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Abstract

Recognising face with large pose variation is more chal-
lenging than that in a fixed view, e.g. frontal-view, due to
the severe non-linearity caused by rotation in depth, self-
shading and self-occlusion. To address this problem, a
multi-view dynamic face model is designed to extract the
shape-and-pose-free facial texture patterns from multi-view
face images. Kernel Discriminant Analysis is developed
to extract the significant non-linear discriminating features
which maximise the between-class variance and minimise
the within-class variance. By using the kernel technique,
this process is equivalent to a Linear Discriminant Analysis
in a high-dimensional feature space which can be solved
conveniently. The identity surfaces are then constructed
from these non-linear discriminating features. Face recog-
nition can be performed dynamically from an image se-
quence by matching an object trajectory and model trajec-
tories on the identity surfaces.

1 Introduction

Face recognition is emerging as an active research area in
computer vision. Over the past decade, various approaches
such as Eigenfaces [18], Elastic Graph model [10), Lin-
ear Object Classes [21], Active Shape Models (ASMs) [4]
and Active Appearance Models (AAMs) [3] have been pro-
posed to address this problem. It is important to point out
that most of the previous work in face recognition is mainly
concerned with frontal view or near frontal views. Due to
the severe non-linearity caused by rotation in depth, self-
occlusion, self-shading and illumination change, recognis-
ing faces with large pose variation is more challenging than
that at a fixed view, e.g. frontal view.

Extracting the discriminating features, which maximise
the between-class variance and minimise the within-class
variance, is crucial to face recognition, especially when
faces are undergoing large pose variation. Principal Com-
ponent Analysis (PCA), also known as eigenface method,
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has been widely adopted in this research area [16, 18].
However, it is worth noting that the features extracted by
PCA are actually “global” features for all face classes, thus
they are not necessarily representative for discriminating
one face class from others. Linear Discriminant Analy-
sis (LDA), which seeks to find a linear transformation by
maximising the between-class variance and minimising the
within-class variance, proved to be a more suitable tech-
nique for classification {6, 17]. Although LDA can provide
a significant discriminating improvement to the task of face
recognition, it is a linear technique in nature. When severe
non-linearity is involved, this method is intrinsically poor.
Another shortcoming of LDA lies in the fact that the num-
ber of basis vectors is limited by the number of face classes,
therefore it would be less representative when a small set of
subjects is concerned. Kernel PCA (KPCA) has been devel-
oped to extract the non-linear principal components for pat-
tern recognition problems [15, 14]. However, as with PCA,
KPCA captures the overall variance of all patterns which
are inadequate for discriminating purposes.

Another limitation of the previous studies is that the
methodology adopted for recognition is largely based on
matching static face images. Psychology and physiology
research showed that the human vision system’s ability to
recognise animated faces is better than that on randomly
ordered still face images (i.e. the same set of images, but

_ displayed in random order without the temporal context

of moving faces) [9, 2]. For computer vision systems, al-
though some work has been reported {8, 5, 7], the problem
of recognising the dynamics of human faces in a spatio-
temporal context remains largely unresolved.

In this work, we present a comprehensive approach to
address the three challenging problems in face recognition
stated above. A multi-view dynamic face model is designed
to extract the shape-and-pose-free facial texture patterns
for accurate across-view registration. Kernel Discriminant
Analysis (KDA), a kernel based method, is developed to
compute the non-linear discriminating basis vectors. Fi-
nally face recognition is performed dynamically by match-
ing an object trajectory tracked from an image sequence
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with model trajectories synthesised on identity surfaces.
2 Kernel Discriminant Analysis

As stated in the previous section, both PCA and LDA
are limited to linear problems, and KPCA is designed to
deal with the overall rather than the discriminating vari-
ance. In this work, Kernel Discriminant Analysis, a nonlin-
ear discriminating approach based on the kernel technique
[20, 15, 13, 1], is developed for extracting the nonlinear dis-
criminating features.

The underlying principle of KDA can be described as
follows: For a set of training patterns {x} which are cat-
egorised into C classes, ¢ is defined as a non-linear map
from the input space to a high-dimensional feature space.
Then by performing LDA in the feature space, one can ob-
tain a non-linear representation in the original input space.
However, the computation in the high-dimensional feature
space may be problematic or even impossible. By employ-
ing a kernel function

k(z,y) = (¢(x) - 9(¥)) 6))

the inner product of two vectors ¢(x) and ¢(y) in the fea-
ture space can be calculated directly in the input space.

