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Abstract. It has been shown that features can be selected adaptively for object
tracking in changing environments [1]. We propose to use the variance of Mu-
tual Information [2] for online feature selection to acquire reliable features for
tracking by making use of the images of the tracked object in previous frames to
refine our model so that the refined model after online feature selection becomes
more robust. The ability of our method to pick up reliable features in real time is
demonstrated with multi-view object tracking. In addition, the projective warping
of 2D features is used to track 3D objects in non-frontal views in real time. Trans-
formed 2D features can approximate relatively flat object structures such as the
two eyes in a face. In this paper, approximations to the transformed features us-
ing weak perspective projection are derived. Since features in non-frontal views
are computed on-the-fly by projective transforms under weak perspective projec-
tion, our framework requires only frontal-view training samples to track objects
in multiple views.

1 Introduction

Much effort has been made to solve the problem of real-time object tracking over the
years. However, tracking algorithms still suffer from fundamental problems including
drifts away from targets [4] (partially due to change of viewpoint), inability to adapt
to changes of object appearance, dependence on the first frame for template matching
[5], instability to track objects under deformations (e.g. deformed contours), the ineffi-
ciency of Monte Carlo simulations for temporal tracking [6], and reliance on gradients
by active contours [7], i.e. problems with similar intensities on the background and the
object, or high gradient edges on the object itself. These problems are due to the com-
plexity of the object dynamics. We also have to deal with difficult tracking conditions
which include illumination changes, occlusions, changes of viewpoint, moving cameras
and non-translational object motions like zooming and rotation.

Recent techniques use more complex and descriptive representations for tracking
[8], [91, [10], [11]. A more descriptive representation may reduce the dependency on
temporal information for tracking. There are a number of advantages to use a more
descriptive representation. It makes tracking more robust in cluttered scenes. Less con-
strained physical state trajectories such as those containing discontinuities may also be



2 Alex Po Leung and Shaogang Gong

tracked. If the representation can encode the appearance of the object more discrimina-
tively, it allows the tracking of objects largely relying on framewise detections without
much temporal analysis, such as Viola-Jones detector-based tracking [8]. However, it is
both difficult and expensive to obtain statistics to build a 3D model for object detection
or tracking while 2D appearance models such as [17], [3], [9] and [11] have been very
successful. When multi-views are considered, a huge amount of data is needed for each
view for the training for a particular object. Such a huge dataset is impractical to create
and it is also computationally expensive to train such a multi-view model. It is hard to
obtain thousands of samples in each view and train a system for weeks or even months
to track a particular object.

In this paper, a technique to track non-rigid objects in changing views with only
frontal-view training samples is developed. Non-frontal views are deduced from frontal-
view samples by geometric transformations. Using weak perspective projection, our
method can track objects with a roughly flat surface such as faces or cars. It is obvious
that, even for a roughly flat surface, there could be some uneven structures such as the
nose on a face. We further use Mutual Information for online feature selection to acquire
reliable features which are the relatively flat in our case. Our implementation picks up
flat features in real time for multi-view object tracking.

Haar-like features selected by AdaBoost [3] can model non-rigid objects under dif-
ferent lighting conditions. We explore the possibility to devise a tracking algorithm
using Haar-like features selected by AdaBoost as the representation [3]. Kalman filters
are adopted to track the state variables after projective warping in every frame. They are
used to temporally confine the parameter space of the transform. Our tracker is able to
track non-rigid objects and the initialization of tracking is completely automatic. A sin-
gle appearance model for both detection and tracking means a smooth transition from
detection to tracking. No assumption on color is made in our model.

In the rest of this paper, Section 2 presents our proposed methods to compute warped
Haar-like features. A technique for online feature selection using Mutual Information is
proposed in Section 3. Section 4 presents experiments to test our proposed framework.
Conclusions and future work are given in Section 5.

