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Abstract

In this work, boosting the efficiency of Mean-Shift Trackinging random
sampling is proposed. We obtained the surprising resultiiean-shift track-
ing requires only very few samples. Our experiments dematesthat robust
tracking can be achieved with as few as even 5 random sanmplesliie im-
age of the object. As the computational complexity is comsitlly reduced
and becomes independent of object size, the processor asebdo handle
other processing tasks while tracking. It is demonstrated tandom sam-
pling significantly reduces the processing time by two csdarmagnitude
for typical object sizes. Additionally, with random sammgi we propose
a new optimal on-line feature selection algorithm for objeacking which
maximizes a similarity measure for the weights of the RGBnel#ds. It se-
lects the weights of the RGB channels which discriminateotiject and the
background the most using Steepest Descent. Moreoverpttlsdistri-
bution of pixels representing the object is estimated fatisp weighting.
Arbitrary spatial weighting is incorporated into Mean-8firacking to rep-
resent objects with arbitrary or changing shapes by pickipgon-uniform
random samples. Experimental results demonstrate thatamker with on-
line feature selection and arbitrary spatial weightingpeutorms the original
mean-shift tracker with improved computational efficiermnyd tracking ac-
curacy.

1 Introduction

Much effort has been made to solve the problem of real-timeathiracking over the
years. However, tracking algorithms still suffer from fuamdental problems including
drifts away from targets [3] (partially due to change of vint), inability to adapt
to changes of object appearance, dependence on the first franlemplate matching
[4], instability to track objects under deformations (edgformed contours), the ineffi-
ciency of Monte Carlo simulations for temporal tracking,[&hd reliance on gradients
by active contours [6], i.e. problems with similar intefesit on the background and the
object, or high gradient edges on the object itself. Thesblpms are due to the com-
plexity of the object dynamics. We also have to deal with dliffi tracking conditions
which include illumination changes, occlusions, chandgesaewpoint, moving cameras
and non-translational object motions like zooming andtiota

Recently, Mean-Shift Tracking [2] has attracted much dibenbecause of its effi-
ciency and robustness to track non-rigid objects with phoitclusions, significant clutter



and variations of object scale. As pointed out by Yang andaiBwami [7], the computa-
tional complexity of traditional Mean-Shift Tracking is gdratic in the number of sam-
ples, making real-time performance difficult. Although ttemplexity can be made linear
with the application of a recently proposed fast Gauss faans[7], tracking in real-time
remains a problem when large or multiple objects are inwahIWe propose to boost the
efficiency of mean-shift tracking using random sampling. afvlthe computational ef-
ficiency for mean-shift tracking with random sampling waslaated, we obtained the
surprising result that mean-shift tracking requires orgyywfew samples. We show that
robust tracking can be achieved with as few as even 5 randoplea from the image of
the object. With random sampling, the computational coxipt®f Mean-Shift Tracking
is independent of object size. Large or multiple objectshuatracked in real time. As the
computational complexity is considerably reduced, thecpssor can be used to handle
other processing tasks while tracking. Near real-timegrenfince is obtained even in our
Matlab implementation which demonstrates that Mean-Shitking with random sam-
pling runs much faster than 30 frames per second as a Matlaleimentation is typically
at least two orders of magnitude slower than an implememtatith C. It is also shown
that, instead of passing hundreds of samples to a traditroean-shift tracker, only 5
random samples are required for the mean-shift trackeatiktobjects with a relatively
simple distribution and 15 samples for a typical distribatiIn our experiments, random
sampling significantly reduces the processing time by tvades of magnitude for typical
object sizes.

In addition, with random sampling, we propose a hew optimalie feature selection
algorithm for object tracking which maximizes a similantyeasure for the weights of the
RGB channels. It selects the weights of the RGB channelshwdigcriminate the object
and the background the most using Steepest Descent. Howleeqrroblem is that the
Bhattacharyya coefficient as the objective function of theéglts for the RGB channels
is not uni-modal. A simpler measure using random samplimpgaposed so that Steepest
Descent can be applied to find the optimal weights.

