AssumingH is the high-
resolution image needs to be constructed,L1, L2, . . . , LS

are the low-resolution inputs with different resolutions. The
task comes as finding the Maximum A Posterior (MAP) es-
timation of H given L1, L2, . . . , LS . Let us first consider
the problem of only two low-resolution inputsL1, L2 (see
Fig.2), which can be formulated as:

HMAP = arg max
H

log P (H|L1, L2) (1)

Furthermore, we defineT as an unknown intermedi-
ate template andI as the aligning parameter between
low-resolution inputsL1 and L2. We can marginalize
P (H|L1, L2) over these unknown parameters as:

P (H|L1, L2) =
∑

i

∑

j

P (H, Ti, Ij |L1, L2)

wherei andj are possible choices forT andI respectively.
By applying the Bayes rule twice, the above becomes:

∑

i

∑

j

P (H|Ij , Ti, L1, L2)P (Ij , Ti|L1, L2)

=
∑

i

∑

j

P (H|Ti, Ij , L1, L2)P (Ti|Ij , L1, L2)P (Ij |L1, L2)

(2)

Assuming aligning parameterI will peak at the true value
I?, which givesP (I|L1, L2) = δ(I − I?). Using Bayesian
rule we have

∑

i

P (H|I?, Ti, L1, L2)P (Ti|I?, L1, L2)

=
∑

i

P (L1, L2|H, I?, Ti)P (H|I?, Ti)
P (L1, L2|I?, Ti)

P (Ti|I?, L1, L2)

(3)

AssumingH exists and based on the basic image observa-
tion model, the low-resolution inputs can be independently
sub-sampled fromH, then we haveP (L1, L2|H, I?, Ti) =
P (L1|H)P (L2|H). By setting denominator as a constant
C, P (H|L1, L2) can be rewritten as

C
∑

i

P (L1|H)P (L2|H)P (H|I?, Ti)P (Ti|I?, L1, L2)

(4)

Although there could be many options for the intermediate
templateTi, the one which is optimal maximizes the prob-
ability P (Ti|I?, L1, L2). We define it asT̂ , and compute
templateT̂ by means of hierarchical low-level vision, simi-
lar to that of [2, 8]. Then with (1) and (4), we maximize the
following cost function forHMAP :

log P (L1|H) + log P (L2|H) + log P (H|I?, T̂ )
+ log P (T̂ |I?, L1, L2) (5)

This resulting cost function is easily generalized from two
to S inputs.
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2.1 Finding the Intermediate Template

The basic idea for finding the intermediate template comes
from [8]. As in (5), to find the best̂T , we need to maximize
the probabilityP (T̂ |I?, L1, L2). By the Bayes rule we have

P (T̂ |I?, L1, L2) ∝ P (L1, L2|T̂ , I?)P (T̂ )

AssumingL1 is the low-resolution input that aligning is
based on,I? defines the hierarchical patch-wise correspon-
dence betweenL1 andL2, we factorize the low-resolution
inputs into independent patches. The above likelihood can
be derived as:

N∏
p=1

(
M∑

q=1

P (L1
p, L

2
q|T̂p, I

?)P (T̂ )

)

whereL1
p, L

2
q refer to the local patches inL1 andL2, N and

M are their patch numbers respectively. Regarding each
patchp for L1, there is only one matchingq from 1 to M .
AssumingI? is known, we have the final likelihood func-
tion as:

N∏
p=1

P (L1
p, L

2
p|T̂p)P (T̂ ) =

N∏
p=1

P (L1
p|T̂p)P (L2

p|T̂p)P (T̂ )

(6)
where theL2

p stands for the hierarchically corresponding
patch inL2 with regard toL1

p. This expression can also
be easily generalized toS low-resolution inputs. The first
2N terms in right-hand side of (6) give the basic idea for
how to generate the intermediate template from the hierar-
chical patch matching perspective. But their constraints are
still too weak considering each low-resolution patch could
be generated from many high-resolution database patches.
One remedy to this problem is to pool contextual informa-
tion among patches. To this end, we used parent vector
[1] as local feature structure to strengthen these constraints.
The priorP (T̂ ) finally provides a spatial dependency con-
straint to refine the generated template.