2 Projective Warping of Rectangle Features

Viola and Jones [3] make use of an intermediate representation for images called the
integral image or summed-area table [12] to obtain the sum of pixel values for rect-
angle features with no more than four array references. The integral image is vital to
computational efficiency for computing rectangle features. However, features are no
longer rectangular after projective transforms. Therefore, we cannot calculate the fea-
tures directly from the integral image. We propose to use a generalization of the method
to calculate the features while we can still use the integral image. The generalization
was proposed originally by Glassner [13] for texture mapping. It computes the average
pixel value within a quadrilateral to an arbitrary degree of accuracy using the integral
image with additional computation depending on the accuracy required. Glassner ap-
proximates a non-rectangular shape by rectangles. Two methods can be used to do this:
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additive and subtractive synthesis. Arbitrarily accurate features can be obtained and the
integral image can still be used to retain the efficiency of the original appearance model.

An alternative way is to approximate projective transforms. This method makes the
computation much more efficient. A planar projective transformation is a transforma-
tion with eight free parameters. A search in the parameter space could be computation-
ally very expensive. An advantage to approximate projective transforms is to reduce the
dimensionality of the parameter space. High dimensionality leads to expensive com-
putation and sparsity of data which prevents the search from finding the correct set of
parameters. A common approach is to approximate projective transforms by consider-
ing weak perspective projection such as planar affine transforms. For a planar affine
transform, the number of free parameters is reduced from eight to six.

2.1 Approximating Projective Transforms

We may use weak perspective projection to approximate the perspective projection of
rectangle features such as Haar-like features. Let us consider a rectangle feature with
corners P/ where ¢ = 1 for the top left, 2 for the top right, 3 for the bottom right and 4
for the bottom left.

P, = R,P, (1)

where R, = Ro1(a)Ro2(8)Ro3(7y) is the rotation of the object and P; are the corners
after rotating the feature. We consider tracking the out-of-plane rotations of an object
(i.e. pitch and yaw):

P; = Ro1(a)Ro2(B) P} 2

The rotational matrix R, for the object rotation with pitch and yaw is R, () R, () =
cosf3 0 sing

sinasinf cosa —sinacos | .
—cosasin sina cosacos3

The corner of a rectangle feature after the pitch and yaw rotations in world coordinates
is, therefore,

Xy = COSﬁX{U, 3

Y., = sinasinX), + cosaY,,, 4)

where (X ,Y,) is the corner before rotations in world coordinates. Note that we rotate

the object symmetrically by locating it on the x-y plane and its center to be in the origin
in world coordinates so Z!, = 0 and, under weak perspective,

Zy = 0. &)

A rectangle feature can be on any part of the object. Thus, Z,, is not exactly zero. In
homogeneous coordinates, the matrix equation of perspective projections can be written

T Xu
1
Yo
Iy | = M Zu; N
€r3

1
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where x = £,y = 22 are in image coordinates and
xr3 xr3

—frin —friz —fris fR%FT
M = | —fro1 —frog —fros ngT
731 32 733 —RL?):T

where R;,© = 1,2, 3, is a three dimensional vector formed by the i-th row of the matrix
R. Under weak perspective projection,

_a _ RI(T-P)

o= S R 1)

xy  fR3(T = Py)

3 RI(P,—-T)°

Let R = 1, i.e. there is no rotation between the world coordinates and the camera
coordinates. Thus,

Ywp =

f(Xw_TX) ~ f(Yw_TY)'

R P PR A A
Using Equation 5, a corner in image coordinates under weak perspective projection is
then .

f(Xw_TX) f(Yw_TY)

P, = . 6
=  / (©)

By combining Equations 3, 4 and 6, a corner after the rotations of the object becomes

flcospX,, —Tx)