Moreover, the spatial distribution of pixels representthg object is estimated for
spatial weighting. Arbitrary spatial weighting is incomated into Mean-Shift Tracking
to represent objects with arbitrary or changing shapes &kimpg up non-uniform random
samples. For Mean-Shift Tracking, the probability of théocés derived using a convex
and monotonic decreasing kernel profile with a smaller wieliglthe pixels farther from
the centroid of the object to increase the robustness ofrdeking. The multivariate
Epanechnikov kernel [2] and the Gaussian kernel [7] have Iseecessfully applied to
Mean-Shift Tracking. However, they are not able to deal watijects in arbitrary or
changing shapes very well. Apart from using a convex and ramio decreasing kernel
profile to model the reliabilities of different parts of théject, pixels representing the
object are used to estimate the spatial importance or wiaight each part of the tracking
subwindow. The pixels of the object are extracted by segatiemtusing Normalized Cut
[8]. Random samples are picked up from the candidate and Intodges according to
our estimate. Instead of using all samples from the canelidatl model images, the
random samples are given to the mean-shift tracker.



2 Computational Efficiency of Mean-Shift Tracking
with Uniform Random Sampling

Figure 1: Experiments 1, 2, 3 and 4: The four rows of imagesesgnt four separate
video sequences produced by four experiments respectivetiie first experiment (first
row), only 5 random samples are picked from each of the cateliand model images, 10
samples in the second experiment (second row), 15 samptle ihird (third row) and
150 samples in the fourth (fourth row).

In this section, we propose to boost the efficiency of meaftisficking using random
sampling and evaluate the efficiency of the proposed methididen the computational
efficiency for mean-shift tracking with random sampling veasluated, we obtained the
surprising result that mean-shift tracking requires ordywfew samples. We show that
robust tracking can be achieved with as few as even 5 randoplea from the image of
the object. With random sampling, the computational coxipleof Mean-Shift Track-
ing is independent of object size. Near real-time perforoaais obtained even in our
Matlab implementation because, instead of passing husdresamples to a traditional
mean-shift tracker, only 5 random samples are requirechioniean-shift tracker to track
objects with a relatively simple distribution and 15 sansgdter a typical distribution. The
speed of our tracker is 2.17 fps (frames per second) to tiaekead of a person in a
given video sequence while the speed of a traditional implgation used in [7] is 0.011
fps (197 times slower) with the same tracking sub-windove siz 24x25 (600 samples
without random sampling).



Figure 2: Experiments 5, 6, 7 and 8: The four rows of images represanmtdeparate video se-
quences produced by four experiments respectively. In Exeat 5 (first row), only 2 random
samples are picked from each of the candidate and model snagamples in Experiment 6 (sec-
ond row), 5 samples in Experiment 7 (third row) and all samgltem the candidate and model
images (traditional Mean-Shift Tracking) in Experimentf@ufth row).

Our first four experiments, as shown in Figure 1, evaluateninaber of random
samples required to track a typical object which is a humae fa the experiments.
In the first experiment, only 5 random samples are picked fearch of the candidate
and model images, 10 samples in the second experiment, Jfesaim the third and all
samples from the candidate and model images (traditionanv&hift Tracking) in the
fourth. Tracking fails with too few samples. The trackeldawith 5 samples from the
image of the object. With 10 samples, as shown in the secamdir&igure 1, the tracker
tracks the object successfully but the trajectory is not\stable when compared with
the tracker with 150 samples (fourth row). There is no dédfege between the tracking
performance of the mean-shift tracker with 15 samplesdtiow) and that of the tracker
with 150 samples. A larger number of samples more than 15nmarake any difference
to the tracking performance of the tracker. On Matlab, theetrequired for the tracking
in Experiments 1, 2, 3 and 4 are 2.95 fps (frames per secor@f f@s, 2.18 fps and 0.04
fps respectively. Experiments 5, 6, 7 and 8, as shown in Eiguevaluate the number of
random samples required to track an object with a relatigghple distribution which is
the head of a person. In Experiment 5, only 2 random sampéepieked from each of
the candidate and model images, 3 samples in Experiment&riples in Experiment 7