Aligning Multiple Low-Resolution Inputs. For deter-
mining the aligning parameterI?, let us first consider the
two inputs L1 and L2 again. AssumingL1 is the low-
resolution input that aligning is based on, we sub-sample
L1 to the resolution ofL2, and it becomesL̄1. To com-
pute the aligning parameterI?, we need to maximize the
likelihood functionP (I|L̄1, L2). Assume patches in̄L1 are
mutually independent, by applying the Bayes rule we yield

P (I|L̄1, L2) = P (L̄1, L2|I)P (I) =
∏

i

P (L̄1
i , L

2
i |I)P (I)

(7)
whereL̄1

i andL2
i have similar meanings asL1

p andL2
p in

(6). Given any aligning parameter estimation, we define the

above probability density function as

P (L̄1
i , L

2
i |I) ∝ exp

(
−‖FL̄1

i
− FL2

i
‖2

)

whereFL̄1
i

andFL2
i

are local patch feature vectors to be de-
fined. The valueI? that maximizes the cost function (7)
gives the optimal aligning parameter. Similarly we can gen-
eralize the two inputs case to that ofS inputs.

Template Prior and Local Feature Structure. The
Markov Random Field (MRF) model assigns a probabil-
ity to each template patch configurationT , and according
to the Hammersley-Clifford theorem,P (T ) is a product∏

Tm,Tn
φ(Tm, Tn) of comparability functionφ(Tm, Tn)

over all pairs of neighboring patches. The details as how
to computeP (T ) can be found in [8].

SupposeLs
p is an image patch in low-resolution input

Ls, and T̄p is a random patch from the training database
which has already been sub-sampled to the resolution ofLs

p.
For each of these patches, we adopt the parent vector [1] as
their feature vectors, which stacks together local intensity,
gradient and Laplacian image values at multiple scales. To
each of the termP (Ls

p|T̄p), we define the probability den-
sity function as

P (Ls
p|T̄p) ∝ exp

(
−‖FLs

p
− FT̄p

‖2
)

whereFLs
p

andFT̄p
are the feature vectors forLs

p andT̄p.

The final intermediate templatêT is estimated as:

arg max
T

N∏
p=1

P (L1
p, L

2
p, . . . , L

S
p |Tp)

∏
m,n

φ(Tm, Tn) (8)

2.2 Inferring the High-Resolution Image

Suppose the acquisition ofL1, L2, . . . , LS should observe
the image observation model by blurring and sub-sampling
the high-resolutionH, we approximate the process as:

Ls = AsH + ηLs

wheres = 1, . . . , S, As is a sub-sampling model, andηLs

is Gaussian noise. Assuming anyLs is pixel-wise indepen-
dent, then we have

P (Ls|H) =
∏
u

1
σLs

√
2π

exp
(
− (Ls(u)− (AsH)(u))2

2σ2
Ls

)

(9)
The final inference ofH should be coherent with the inter-
mediate templatêT with a probability ofP (H|I?, T̂ ). We
express the relationship as

H = T̂ + ηH
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Assuming noiseηH is pixel-wise independent and Gaus-
sian, we have

P (H|T̂ , I?) =
∏
v

1
σH

√
2π

exp

(
− (H(v)− T̂ (v))2

2σ2
H

)

(10)
Substitute (9) and (10) into the above objective function,
we can finally infer high-resolutionH by minimizing the
following quadratic expression

σ2
H

σ2
L1

‖L1 −A1H‖2 +
σ2

H

σ2
L2

‖L2 −A2H‖2

+ · · ·+ σ2
H

σ2
LS

‖LS −ASH‖2 + ‖T̂ −H‖2 (11)

2.3 Hallucinating Multiple Occluded Face
Images

Another significant advantage of the Bayesian framework
presented above is its ability in recovering missing data
from occluded low-resolution face images. Given occluded
low-resolution inputsL1, L2, . . . , LS , the task here is to
super-resolve the high-resolutionH, even at extreme case
that none of the inputs captures a complete face. Within our
Bayesian framework, we need first to estimate the aligning
parameterI?, and then compute the intermediate template
T̂ . Given T̂ , we can infer the final high-resolutionH by
minimizing (11).

