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Abstract

We present a comprehensive approach to address three challenging problems in face recognition: modelling faces across multi-views,

extracting the nonlinear discriminating features, and recognising moving faces dynamically in image sequences. A multi-view dynamic face

model is designed to extract the shape-and-pose-free facial texture patterns. Kernel discriminant analysis, which employs the kernel

technique to perform linear discriminant analysis in a high-dimensional feature space, is developed to extract the significant nonlinear

features which maximise the between-class variance and minimise the within-class variance. Finally, an identity surface based face

recognition is performed dynamically from video input by matching object and model trajectories.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Face recognition has been of considerable interest over

the past decade. Various approaches such as Eigenfaces

[20], Elastic Graph model [12], Linear Object Classes [24],

Active Shape Models (ASMs) [6] and Active Appearance

Models (AAMs) [5] have been proposed to address this

problem. It is important to point out that most of the

previous work in face recognition is mainly concerned with

frontal view or near frontal views. Due to the severe

nonlinearity caused by rotation in depth, self-occlusion,

self-shading and illumination change, recognising faces

with large pose variation is more challenging than that at a

fixed view, e.g. frontal view.

Extracting the discriminating features, which maximise

the between-class variance and minimise the within-class

variance, is crucial to face recognition, especially when

faces are undergoing large pose variation. Principal

component analysis (PCA), also known as eigenface

method, has been widely adopted in this area [18,20].

However, it is worth noting that the features extracted by

PCA are actually ‘global’ features for all face classes, thus

they are not necessarily representative for discriminating

one face class from others. Linear discriminant analysis

(LDA), which seeks to find a linear transformation by

maximising the between-class variance and minimising the

within-class variance, proved to be a more suitable

technique for classification [8,19]. Although LDA can

provide a significant discriminating improvement to the task

of face recognition, it is still a linear technique in nature.

When severe nonlinearity is involved, this method is

intrinsically poor. Another shortcoming of LDA lies in the

fact that the number of basis vectors is limited by the

number of face classes, therefore it would be less

representative when a small set of subjects is concerned.

To extract the nonlinear principal components, Kernel PCA

(KPCA) was developed [16,17]. However, as with PCA,

KPCA captures the overall variance of all patterns which

are inadequate for discriminating purposes.

Another limitation of the previous studies is that the

methodology adopted for recognition is largely based on

matching static face images. Psychology and physiology

research depicts that the human vision system’s ability to

recognise animated faces is better than that on randomly

ordered still face images (i.e. the same set of images, but

displayed in random order without the temporal context of

moving faces) [2,11]. For computer vision systems,
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although some work has been reported [7,9,10], the problem

of recognising the dynamics of human faces in a spatio-

temporal context remains largely unresolved.

In this work, we present a comprehensive approach to

address the three challenging problems in face recognition

stated above. A multi-view dynamic face model is

designed to extract the shape-and-pose-free facial texture

patterns for accurate across-view registration. Kernel

discriminant analysis (KDA), a kernel based technique,

is developed to compute the nonlinear discriminating basis

vectors. Finally face recognition is performed dynamically

by matching an object trajectory tracked from a video

input with model trajectories synthesised on identity

surfaces.

2. Kernel discriminant analysis

As stated in Section 1, both PCA and LDA are limited to

linear problems, and KPCA is designed to deal with the

overall rather than the discriminating variance. In this work,

KDA, a nonlinear discriminating approach based on the

kernel technique [22] is developed for extracting the

nonlinear discriminating features.

The underlying principle of KDA is described as follows.

Assume we have a set of training patterns {x} which are

categorised into C classes. Owing to nonlinearity, these

patterns cannot be linearly separated in the space of {x}:

With an appropriately selected nonlinear mapping f; we

project the patterns onto a high-dimensional feature space

where the images of the patterns are linearly separable.

Then by performing LDA in the feature space, one can

obtain a nonlinear representation in the original input space.

However, computing f explicitly may be problematic or

even impossible. In the rest of this section, we will discuss

in details how to apply the kernel technique to solve the

problem. Following the idea of Ref. [16], we first derive the

algorithm in the case of centred data, and then extend it to

the non-centred case.