and all samples from the candidate and model images (vaditMean-Shift Tracking)
in Experiment 8. The tracker fails with 2 samples from the gmaf the object. With 3
samples, as shown in the second row of Figure 2, the trackehgthe object successfully
but the trajectory is not very stable when compared with thgireal mean-shift tracker
(fourth row). There is no difference between the trackinggrenance of the mean-shift
tracker with 5 samples (third row) and that of traditional&eShift tracking. Therefore,
for an object with a relatively simple color distributionlaager number of samples more
than 5 does not make any difference to the tracking perfoomanf the tracker. With
our Matlab implementation, the time required for the trackin Experiments 5, 6, 7
and 8 are 3.19 fps (frames per second), 3.12 fps, 2.17 fps &1d Ops respectively.
Successful tracking with 5 random samples is 197 times ifastan traditional Mean-
Shift Tracking with the same tracking sub-window size of 28X600 samples without
random sampling). The computational complexity of tratidl Mean-Shift Tracking is
quadratic in the number of samples. In our experiments,aansampling significantly
reduces the processing time by two orders of magnitude foc#y object sizes.

2.1 Optimal On-Line Feature Selection with Random Sampling

An on-line feature selection method for Mean-Shift Trackis proposed recently [1]. It
is demonstrated that Mean-Shift Tracking can be made aagfotihe changing environ-
ment and more robust with the method. It adapts to changipgapnces of both tracked
object and scene background by selecting the most disatimenfeature with discrete
weighting for the RGB pixel values. The weight for each of R@B pixel values can be
set to either -2, -1, 0, 1 or 2. Hence, the most discrimindteture is a linear combina-
tion of the RGB pixel values. Because of redundancy, a poohbf 49 candidate features
are left for feature selection. All features are, then, mthknd the most discriminative
feature is selected accordingly. However, because of theaaf the discrete weighting,
the method prevents the feature selection from being opitiMé& propose an optimal
on-line feature selection method for mean-shift trackisgng Steepest Descent for our
real-valued weights, i.ea; € R,i = 1,2, 3.

The objective of our on-line feature selection for objeetcking is to maximize a
similarity measure for the weights of the RGB channels. lkds the weights of the
RGB channels which discriminate the object and the backgidlie most. However, the
problem is that the Bhattacharyya coefficient as the oljedtinction of the weights for
the RGB channels is not uni-modal. Local optimization téghas could not be applied
to selecting the best features whereas global optimizataoe undesirable because of
its complexity. A simpler measure using random samplingrigopsed so that Steepest
Descent can be applied to find the optimal weights. For mééhtsacking, traditionally,
the probabilities of the colaw in the target model and the target candidate are given by
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whereC andC;, are normalization factorsg® andx; are the pixel locations of the target
model and the target candidate, &id a convex and monotonic decreasing kernel profile.



The distance between the two discrete distributions is défés [2]

d(y) = v/ 1-p[p(y).q] ®3)

where .
p(y) =pIPY),b = > v Pu(y)du, (4)

u=1

the sample estimate of the Bhattacharyya coefficient betwesdq.

Instead of maximizing the Bhattacharyya coefficient with thultivariate Epanech-
nikov kernel for the estimatgsandd, we pick up random samples from the object and the
background distributions. Non-uniform random sampling ba used to select samples
from the model image for spatial weighting. The chosen ramdamples from the two
distributions are, then, compared. Motivated by gfedifference, our similarity measure
based on the sum of squared difference of the random sanspdegined to be

g=>3 (5 aifij—Y aifij)? (5)
I 1
with the constraint

Yai=1 (6)

wheref{; andfjj are the pixel values of Sampjdor Channei from the target model and

the target candidate respectivexh;ﬁ are the weights for the RGB channels wiits 1,2,3
representing R, G and B. The first and second derivativesediuthctiong are

dal Zznj fij)2. (8)