AssumingL1 andL2 are two partially occluded images,
even though not all patches from both images are present
(i.e. partially missing) for alignment, aI? can still be es-
timated by maximizing (7). GivenI?, we can simplify (8)
as

arg max
T

∏
pi

P (L1
pi
|Tp)

∏
pj

P (L2
pj
|Tp)

∏
pk

P (L1
pk
|Tp)P (L2

pk
|Tp)

∏
m,n

φ(Tm, Tn) (12)

from which T̂ can be generated, wherepi stands for the
patches inL1 without corresponding patches inL2, pj

stands for the patches inL2 without corresponding patches
in L1, andpk are those patches that are common in bothL2

andL2. The remaining process follows details in the above
section. Fig.2 illustrates the entire process for hallucinating
occluded face images.

3 Experimental Results

We built our face image database from a subset of AR,
FERET and Yale databases. Our database consists of 845
images of 169 different individuals (60 women and 109

men), in which each person has 5 different face images.
Originally face images from these databases have differ-
ent sizes, and also the area of the image occupied by face
varies considerably. To build up a standard training patch
database, we need to align these face images manually. This
alignment was performed by hand marking the location of
3 points: the centers of the eyeballs and the lower tip of the
nose. These 3 points define an affine warp, which was used
to warp the images into a canonical form. The canonical
image has 56×46 pixels with the right eye at (25,31), the
left eye at (25,16), and the lower tip of the nose at (34,24).

In our current experiments, instead of testing our algo-
rithm on automatically detected face images in live video,
we generated the testing images as follows. We first blurred
any given high-resolution image from this database with
different filters to introduce different Point Spread Func-
tions (PSF) accordingly, and then sub-sampled the blurred
images to low-resolutions. We then added random transla-
tional motion to introduce a measurable degree of random
misalignment resulting from most automatic face detection
process on live video feed. For selecting high-resolution
face images to generate testing data, we used “leave-one-
out” methodology: For any series of generated testing low-
resolution face images, we removed their corresponding
high-resolution source from the database, and the remain-
ing high-resolution images serve as the learning database.
Those removed high-resolution images are later served as
the ground truth images in the experiments on quantifying
model error shown in Fig. 5.

3.1 Comparison of Single Face Images with-
out Missing Parts

One advantage of our framework is its ability to deal with
face hallucination with multiple inputs at different resolu-
tions. To evaluate its effectiveness, for any given 56×46
image from the database, we generated three low-resolution
images at the sizes of 14×11, 9×7 and 7×5 using the above
method. Given these three testing face images, we took the
largest 14×11 one as the low-resolution input that align-
ment is to be based upon, and estimated the aligning pa-
rameters for the 9×7 and 7×5 images. Then we generated
the intermediate template based on (8). The high-resolution
result was constructed by solving the quadratic cost func-
tion (11). Column (b) of Fig.3 shows some example high-
resolution results.

To compare these results with hallucination using a sin-
gle face image similar as in [2, 8], we performed exper-
iments by taking only simulated 14×11 image as low-
resolution input, example results are shown in column (c) of
Fig.3. Comparing (b) to (c) in Fig.3, it suggests that the im-
provement of our hallucination results is not dramatic. This
is because the largest low-resolution inputs already contains
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(a) (b) (c) (d)

Figure 3: Comparing face hallucination using single and
multiple inputs without occlusion or missing parts:(a) Mul-
tiple low-resolution inputs with frame resolution of 14×11,
9×7 and 7×5, (b) Results from our approach, (c) Results
using 14×11 single image face hallucination, (d) Ground
truth images with resolution of 56×46.

most of the information that could also be contributed from
the other low-resolution inputs. In other words, the infor-
mation from the other low-resolution inputs are mostly re-
dundant.

3.2 Comparison of Occluded Face Images

Significantly, the advantage of our multiple inputs based ap-
proach over existing hallucination methods becomes dra-
matic when low-resolution input images are partially oc-
cluded with missing parts. Such input images are common
when detecting and tracking face images of moving targets
in live video. In other words, if many of the low-resolution
inputs at different resolutions miss pixels due to occlusion
(or pool lighting and viewpoint), it becomes essential to
align them before super-resolving a high-resolution image
takes place. Different from early experimental settings,
given any 56×46 image in this experiment, we first ran-
domly removed part of it to simulate the face image be-
ing partially occluded, and then generated the first occluded
testing image with the frame resolution of 14×11. By the
same token we could yield another testing image with frame
resolution of 7×5. Some examples are shown in column (a)
of Fig.4.