It is important to point out that we have noticed

similar algorithms have been published by Roth and

Steinhage [15], Mika et al. [14] and Baudat and Anouar

[1]. Basically these algorithms are equivalent although

algorithm formulation and procedure are slightly different.

For example, we use one matrix inversion and one eigen-

decomposition, while two steps of eigen-decomposition

are performed in Ref. [1].

2.1. Centred data

If the nonlinear mapping f satisfies Mercer’s condition

[22,23], then the inner product of two vectors in the feature

space can be computed through a kernel function

kðx; yÞ ¼ ðfðxÞ·fðyÞÞ ð1Þ

which can be conveniently performed in the input space.

Let us first consider the centred data set in the feature

space, i.e.

XN
i¼1

fi ¼ 0 ð2Þ

where N is the total number of training patterns. Define a

between-class scatter matrix Sb and a within-class scatter

matrix Sw in the feature space as

Sb ¼
1

C

XC
c¼1

mcm
T
c ð3Þ

Sw ¼
1

C

XC
c¼1

1

Nc

XNc

i¼1

fcif
T
ci ð4Þ

where Nc is the number of patterns in the cth class, and mc is

the mean vector of class c

mc ¼
1

Nc

XNc

i¼1

fci ð5Þ

Since the data are centred, we do not need to subtract the

global mean vector from mc and fi: Thus the scatter

matrices Sb and Sw can be expressed in a simplistic form.

We will return to the general case where the data are not

centred in Section 2.2.

If it is assumed that Sw is not singular, we can maximise

the between-class variance and minimise the within-class

variance of vectors fi in the feature space by performing

eigen-decomposition on the matrix

S ¼ S21
w Sb ð6Þ

If we assume v is one of the eigenvectors of matrix S; and l

is its corresponding eigenvalue, we get

Sv ¼ lv ð7Þ

If we combine Eqs. (6) and (7), we obtain

Sbv ¼ lSwv ð8Þ

If we then take the inner product with vector fm on both

sides of Eq. (8), we obtain

ðSbv·fmÞ ¼ lðSwv·fmÞ; m ¼ 1; 2;…;N ð9Þ

A coefficient vector exists

a ¼ ða1;a2;…;aNÞ
T ð10Þ

that satisfies

v ¼
XN
n¼1

anfn ð11Þ
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If we substitute Eqs. (3)–(5) and (11) in Eq. (9), we obtain

XN
n¼1

an

XC
c¼1

1

N2
c

XNc

i¼1

XNc

j¼1

ðfci·fmÞðfcj·fnÞ

¼ l
XN
n¼1

an

XC
c¼1

1

Nc

XNc

i¼1

ðfci·fmÞðfci·fnÞ ð12Þ

For each class c; if we define an N £ Nc matrix Kc as

ðKcÞij U ðfi·fjÞ ¼ kðxi; xcjÞ ð13Þ

and a Nc £ Nc matrix 1Nc
as

ð1Nc
Þij U 1 ð14Þ

we obtain

XC
c¼1

1

N2
c

Kc1Nc
KT

c

 !
a ¼ l

XC
c¼1

1

Nc

KcKT
c

 !
a ð15Þ

If we define N £ N matrix as

A ¼
XC
c¼1

1

Nc

KcKT
c

 !21 XC
c¼1

1

N2
c

Kc1Nc
KT

c

 !
ð16Þ

we derive

Aa ¼ la ð17Þ

By eigen-decomposing matrix A; we obtain the coefficient

vector a: Therefore, for a new pattern x in the original input

space, we can calculate its projection onto v in the high-

dimensional feature space by

ðfðxÞ·vÞ ¼
XN
i¼1

aiðfi·fðxÞÞ ¼
XN
i¼1

aikðx; xiÞ ¼ aTkx ð18Þ

where

kx ¼ kðx; x1Þ; kðx; x2Þ;…; kðx; xNÞ
� �T

ð19Þ

If we construct the eigenmatrix

U ¼ ½a1;a2;…;aM� ð20Þ

from the first M significant eigenvectors of A; the projection

of x in the M-dimensional KDA space is given by

y ¼ UTkx ð21Þ

2.2. Non-centred data

In the general case, {fðxiÞ}; i ¼ 1; 2;…;N; are not

centred in the feature space. A similar method to Ref. [16] is

adopted here. By defining

~fi U fi 2
1

N

XN
n¼1

fn ð22Þ

we can use the method stated above since { ~fi}; i ¼

1; 2;…;N are now centred. The N £ N kernel matrix ~K can

then be expressed as:

ð ~KÞij ¼ð ~fi· ~fjÞ¼ fi2
1

N

XN
m¼1

fm

 !
· fj2

1

N

XN
n¼1

fn

 !

¼ðfi·fjÞ2
1

N

XN
m¼1

ðfm·fjÞ2
1

N

XN
n¼1

ðfi·fnÞ

þ
1

N2

XN
m¼1

XN
n¼1

ðfm·fnÞ

¼ kij2
1

N

XN
m¼1

kmj2
1

N

XN
n¼1

kinþ
1

N2

XN
m¼1

XN
n¼1

kmn ð23Þ

If we use N £ N matrix ðKÞij U kðfi·fjÞ and 1N ; we obtain

~K ¼ K 2
1

N
1NK 2 K

1

N
1N þ

1

N2
1NK1N ð24Þ

Therefore ~Kc can be obtained as a sub-matrix of ~K: Then by

substituting Kc with ~Kc in Eq. (16) and eigen-decomposing

A; we obtain the matrix U in Eq. (20).

Similar to the centred case given in Eq. (18), the

projection of a new pattern x onto an eigenvector ~v in the

feature space is given by

ð ~fðxÞ·~vÞ ¼
XN
i¼1

aið ~fðxÞ· ~fðxiÞÞ ¼ ~kxa ð25Þ

where

ð ~kxÞi ¼ fðxÞ2
1

N

XN
m¼1

fðxmÞ

 !

� fðxiÞ2
1

N

XN
n¼1

fðxnÞ

 !

¼ kðx; xiÞ2
1

N

XN
m¼1

kðxi; xmÞ2
1

N

XN
n¼1

kðx; xnÞ

þ
1

N2

XN
m¼1

XN
n¼1

kðxm; xnÞ ð26Þ

If we define an N £ 1 vector 10 with all entries equal to 1, we

obtain

~kx ¼ kx 2
1

N
K10 2

1

N
kx1N þ

1

N2
10K1N ð27Þ

Finally, the projection of x in the M-dimensional KDA

space is given by

y¼UT ~kx ð28Þ
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2.3. A toy problem

We use a ‘toy’ problem to illustrate the characteristics of

KDA as shown in Fig. 1. Two classes of patterns, denoted

by circles and crosses, respectively, have a significant

nonlinear distribution. We try to separate them with a one-

dimensional decision boundary of PCA, LDA, KPCA or

KDA. The upper row shows the patterns and the

discriminating curves computed by the four different

methods. The lower row illustrates the intensity values of

the one-dimensional features computed from PCA, LDA,

KPCA and KDA. It can be seen clearly that PCA and LDA

are incapable of providing correct classification because of

their linear nature. Neither does KPCA do so since it is

designed to extract the overall rather than the discriminating

variance although it is nonlinear in principle. KDA gives the

correct classification boundary: the discriminating curve

accurately separates the two classes of patterns, and the

feature intensity correctly reflects the actual pattern

distribution.

2.4. Remarks on computations

In the training stage, two steps of computation are

intensive: the inversion of an N £ N matrix in Eq. (16) and

the eigen-decomposition of an N £ N matrix in Eq. (17),

both with complexity of OðN3Þ: This implies that the

method as presented above has limitations when applying to

problems with large training examples. A simple strategy of

selecting a small number of examples for training is usually

helpful in many applications. In the experiments presented

later in this paper, we adopted this strategy for KDA

training.

Another limitation of the algorithm is computing the

projection of a new vector in Eq. (27), where all the N

training vectors are involved. Note that this is also

a limitation of KPCA. Some method such as the reduced

set technique [3,4] may be used to relieve the computation

burden.