Notice thatg(a) is a convex function. We should, thus, maximg polar coordinates
instead of maximizing(a). In polar coordinates,

ay = rsingcoso, )
o, =rsingsing, and (10)
O3 = I COSQ. (12)

By combining Equations 6, 9, 10 and 11, we obtaia 1. Therefore,
g= (singcosd(fy; — f1j) +singsind(f3; — fz;) + cosp(f; — f3 ))2. (12)
]
The partial derivatives of are
g—g = Z 2[singcosB(f1j — f1j) +sin@sind(f3; — fz)) + cosy(f3j — f3))]
[cospcost(fyj — fij) +cospsinB(f3; — fzj) —sing(f3; — f3j)], and (13)
dg z 2[singcosd(fyj — f1j) +singsinB(f3; — f2j) + cosp(f3; — f3j)]

[—sin@sinB(f{j — fij) +sinpcoso(fy; — fa))]. (14)



2.2 Tracking Objects in Arbitrary Shapes with Non-Uniform
Random Sampling

1. Use Normalized Cut to extract the pixels of the object & th
user-selected subwindow of the first frame.

2. Estimate the spatial importan@¥Xx), using the spatial distribution
of the pixels representing the object with a histogram.

3. Select random samples,from the target model according to
our estimate o(x), using the rejection method.

4. Select random samples, from the target candidate according to
our estimate o(x), using the rejection method.

5. Use the random samples for Mean-Shift Tracking instegut@essing
all samples from the candidate and model images.

Table 1:The algorithm to Track Objects in Arbitrary Shapes with Ndnform Sampling

For Mean-Shift Tracking, the probability of the color is ded using a convex and
monotonic decreasing kernel profile with a smaller weighthi® pixels farther from the
centroid of the object to increase the robustness of th&itigc The multivariate Epanech-
nikov kernel [2] and the Gaussian kernel [7] have been ssfalsapplied to Mean-Shift
Tracking. However, they are not able to deal with objectsbiteary or changing shapes
very well. Apart from using a convex and monotonic decreg&i@rnel profile to model
the reliabilities of different parts of the object, pixekpresenting the object are used to
estimate the spatial importance or weighting in each patti@tracking subwindow. We
define the spatial importance to be the probability that IPoie part of the objecto(x).
Instead of estimating(x) with a number of the examples of the object, only one sample,
the original model image, is used. This avoids the problentife user to collect a num-
ber of examples similar in appearance to the object. It isatestrated in our experiments
that our estimate using only one single sample is very affect

The spatial importancey(x), can be estimated using the spatial distribution of the
pixels representing the object. As the distribution is tmensional, a histogram would
suffice for the purpose. Therefore, our estimaig),"is the two-dimensional spatial his-
togram of the pixels corresponding to the object. The pigéthe object are extracted by
segmentation using Normalized Cut [8]. Random samplesiakeg up from the candi-
date and model images according to our estimaig), for the two-dimensional spatial
distribution representing the spatial importance usirggrdjection method. Furthermore,
instead of using all samples from the candidate and modajésiathe random samples
are given to the mean-shift tracker. Our algorithm for tiagkobjects in arbitrary shapes
with non-unform sampling is summarized in Table 1.

3 Experimental Results

Our further experiments investigate the performance ofntiean-shift tracker with our
methods for online feature selection and arbitrary spatighting. It is demonstrated
that our tracker with online feature selection and arbjtigpatial weighting outperforms
the original mean-shift tracker with improved computatibafficiency and tracking ac-
curacy. In Experiment 9, the black hat of a person againstiamadl and a glass door
as the background is tracked (Figure 3). It is shown thatrdeker combined with our



Figure 3: In Experiment 9 (first two rows), the black hat of agom against a red wall and
a glass door as the background is tracked. It is shown thatahker combined with our
on-line feature selection method tracks the black hat ssfally when the hat moves in
front of a glass door outside a dark corridor. In the bottom, iéxperiment 9 is repeated
without on-line feature selection. The original mean-dnéfcker is distracted by the glass
door on the background.