Based on the deduced objective function (12) in section
2.3, combined with equations (7) and (11), we can prob-
abilistically infer a high-resolution reconstruction making

(a) (b) (c) (d) (e)

Figure 4: Hallucination with occluded faces: (a) Occluded
face images with resolution of 14×11 and 7×5, (b) Results
using the occluded 14×11 input only, (c) Results using the
occluded 7×5 input only, (d) Results based on fusing the
partial face images in column (b) and (c) by pixel averaging
at overlapped parts, (e) Our hallucination results. Ground
truth images are the same as in column (d) of Fig.3.
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Figure 5: Average root Sum of Squared Error (SSE) per
pixel w.r.t. ground truth of hallucination results. The solid
line represents error from our hallucination results, the dot-
ted line represents error from partially hallucinated parts us-
ing occluded 14×11 inputs, the dashed line represents error
from partially hallucinated parts using occluded 7×5 inputs,
and the dash-dot line shows error from fusing the partially
hallucinated results using occluded 14×11 and 7×5 input
images respectively by pixel averaging at overlapped parts.
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use of all the information from the two occluded testing in-
puts. With existing learning-based super-resolution tech-
niques, none of these two partially occluded low-resolution
input images can provide sufficient information for recov-
ering a complete face image at a higher resolution. Fig.4
shows example results using single-image face hallucina-
tion technique similar as in [2, 8] given partially occluded
low-resolution input images of 14×11 (b) and 7×5 (c) re-
spectively. As expected, only part of a face was recovered at
the higher resolution of 56×46. Furthermore, we show re-
sults in column (d) based on fusing the partially hallucinated
face images from columns (b) and (c) of Fig.4. It shows
clearly that motion and illumination variations between dif-
ferent occluded input images at different lower resolutions
make simple fusing a poor solution. On the other hand,
our results shown in (e) improve significantly those of ei-
ther (b) or (c) at the resolution of 56×46. It is also worth
pointing out that given that our inputs were partially oc-
cluded with significant missing parts at the resolutions of
7×5 and 14×11, our magnification factor is effectively over
8×8 which goes beyond the existing 4×4 limit (to obtain a
desiredhigh-resolution result) for the current hallucination
techniques.

To quantify the performances of different techniques, we
measured the average root Sum of Squared Error (SSE)
per pixel w.r.t. the original high-resolution image ground
truth, as shown in Fig.5. Consistent to Fig.4, the average
root SSE/pixel from our results (represented by solid line)
are the smallest compared to both those using the occluded
14×11 inputs (represented by dotted line) and those using
the occluded 7×5 inputs (represented by dashed line). In
Fig.5, it also suggests that the results based on fusing the
partially hallucinated parts by pixel averaging (represented
by dash-dot line) are much worse than our results. To ex-
plain this, we should notice that, although the partial face
images in columns (b) and (c) of Fig.4 (corresponding to
the dotted and dashed lines in Fig.5) are already indepen-
dently aligned into general face frames with reference to
the training database, they are essentially pixel-wise uncor-
related. The occluded low-resolution inputs were respec-
tively super-resolved into partial high-resolution face im-
ages without considering the motion and illumination vari-
ations between them. Indeed it is these variations at low-
resolution that make aligning and fusing at high-resolution
fail. Only by utilizing a hierarchical and recursive formu-
lation of an intermediate template as proposed in our ap-
proach, we are able to align and super-resolve across oc-
cluded inputs of different resolutions.

4 Conclusion

In summary, by introducing an intermediate template recur-
sively estimated into a Bayesian framework, we present a

novel model to super-resolve CCTV face images with mul-
tiple occluded inputs at different lower resolutions. The
model in essence performs hierarchical patch-wise align-
ment and global Baysesian inference. Beyond the classic
face hallucination algorithms, we both consider the spatial
constraints and exploit the inter-frame constraints across
multiple face images of different resolutions. As a con-
sequence, the new algorithm is more effective for dealing
with occluded low-resolution face images. We showed sig-
nificantly improved results over existing face hallucination
methods.

In this work, we have yet to conduct experiments on de-
tected and tracked face images in live CCTV video, where
face occlusions, motion between frames and illumination
conditions may vary significantly. We did not consider pose
variations either. In the future we will test our algorithm on
those conditions. We will also extend our work on halluci-
nating automatically detected low-resolution face videos.
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