3. Multi-view dynamic face model

Due to the severe nonlinearity caused by rotation in

depth, self-occlusion, self-shading and illumination

change, modelling the appearance of faces across multiple

views is much more challenging than that from a fixed,

e.g. frontal view. Another significant difficulty for multi-

view face recognition comes from the fact that the

appearances of different people from the same view are

often more similar than those of the same person from

different views.

A multi-view dynamic face model, which consists of a

sparse 3D Point Distribution Model (PDM) [6], a shape-

and-pose-free texture model, and an affine geometrical

model, has been developed in this work [13]. This model is

extended from AAMs [5], but is distinguished from AAMs

by: (1) a 3D shape model is constructed from 2D images,

and (2) the texture model is built from shape-and-pose-free

texture patterns.

The 3D shape vector of a face is estimated from a set of

2D face images in different views, i.e. given a set of 2D face

images with known pose and 2D positions of the landmarks,

the 3D shape vector can be estimated using linear

regression.

To establish the correspondence between faces with

different shapes and across multiple views, a face image

fitted by the shape model is warped to the mean shape at

frontal view (with 08 in both tilt and yaw), obtaining a

shape-and-pose-free texture pattern. This is implemented by

forming a triangulation from the landmarks and employing a

piece-wise affine transformation between each triangle pair.

Fig. 1. Solving a nonlinear classification problem with, from left to right, PCA, LDA, KPCA and KDA.
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By warping to the mean shape, one obtains the shape-free

texture of the given face image. Furthermore, by warping to

the frontal view, a pose-free texture representation is

achieved.1

We applied PCA to the 3D shape patterns and shape-

and-pose-free texture patterns, respectively, to obtain a

low dimensional statistical model. Fig. 2 shows the

sample face images used to construct the model, the

landmarks labelled on each image, the 3D shape

estimated from these labelled face images, and the

extracted shape-and-pose-free texture patterns.

Based on the analysis above, a face pattern can be

represented in the following way. First, the 3D shape

model is fitted to a given image or video sequence

containing faces. Then the face texture is warped onto

the mean shape of the 3D PDM model in frontal view.

Finally, by adding parameters controlling pose, shift and

scale, the complete parameter set of the dynamic model

for a given face pattern is c ¼ ðs; t;a;b; dx; dy; rÞT where

s is the shape parameter, t is the texture parameter, ða;bÞ

is pose in tilt and yaw, ðdx; dyÞ is the translation of the

centroid of the face, and r is its scale.

The shape-and-pose-free texture patterns obtained from

model fitting are adopted for face recognition. In our

experiments, we also tried to use the shape patterns for

recognition, however, the performance was not as good as

that of using textures.

4. Extracting the nonlinear discriminating features

of multi-view face patterns

For face recognition, one needs to deal with two kinds of

variation: variation from identities (between-class variance)

and variation from other sources (within-class variance). An

effective representation of face patterns should provide a

mechanism to emphasise the former and suppress the latter.

Although the within-class variation of the shape-and-

pose-free facial texture patterns has been reduced from their

original form, the underlying discriminating features for

different face classes have not been represented explicitly.

Therefore such a representation in itself may not be efficient

for recognition. This situation is shown in Fig. 4a where the

shape-and-pose-free texture patterns of 12 face classes are

represented by PCA, the widely used method in face

recognition. For the sake of clarity, only patterns of the first

four subjects are displayed. It is noted that the variance from

different face classes is not efficiently separated from that

for pose change, or more precisely, the former is even

overshadowed by the latter. The original face images and

warped texture patterns from one of these subjects are

shown in Fig. 3.

We also applied LDA, KPCA and KDA on the same set

of face patterns. The distributions of the face patterns of the

first four subjects are shown in the first two significant

dimensions as in Fig. 4. It is noted that

(1) the pattern distributions using PCA and KPCA are not

satisfactorily separable since these two techniques are

not designed for discriminating purpose;

(2) LDA performs better than PCA and KPCA, but not as

good as KDA;

Fig. 2. Multi-view dynamic face model. From top to bottom are sample training face images, the landmarks labelled on the images, the estimated 3D shape

rotating from 240 to þ408 in yaw and with tilt fixed on 08, and the extracted shape-and-pose-free texture patterns.