The problem can be finally formulated as an eigen-
decomposition problem

Aa =\ 2)

The N x N matrix A is defined as

c 4 -lsc 1 :
A= (Z N—KCKZ> (Z chlNCKZ) ©)
e=1""¢ e=1"¢
where N is the number of all training patterns, N, is the
number of patterns in class ¢, (K )i; := k(x;-x;) isan N x
N, kernel matrix, and (1,)i; := 1 is an N, x N, matrix.
More details of the underlying algorithm are available in
[11].
For a new pattern @, one can calculate its projection onto
a KDA basis vector v in the high-dimensional feature space
by
(¢(z) -v) =a'k, @)

where k, = (k(z,x1), k(x,22), ..., k(z,zn))". Con-
structing the eigen matrix U = [o;, g, ..., ] from the
first M significant eigenvectors of A, the projection of & in
the M-dimensional KDA space is given by

y= UTkz &)

We use a “toy” problem to illustrate the characteristics of
KDA in Figure 1. Two classes of patterns, denoted by cir-
cles and crosses respectively, have a significant non-linear

distribution. We try to separate them with a one dimensional
decision boundary of PCA, LDA, KPCA or KDA. Gaussian
kernel is used in KPCA and KDA. The upper row shows
the patterns and the discriminating curves computed by the
four different methods. The lower row illustrates the inten-
sity values of the one-dimensional features computed from
PCA, LDA, KPCA and KDA. It can be seen clearly that
PCA and LDA are incapable of providing correct classifi-
cation because of their linear nature. Neither does KPCA
do so since it is designed to extract the overall rather than
the discriminating variance although it is nonlinear in prin-
ciple. KDA gives the correct classification boundary: the
discriminating curve accurately separates the two classes of
patterns, and the feature intensity correctly reflects the ac-
tual pattern distribution.

i‘”&n&x"k‘xﬂ

Figure 1. Solving a nonlinear classification
problem with, from left to right, PCA, LDA,
KPCA and KDA.

3 Multi-View Dynamic Face Model

Due to the severe non-linearity caused by rotation in
depth, self-occlusion, self-shading and illumination change,
modelling the appearance of faces across multiple views is
much more challenging than that from a fixed, e.g. frontal,
view. Another significant difficulty for multi-view face
recognition comes from the fact that the appearances of dif-
ferent people from the same view are often more similar

- than those of the same person from different views.

A multi-view dynamic face model, which consists of a
sparse 3D Point Distribution Model (PDM) (4], a shape-
and-pose-free texture model, and an affine geometrical
model, is developed in this work. The 3D shape vector of a
face is estimated from a set of 2D face images in different
views, i.e. given a set of 2D face images with known pose
and 2D positions of the landmarks, the 3D shape vector can
be estimated using linear regression. To decouple the co-
variance between shape and texture, a face image fitted by
the shape model is warped to the mean shape at frontal view
(with 0° in both tilt and yaw), obtaining a shape-and-pose-
Jree texture pattern. This is implemented by forming a tri-
angulation from the landmarks and employing a piece-wise
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Figure 2. Distribution of multi-view face patterns in PCA, LDA, KPCA and KDA spaces.

affine transformation between each triangle pair. When part
of a face is invisible in an image due to rotation in depth, the
facial texture is recovered from the visible side of face us-
ing the bilateral symmetry of faces. By warping to the mean
shape, one obtains the shape-free texture of the given face
image. Furthermore, by warping to the frontal view, a pose-
free texture representation is achieved. We applied PCA
to the 3D shape patterns and shape-and-pose-free texture
patterns respectively to obtain a low dimensional statistical
model.

Based on the analysis above, a face pattern can be rep-
resented in the following way. First, the 3D shape model
is fitted to a given image or an image sequence containing
faces. Then the face texture is warped onto the mean shape
of the 3D PDM model in frontal view. Finally, by adding
parameters controlling pose, shift and scale, the complete
parameter set of the dynamic model for a given face pattern
ise = (s,t,, 8,dz,dy,r)T where s is the shape parame-
ter, t is the texture parameter, (¢, 8) is pose in tilt and yaw,
(dz, dy) is the translation of the centroid of the face, and r
is its scale. More details of model construction and fitting
are described in [12].

Once the model is constructed, it can be automatically
fitted on new images or video sequences containing faces.
The shape-and-pose-free texture patterns obtained from
model fitting are adopted for face recognition. In our ex-
periments, we also tried to use the shape patterns for recog-
nition, however, the performance was not as good as that of
using textures.