i
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Figure 4:The face of a person against a red wall is tracked succegsfith our on-line feature
selection method in Experiment 10.

on-line feature selection method tracks the black hat ssfally when the hat moves in
front of a glass door outside a dark corridor. Moreover, irp&sment 10, the face of a
person against a red wall is tracked successfully with odirenfeature selection method
as shown in Figure 4. On Matlab, our on-line feature selectilgorithm using Steep-
est Descent on average converges in 0.4 second for each &anine average number
of iterations for convergence is 23. Figure 5 are two ploshg the weights for the
RGB channelsg, o> andas. The plot on the top shows the change of the weights for
the RGB channelsy1, a; andas, when the hat of the person is tracked in Experiment
9 and the plot on the bottom shows the changegfa, and az when the face of the
person is tracked in Experiment 10. From Frame 35 to Fram#&@&at and the face are
tracked against the red wall. The red channel is consideord important by the tracker
and, thus, given the highest weight. From Frame 210 to FraffietBe fluctuation of the
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Figure 5: The plot on the top shows the weights for the RGB nbbma;, a, andas,
when the hat of a person is tracked in Experiment 9 and theopltthe bottom showa;,
o> andaz when the face of a person is tracked in Experiment 10. FromE125 to Frame
60, the hat and the face are tracked against the red wall. dthehrannel is considered
more important by the tracker and, thus, given the highegglvte From Frame 210 to
Frame 270, the fluctuation of the weights is triggered by th@evframe of the glass door.

Figure 6: A car on a busy road is tracked in Experiment 11 and a pedesgiaacked in Exper-
iment 12. It is shown that the tracker combined with non-omif sampling for arbitrary spatial
weighting tracks the car and the pedestrian successfully.

weights is triggered by the white frame of the glass door. Vaweate our method using
non-uniform sampling for arbitrary spatial weighting, & om a busy road is tracked in
Experiment 11 and a pedestrian is tracked in Experiment (€ 6). It is shown that

the tracker combined with non-uniform sampling for arligrapatial weighting tracks the
car and the pedestrian successfully. The spatial distoibsibf the pixels from the car and
the pedestrian (Figure 7) extracted by Normalized Cut aeel tis build two-dimensional

histograms for the estimate of the spatial importao¢e). The number of bins used is 9
for the two-dimensional histograms in both of the experitaeRurthermore, Experiment
9 is repeated without on-line feature selection. Figure @\ghthat the original mean-
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shift tracker is distracted by the glass door on the backgglo&xperiment 12 is repeated
without non-uniform sampling for arbitrary spatial weigig. As shown in Figure 7, the
original mean-shift tracker fails to track the pedestrian.

4 Conclusion

To conclude, we have proposed Mean-Shift Tracking with eamdampling which is
shown to reduce the processing time by two orders of magaifoidtypical object sizes.
Besides, a new optimal on-line feature selection algoritbnobject tracking has been
proposed to maximize a similarity measure for the weightthefRGB channels. It se-
lects the weights of the RGB channels which discriminateothject and the background
the most using Steepest Descent. Finally, arbitrary dp&éaghting is incorporated into
Mean-Shift Tracking to represent objects with arbitrargbanging shapes by picking up
non-uniform random samples. Our experimental results detnated that our tracker
with online feature selection and arbitrary spatial weiigéptoutperforms the original
mean-shift tracker with improved computational efficiereyd tracking accuracy.
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Figure 7: In the left image, Experiment 12 is repeated withman-uniform sampling for

arbitrary spatial weighting. The original mean-shift tkacfails to track the pedestrian.
The right image shows that the spatial distributions of tixels from the objects (Experi-
ment 11 and Experiment 12) extracted by Normalized Cut agd tesbuild 2-dimensional

histograms for the estimate of the spatial importaoce).”