Tz
P, = f(sinasinBX/ +cosaY, —Ty)
wp Ty

under weak perspective projection in image coordinates. Let us assume there is only the
pitch rotation or the yaw rotation and the two rotations don’t occur at the same time.
That means either « = 0 or 8 = 0. So, sinasinSX,, = 0. In reality, especially for
face tracking, it is natural to assume the object to rotate either with the pitch or the yaw.
Therefore, when o becomes large, 3 =~ 0, or when 3 becomes large, a ~ 0. Hence,
sinasinfX], ~ 0 and

T

fleosBXi, —Tx)  f(cosaYy —Ty) f

wr Ty Ty

P;

Notice that, since x.,, in the above is independent of Y,, and y,,, independent of X7,
after rotations, a rectangle feature after rotations is still rectangular under weak perspec-
tive. The width and height of the rectangle feature after rotations in image coordinates

are
f cosB(X5 — X1 )
wp TZ

xgwp — X1 y and
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feosa(Y{, —Yi,)
Yiwp = Yduwp = T,

The aspect ratio of the rectangle feature 7 after the rotations « and 8 becomes zzzg 10s

where 19 = (X3, — X7, )/(Y{, — Y], ) is the aspect ratio before rotations.

This shows that, under weak perspective projection, the projective warping of a rect-
angle feature can be approximated by simply varying the aspect ratio of the rectangle
feature. It gives us an extremely efficient means to track a rotating object. Only the
aspect ratio 7, the scale s and the centroid location (z;, ;) need to be tracked.

3 Feature Selection

It is both difficult and expensive to obtain statistics to build a 3D model for object de-
tection or tracking. For face detection and tracking, different people have their own 3D
face shapes. 2D appearance models cannot be trained easily to cope with view varia-
tions due to both the lack of the huge amount of labelled data for multi-views and the
computational cost of training.

We use projective warping to transform learned Haar-like features. However, not
all features are roughly flat. Therefore, the warping can introduce tracking errors due
to the linearity of projective transformation if a measure of feature ”goodness” is not
evaluated on-the-fly. The best features which are approximately flat need be selected in
real time after projective transforms have been made. We make use of the images of the
object which has been tracked in previous frames to refine our model so that the refined
model after online feature selection becomes more robust to track the object in different
views.

3.1 The Mutual Information

We use Mutual Information to select approximately flat features which should be re-
liable for projective warping as the object rotates. The mutual information measures
the statistical dependence between two variables. It has been shown to be a very effec-
tive measure for selecting a small set of relevant features from a large set of potential
features very quickly [16].

We have a set of features selected by AdaBoost for objects in single view. Redun-
dancy between features is not considered because redundancy is eliminated during the
AdaBoost training. Hence, for computational efficiency, we simply use the mutual in-
formation instead of the conditional mutual information [16] considered to take into
account redundancy between features. For continuous probability distributions, the mu-
tual information is defined as

N "y 0 p(xivy) "
0 = /m /yp( i )l gp(xi)p(y)d -

It is hard and inefficient to estimate the continuous distributions p(z;, y), p(x;) and p(y)
[18] for Feature :. Instead of estimating the distributions of the features directly, we use
the output of the weak classifiers [3]. The statistical dependence of the weak classifer
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Fig. 1. Experiment 1 - Tracking a non-frontal female face in real-time. The figure shows example
images from an indoor sequence (Video Sequence 1).

output of a feature and the output of the AdaBoost cascade [3] is determined by the
mutual information. Both of the outputs are Boolean values so we can use the discrete
form of the mutual information 7(i) =

v P( )
;;P(X—ml,Y—y)logP(X:xi) V=

Given a finite training set, one using frequency counts can only obtain an estimate of
the mutual information as follows:

Al logn N,
1(i) = ylog—2
(i) " g;nrly Ognwiny

where 7 is the total number of occurrences and n,,, n,, and n, are respectively the
numbers of occurrences of the pair (x;,y), z; and y. Hutter [2] obtained the distribution,
expectation value and variance of the mutual information by using a Bayesian approach.
The expectation value defined as follows containing a correction term, %
more accurate estimate for the mutual information:

,is a

) N, Ngyn  (r—1)(s—1) _
E{I(i)} = 2 og 2 O(n=?).
(100} = 3 tlog e+ 2y Bl 4 0(07)
When the tracked face is frontal, all features learned by AdaBoost are almost equally
discriminative. However, the more the face rotates, the lower the mutual information of
an uneven feature gets due to the linearity of projective transformation. On the contrary,
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Fig. 2. Experiment 2 - Tracking a non-frontal male face in real-time. The figure shows example
images from an outdoor sequence with a moving hand-held camera (Video Sequence 2).

for an ideally flat feature, the mutual information remains the same as the face rotates.
Thus, as we transform the features geometrically under weak perspective, features rel-
atively flat are more stable for tracking and, thus, associate with small variations in the
mutual information (i.e. small variances) when the view is changing. Instead of finding a
set of features with the largest mutual information, we should look for a set of features
with the smallest corresponding variances of the mutual information so that features
more stable and, therefore, flat are selected. To measure the stability of a feature, the
variance of the mutual information [2] is Var{I(i)} =

1 n ng,yn\~ 1 n Ngyn\”
Z iy (l iy ) (E: ] iy )
n n Ny, N n n Ng,N
iy ey ziy Ty

+0(n"?).
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It to the order of n~! can be written

(log n) 2
9 <any (log - )
‘TL Yy

iy

——(an M))

iy

When we compare the variances of the mutual information of the features, the scaling

(log n)

factor can be ingored. Thus, to select the most reliable features, we compare

2
Naiy
anly (lognw nu> B _<any N, ny> '

iy ZiYy

In other words, we select the most reliable or stable features by picking up the small-
est corresponding variances of the mutual information of the features. Additionally, for
the strong classifier of AdaBoost, we set the weight of Feature ¢, a; = 0 to reject Fea-
ture ¢ so that the weights of the majority vote remain the same except for the rejected
features.

4 Experimental Results

We use the MIT-CBCL face dataset [14] which consists of 6,977 cropped images (2,429
faces and 4,548 nonfaces). The resolution of the images is 19 x 19 and slightly lower
than 24 x 24 used by Viola and Jones [3].

After the Viola-Jones detector initializes our tracker, four Kalman filters are sep-
arately used to track the aspect ratio 7, the scale s and the centroid location of the
object (1, y;). A 5-stage cascade of AdaBoost [3] is used in our experiments. There are
only 127 features in the 5 stages. The 5 stages separately compute 2, 7, 20, 50 and 50
features.

Experiment 1 (see Figure 1) shows a video (Video Sequence 1) with |3 < 90°.
It shows that faces with relatively large |3| could also be tracked. It is clear that the
side views share some common features with the frontal view after projective trans-
forms. Experiment 2 (Figure 2) shows tracking a non-frontal male face outdoors with a
moving hand-held camera (Video Sequence 2). Both experiments demonstrate that our
tracker can track deformable objects from different viewpoints, i.e. faces with different
expressions in different views in this case. In order to evaluate the performance of our
warping method and the proposed Mutual Information (MI) feature selection technique,
additional four experiments (3, 4, 5 and 6) are performed using the two videos used in
Experiment 1 and Experiment 2. Figure 3 shows tracking failures in our experiments
and Table 1 shows the comparisons of those experiments. In Figure 5, the number of
features rejected by the variance of the mutual information is shown to be stabilized
after the initial two hundred frames in Experiments 1 and 2. Furthermore, the number
of subwindows accepted by the cascade of AdaBoost, to a certain extent, indicates the
stability of the tracker. So, we compare the numbers of subwindows accepted during
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tracking with MI feature selection and without MI feature selection to better under-
stand the effect of online feature selection. Besides, since Figure 3 shows all of the
tracking failures in our experiments are due to the fact that no subwindow is classified
to be a face, we are also interested in seeing when the number of subwindows classified
to be a face becomes low. Figures 6 and 7 are the plots of the numbers of subwindows
accepted during tracking respectively without MI feature selection and with MI feature
selection for Video Sequence 1. Moreover, Figures 8 and 9 are the plots of the numbers
of subwindows accepted during tracking respectively without MI feature selection and
with MI feature selection for Video Sequence 2. We found that, when the number of
subwindows becomes zero, the tracker does not necessarily fail because of the Kalman
filters. However, when the number of subwindows becomes zero in several consecutive
frames, the tracker usually fails. As we can see in Figures 6, 7, 8 and 9, the tracker with
our proposed online MI feature selection method is much less likely to lose track of
the face when the number of subwindows goes below 3. In Experiment 7 (Figure 4), a
tracker is initiated to track a person wearing glasses in the background. The resolution
of the face is approximately 19 x 19 in order to evaluate tracking with low-resolution
images. Our tracker can track low-resolution faces provided that the out-of-plane rota-
tion angle (3 is not very large to avoid high quantization noise.