4 Extracting the Non-linear Discriminating
Features of Multi-view Face Patterns

There are mainly two kinds of variance involved
for multi-view face recognition, variance from identities
(between-class variance) and variance from other sources
such as pose, illumination and expression changes (within-
class variance). The task of face recognition is to emphasise
the former and suppress the latter. Although the within-
class variance has been reduced by forming the shape-and-

pose-free facial texture patterns, the underlying discriminat-
ing features for different face classes have not been repre-
sented explicitly. Therefore such a representation in itself
may not be efficient for recognition.

We illustrate this situation as in Figure 2. The multi-view
face patterns of different face classes are first warped to the
shape-and-pose-free form, then they are projected and dis-
played in the first two significant dimensions of PCA, LDA,
KPCA and KDA. For the sake of conciseness, only patterns
from four face classed are shown here. It is noted that, with
PCA and KPCA, the variance from different face classes is
not efficiently separated from that of pose change, or more
precisely, the former is even overshadowed by the latter. Al-
though the patterns are more separable using LDA, the per-
formance is not as good as KDA since the non-linearity is
not appropriately addressed due to the linear limitation of
LDA. In this work, we adopt the KDA vectors of facial tex-
ture patterns to represent faces.

5 Recognising Multi-view Faces Using Iden-
tity Surfaces

The traditional techniques for face recognition include
computing the Euclidean or Mahalanobis distance to a face
template and estimating the density of patterns using multi-
modal models. However, the problem of multi-view face
recognition can be solved more efficiently if the pose infor-
mation is available. Based on this idea, we propose an ap-
proach to muiti-view face recognition by constructing iden-
tity surfaces in a discriminating feature space.

As shown in Figure 3, each subject to be recognised
is represented by a unique hyper surface based on pose
information. In other words, the two basis coordinates
stand for the head pose: tilt and yaw, and the other coor-
dinates are used to represent the discriminating feature pat-
terns of faces. For each pair of tilt and yaw, there is one
unique “point” for a face class. The distribution of all these
“points” of a same face class forms a hyper surface in this
feature space. We call this surface an identity surface.
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Figure 3. Identity surfaces.

5.1 Synthesising Identity Surfaces

We propose to synthesise the identity surface of a subject
from a small sample of face patterns which sparsely cover
the view sphere. The basic idea is to approximate the iden-
tity surface using a set of Ny, planes separated by a number
of N, predefined views. The problem can be formally de-
fined as follows:

Suppose z,y are tilt and yaw respectively, z is the dis-
criminating feature vector of a face pattern, e.g. the KDA
vector. (Zo1,Yo1), (Zo2,Y02), ---, (ToN, , Yon,) are prede-
fined views which separate the view plane into N, pieces.
On each of these N, pieces, the identity surface is approxi-
mated by a plane

z=az+by+c ©

Suppose the M; sample patterns covered by the ith plane
are

(Tir, yin, Zar), (Tiz, Va2, Zia), - (Tindi, Yidds » Zina, )
one minimises

then

Np M;
Q = Y llaiim +bigim + € — Ziml® (D
i m
subject to a;zok + biyor + ¢; = a;Zox + bjyor + ¢;
k= 0) 17 "‘!NU’
planes 7, j intersect at (Zok, Yo )- 8)

This is a quadratic optimisation problem which can be
solved using the interior point method [19].

5.2 Dynamic Face Recognition by Trajectory
Matching

For an unknown face pattern (z,y, zg) where zg is the
KDA vector and z,y are the pose in tilt and yaw, one can
classify this pattern into one of the known face classes by
computing the distance to each of the identity surfaces as

the Euclidean distance between zg and the corresponding
point on the identity surface z

d = |lzo — 2| )

where z is given by (6).

As shown in Figure 3, when a face is tracked continu-
ously in an image sequence using the multi-view dynamic
face model described in Section 3, an object trajectory is
obtained by projecting the face patterns into the KDA fea-
ture space. On the other hand, according to the pose infor-
mation of the face patterns, one can build the model trajec-
tory on the identity surface of each subject using the same
pose information and temporal order of the object trajec-
tory. These two kinds of trajectories, i.e. object and model
trajectories, encode the spatio-temporal information of the
tracked face. And finally, the recognition problem can be
solved by matching the object trajectory to a set of model
trajectories. A preliminary realisation of trajectory match-
ing is implemented by computing the trajectory distances
up to time slice ¢

t

dn =Y widm (10)
i=1

where dp,;, the pattern distance between the face pattern

captured in the ith frame and the identity surface of the mth

subject, is computed from (9), and w; is the weight on this

distance. Finally, the optimal m with minimum d,, is cho-

sen as the recognition result.