1 There may still be some kinds of residual variation from other sources

which are pose-dependent, for example, the self-shading and illumination

change while a face is rotating out of the image plane. At this stage, we

ignore these variations and focus on the variation from the geometrical

rotation of faces.
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(3) KDA provides the best separation performance among

the four methods.

In this experiment, the Gaussian kernel is adopted for

KPCA and KDA,

kðx; yÞ ¼ exp 2
kx 2 yk2

2s2

 !
ð29Þ

where 2s2 ¼ 1:

5. Recognising multi-view faces using identity surfaces

The traditional techniques for face recognition include

computing the Euclidean or Mahalanobis distance to a face

template and estimating the density of patterns using multi-

modal models. However, the problem of multi-view face

recognition can be solved more efficiently if the pose

information is available. Based on this idea, we propose an

approach to multi-view face recognition by constructing

identity surfaces in a discriminating feature space.

Fig. 3. The original face images and the warped facial texture patterns of one of the 12 subjects.
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As shown in Fig. 5, each subject to be recognised is

represented by a unique hyper surface based on pose

information. In other words, the two basis coordinates

stand for the head pose: tilt and yaw, and the other

coordinates are used to represent the discriminating

feature patterns of faces. For each pair of tilt and yaw,

there is one unique ‘point’ for a face class. The

distribution of all these points of a same face class

forms a hyper surface in this feature space. We call this

surface an identity surface.

5.1. Synthesising identity surfaces

We propose to synthesise the identity surface of a subject

from a small sample of face patterns which sparsely cover

the view sphere. The basic idea is to approximate the

identity surface using a set of Np planes separated by

a number of Nv predefined views. The problem can be

formally defined as follows.

Suppose x; y are tilt and yaw, respectively, z is the

discriminating feature vector of a face pattern, i.e. the KDA

Fig. 4. Distribution of multi-view face patterns in the first two significant PCA, LDA, KPCA and KDA dimensions.

Fig. 5. Identity surfaces for dynamic face recognition.
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vector. ðx01; y01Þ; ðx02; y02Þ;…; ðx0Nv
; y0Nv

Þ are predefined

views which separate the view plane into Np pieces. On

each of these Np pieces, the identity surface is approximated

by a plane

z ¼ ax þ by þ c ð30Þ

Suppose the Mi sample patterns covered by the ith plane

are ðxi1; yi1; zi1Þ; ðxi2; yi2; zi2Þ;…; ðxiMi
; yiMi

; ziMi
Þ; then one

minimises

Q ¼
XNp

i

XMi

m

kaixim þ biyim þ ci 2 zimk
2

ð31Þ

subject to

aix0k þ biy0k þ ci ¼ ajx0k þ bjy0k þ cj;

k ¼ 0; 1;…;Nv; planes i; j intersect at ðx0k; y0kÞ
ð32Þ

Fig. 6. Video-based multi-view face recognition. (c) shows the object trajectory (solid line with dots) and model trajectories in the first KDA dimension where

the model trajectory from the ground-truth subject is highlighted with solid line. It is noted from (d) and (e) that the pattern distances can give an accurate

recognition result; however, the trajectory distances provide a more robust performance, especially its accumulated effects (i.e. discriminating ability) over

time.
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This is a quadratic optimisation problem which can be

solved using the interior point method [21].

5.2. Dynamic face recognition by trajectory matching

For an unknown face pattern ðx; y; z0Þ where z0 is the

KDA vector and x; y are the pose in tilt and yaw, one can

classify this pattern into one of the known face classes by

computing the distance to each of the identity surfaces as the

Euclidean distance2 between z0 and the corresponding point

on the identity surface z

d ¼ kz0 2 zk ð33Þ

where z is given by Eq. (30).