In our current experiments, the tracking frame rate is 7.4 frames per second with the
frame size 320 x 240. The code for the interface is in Matlab. Our core code is compiled
by gcec on Cygwin on an AMD Athlon 1.68GHz machine.

Table 1. Comparisons of Our Experiments

Experiment|MI Feature Warping|Video Number
Number  (Selection Used|Used  |Sequence|of Frames
Number |Tracked

1 Yes Yes 1 500 (End of
Sequence)

2 Yes Yes 2 526 (End of
Sequence)

3 No Yes 1 431 (Background)

4 No No 1 17 (Non-Frontal
View)

5 No Yes 2 499 (Partial
Occlusion)

6 No No 2 141 (Non-Frontal
View)

5 Conclusion

We have demostrated a system using the projective warping of 2D features to track 3D
objects in non-frontal views in real time. Mutual Information for online feature selec-
tion to acquire reliable features for tracking is proposed. We demonstrate the ability of
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our method to pick up reliable features in real time with multi-view object tracking.
Our framework requires only frontal-view training samples. Features in other views are
computed by projective transforms under weak perspective projection on-the-fly. Ap-
proximations to the transformed features using weak perspective projection are derived.

Future work includes pose estimation making use of the out-of-plane rotation angles
« and §, and making the tracker more efficient by using noisy optimization such as
implicit filtering for searches in the parameter space for projective transforms.

Fig. 3. Notice that all tracking failures in our experiments are due to the fact that no subwindow
is classified to be a face in several consecutive frames. (a) and (c) show the failure of the tracker
after tracking respectively 431 frames in Experiment 3 due to the background and 499 frames in
Experiment 5 due to a partial occlusion. No feature selection is used. The tracker is significantly
less robust without online MI feature selection. In (b) and (d), Experiment 4 and Experiment 6
show the failure of the tracker due to view changes after respectively tracking 17 frames and 141
frames. In Experiments 4 and 6, neither feature selection nor geometric transformation is used.
The tracker is only able to track very few frames in the sequences without online MI feature
selection and geometric transformation.
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Fig.5. In Experiment 1 (top figure) and Experiment 2 (bottom figure), the number of features
rejected by the variance of the mutual information becomes stabilized after approximately the
initial two hundred frames.
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Fig. 6. The above are the same figure with different scales. In Experiment 3, the tracker without
online MI feature selection loses the face at Frame 432.
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Fig.7. The above are the same figure with different scales. In Experiment 1, the number of ac-
cepted subwindows is much less likely to go below 3 than it is without online MI feature selection
as shown in Figure 6.
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Fig. 8. The above are the same figure with different scales. In Experiment 5, the tracker without
online MI feature selection loses the face at Frame 500.
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Fig. 9. The above are the same figure with different scales. In Experiment 2, the number of ac-
cepted subwindows is much less likely to go below 3 than it is without online MI feature selection
as shown in Figure 8.