6 Experiments

We demonstrate the performance of this approach on a
small scale multi-view face recognition problem. Twelve
sequences, one of each subject, were used as training se-
quences. The sequence length varies from 40 to 140 frames.
We randomly selected 180 images (15 images of each sub-
ject) to train KDA, where Gaussian kernel was adopted.
Recognition was then performed on new test sequences of
these subjects.

Figure 4 shows the results on one of the test sequences.
The dimension of the KDA vectors is set to 10 in this ex-
periment. It is noted that a more robust performance is
achieved when recognition is carried out using the trajec-
tory distances which include the accumulated evidence over
time, although the pattern distances in each individual frame
already provides good recognition accuracy on a frame by
frame basis.

To compare with KDA, we applied the PCA, KPCA, and
LDA techniques using the same set of face patterns. To
make the results of different representations comparable,
we define the following criterion

C-djy

w:li———- (11
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(a) Sample frames, fitted 3D shape and the shape-and-pose-free texture patterns.
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(b) Pose in tilt (dotted) and yaw (solid).
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Figure 4. Video-based multi-view face recognition. (c) shows the object trajectory (solid line with
dots) and model trajectories in the first KDA dimension, among which the model trajectory from the
ground-truth face class is highlighted with solid line. It is noted from (d) and (e) that the pattern
distances can give an accurate recognition result; however, the trajectory distances provide a more
robust performance, especially its accumulated effects (i.e. discriminating ability) over time.

where C is the number of face classes, NV is the total number
of test face patterns, d;; is the pattern distance between the
ith test pattern and the jth face class, and djg is the pattern
distance between the ith test pattern and the ground-truth
face class.

Criterion d' can be interpreted as a summation of nor-
malised pattern distances to their ground-truth face class.
The smaller the d’, the more reliable the classification per-
formance. Figure 5 shows the values of d’ for different
representations, PCA, KPCA, LDA and KDA, with respect
to the dimension of the feature spaces. The results indi-
cate that KDA gives the most reliable classification perfor-
mance.

The recognition accuracies with respect to the dimension
of feature spaces are shown in Figure 6. It is interesting
to note that the KDA features are very efficient. A 93.9%
recognition accuracy was achieved when the dimension of
the KDA vector was only 2. However, it is also noted that,
for the small scale problem (12 subjects), PCA, LDA and
KDA perform equally when more than 6 dimensional fea-
tures are adopted. We will investigate how this approach
generalises to large scale problems in future work.

7 Conclusions

In this paper, we have presented a comprehensive ap-
proach to multi-view dynamic face recognition. This ap-
proach is designed to addressed three challenging problems:
modelling faces across multi-views, extracting non-linear
discriminating features, and recognising faces dynamically
in a spatio-temporal context.

Recognising faces with large pose variation involves
a severe non-linearity caused by rotation in depth, self-
occlusion, self-shading, and illumination change. To model
the across-view faces, we developed a dynamic face model,
which includes a 3D PDM, a shape-and-pose-free texture
model, and an affine geometrical model. By represent-
ing faces with the shape-and-pose-free texture patterns, the
variance from pose change is suppressed.

PCA, LDA and KPCA have been widely used in face
recognition. But PCA and LDA are limited to the linear ap-
plications while KPCA seeks to capture the overall rather
than the discriminating variance of patterns even though
it is non-linear. To efficiently extract the discriminating
features of multi-class patterns with severe non-linearity,
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KDA, which implicitly performs LDA in a non-linear fea-
ture space through a kernel function, is developed in this
work. When applying KDA to the shape-and-pose-free tex-
ture patterns, the variance from pose change is further re-
duced while the between-class variance is emphasised.

Instead of matching templates or estimating multi-modal
density, the identity surfaces of face classes are constructed
in a discriminating feature space. Recognition is then
performed dynamically by matching an object trajectory
tracked from an image sequence with a set of model tra-
Jectories synthesised on the identity surfaces. Experimental
results showed that this approach provides robust and accu-
rate recognition.

e e T

a0s ~FTPCA |
© LDA
o KDA

Figure 6. Recognition accuracy.
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