As shown in Fig. 5, when a face is tracked

continuously in a video sequence using the multi-view

dynamic face model described in Section 3, an object

trajectory is obtained by projecting the face patterns into

the KDA feature space. On the other hand, according to

the pose information of the face patterns, one can build

the model trajectory on the identity surface of each

subject using the same pose information and temporal

order of the object trajectory. Those two kinds of

trajectories, i.e. object and model trajectories, encode the

spatio-temporal information of the tracked face. And

finally, the recognition problem can be solved by

matching the object trajectory to a set of model

trajectories. A preliminary realisation of trajectory match-

ing is implemented by computing the trajectory distances

up to time slice t

dm ¼
Xt

i¼1

widmi ð34Þ

where dmi; the pattern distance between the face pattern

captured in the ith frame and the identity surface of the

mth subject, is computed from Eq. (33), and wi is the

weight on this distance. Finally, the optimal m with

minimum dm is chosen as the recognition result.

6. Experiments

We demonstrate the performance of this approach on a

small scale multi-view face recognition problem.

Twelve sequences, one of each subject, were used

as training sequences. The sequence length varies

from 40 to 140 frames. We randomly selected 180 images

(15 images of each subject) to train KDA. Then

recognition was performed on new test sequences of

these subjects.

Fig. 6 shows the results on one of the test sequences. It

is noted that a more robust performance is achieved when

recognition is carried out using the trajectory distances

which include the accumulated evidence over time,

although the pattern distances in each individual frame

already provides good recognition accuracy on a frame by

frame basis.

To compare with KDA, we applied the PCA, KPCA, and

LDA techniques using the same set of face patterns. To

make the results of different representations comparable, we

define the following criterion

d0 ¼
1

N

XN
i¼1

Cdi0XC
j¼1

dij

ð35Þ

where C is the number of face classes, N is the total number

of test face patterns, dij is the pattern distance between the

ith test pattern and the jth face class, and di0 is the pattern

distance between the ith test pattern and the ground-truth

face class.

Criterion d0 can be interpreted as a summation of

normalised pattern distances to their ground-truth face

class. The smaller the d0; the more reliable the

classification. Fig. 7 shows the values of d0 for different

representations, PCA, KPCA, LDA and KDA, with

respect to the dimension of the feature spaces. The results

indicate that KDA gives the most reliable classification

performance.

The recognition accuracies with respect to the dimen-

sion of feature spaces are shown in Fig. 8. It is interesting

to note that the KDA features are very efficient. A 93.9%

recognition accuracy was achieved when the dimension of

the KDA vector was only 2. It is also observed that, for

the small scale problem (12 subjects), all the methods

except for KPCA achieved a 100% recognition accuracy

when the dimension of features is not less than 6. We will

investigate how these techniques perform on large scale

problems in future work.

Fig. 7. Recognition reliability.

2 It is important to note that Euclidean distance is more appropriate for

KDA and LDA while Mahalanobis distance is more efficient for PCA and

KPCA since the discriminating features are extracted in the former case and

the general variation is concerned in the latter.
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7. Conclusions

In this paper, we have presented a comprehensive

approach to multi-view dynamic face recognition. This

approach is designed to address three challenging problems:

modelling faces across multi-views, extracting nonlinear

discriminating features, and recognising moving faces

dynamically in image sequences.

To model faces with large pose variation, we developed a

dynamic face model, which includes a 3D PDM, a shape-and-

pose-free texture model, and an affine geometrical model. By

representing faces with the shape-and-pose-free texture

patterns, the variance from pose change is suppressed.

PCA, LDA and KPCA have been widely used in face

recognition. But PCA and LDA are limited to the linear

applications while KPCA intends to capture the overall

rather than the discriminating variance of patterns even

though it is nonlinear. To efficiently extract the discriminat-

ing features of multi-class patterns with severe nonlinearity,

KDA, which implicitly performs LDA in a nonlinear feature

space through a kernel function, is developed in this work.

When applying KDA to the shape-and-pose-free texture

patterns, the variance from different identities is emphasised

and the variance from other sources is further reduced.

Instead of matching templates or estimating multi-modal

density, the identity surfaces of face classes are constructed in

a discriminating feature space. Recognition is then performed

dynamically by matching an object trajectory tracked from a

video input with a set of model trajectories synthesised on the

identity surfaces. Experimental results showed that this

approach provided robust and accurate recognition.
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