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ABSTRACT
Sketch has been employed as an effective communication tool to
express the abstract and intuitive meaning of object.

While content-based sketch recognition has been studied for
several decades, the instance-level Sketch Based Image Retrieval
(iSBIR) task has attracted significant research attention recently. In
many previous iSBIR works – TripletSN [40, 41], and DSSA [32],
edge maps were employed as intermediate representations in bridg-
ing the cross-domain discrepancy between photos and sketches.
However, it is nontrivial to efficiently train and effectively use the
edge maps in an iSBIR system. Particularly, we find that such an
edge map based iSBIR system has several major limitations. First,
the system has to be pre-trained on a significant amount of edge
maps, either from large-scale sketch datasets, e.g., TU-Berlin [8],
or converted from other large-scale image datasets, e.g., ImageNet-
1K[6] dataset. Second, the performance of such an iSBIR system is
very sensitive to the quality of edgemaps. Third and empirically, the
multi-cropping strategy is essentially very important in improving
the performance of previous iSBIR systems. To address these limi-
tations, this paper advocates an end-to-end iSBIR system without
using the edge maps. Specifically, we present a Triplet Classification
Network (TC-Net) for iSBIR which is composed of two major com-
ponents: triplet Siamese network, and auxiliary classification loss.
Our TC-Net can break the limitations existed in previous works.
Extensive experiments on several datasets validate the efficacy of
the proposed network and system.
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1 INTRODUCTION
The free-hand sketches, as the abstract and highly iconic representa-
tion of real-world images, convey richer and yetmore compact infor-
mation than the language descriptions. Such interesting properties
enable that free-hand sketches can deliver many real world Mul-
timedia applications, e.g., Sketch Based Image Retrieval (SBIR). In
fact, during the past several decades, extensive research efforts have
been made towards the SBIR tasks. Typically, the category-level (cS-
BIR) have been widely explored in [9, 10, 23, 29], and instance-level
(iSBIR) [27, 32, 40], to a less extent. The key difference between
cSBIR and iSBIR comes from the granularity of retrieved results.
Specifically, the cSBIR aims at finding a photo image for a query
sketch in the same category while the iSBIR aims at finding the
only corresponding photographic image for the query sketch.

Only few recent efforts are made toward the iSBIR task, including
TripletSN [40, 41] and DSSA [32]. In these works, edge maps con-
verted from photographic images are introduced as intermediate
representations to bridge the cross-domain discrepancy of photos
and sketches. Essentially, a triplet Siamese network is further uti-
lized to learn to integrate edge maps of photos and sketches for the
retrieval tasks. However, it is expensive and unstable to train the
network by edge maps. The edge map based iSBIR system requires
heavy pre-training on edge maps of very high quality, either from
large-scale sketch datasets, e.g., TU-Berlin [8], or converted from
other large-scale image datasets, e.g., ImageNet-1K[6] dataset. Fur-
thermore, the performance of such an iSBIR system is very sensitive
to the quality of edge maps. This actually limits the usability of
edge maps in iSBIR task.

To this end, we present a novel iSBIR system – Triplet Classifi-
cation Network (TC-Net). It learns a unified embedding space of
sketches and photo images. The TC-Net is composed of two major
components – a triplet Siamese network, and an auxiliary classifi-
cation loss. The former one serves as the main network structure
to learn a shared embedding space for sketches and photographic
images, while the latter one further helps learn to narrow the do-
main gap between two types of images. Besides, our TC-Net can
learn features from photographic images directly which can break
the limitations existed in previous works.

More critically, the whole network is organized in an end-to-end
manner, rather than utilizing the edge maps as the intermediate
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representations. To further minimize the cross-domain discrepancy,
two types of loss functions, namely, triplet loss and classification
loss are introduced to optimize the network. Notably, in order to
address the matching problem between sketches and photos, the
triplet loss learns to make the sketch instances closer to the positive
photo images, but far from the negative photo images. For the first
time, the auxiliary classification task is proposed in iSBIR task to
project the paired sketch and photo images closer to each other in
both euclidean and angular embedding spaces learned by our TC-
Net. We present three types of classification losses, i.e., softmax loss,
spherical loss, and center loss. We conduct extensive experiments
to validate the efficacy of proposed network and system on several
benchmarks.
Contributions. We make several contributions in this paper. (1)
To the best of our knowledge, it is the first time that the limitations
of edge maps based iSBIR system in previous works have been thor-
oughly analyzed in this paper. The analysis can not only motivate
our newly designed TC-Net, but also may inspire the future works
on iSBIR. (2) We propose a novel system based on Triplet Classifica-
tion Network (TC-Net) to bridge the domain gaps between photos
and sketches for iSBIR task. Our TC-Net is an end-to-end network
that can efficiently retrieve the photos to match the given query.
(3) The auxiliary classification is, for the first time, introduced here
to facilitate the network learning for iSBIR task. Critically, three
classification losses, i.e., softmax, spherical and center losses, are
adopted in this paper.

2 RELATEDWORK
2.1 Networks and Losses in SBIR
Feature Engineering. SBIR has been studied for more than three
decades [19]. Traditional methods for SBIR task mainly investigated
different kinds of features [2, 3, 15, 25, 28]. The hand-crafted fea-
tures, such as BoW [15, 25], HOG and Gradient Field HOG [14]
were also adopted in SBIR. To further improve the quality of re-
trieval results, SBIR can also be formulated as the ranking tasks,
and addressed by rank correlation [10] and rankSVM [40]. Despite
significant progress has been made in these works, the further im-
provement has been witnessed thanks to the recent success of deep
learning architectures.
Deep Neural Networks. The SBIR task has been greatly benefited
from the recent deep convolution neural networks (CNNs) [20].
Siamese neural networks have been utilized in solving SBIR task
via an end-to-end fashion [11, 29, 32, 40, 41]. In [29, 40], researchers
employed triplet Siamese networks with the same triplet loss [30]
but different backbone networks. Attention based feature extractor
and triplet loss with a higher-order energy function (HOLEF) were
proposed in [32] to improve the performance of SBIR. Besides fea-
ture based methods, deep hashing techniques [23, 37, 43] have also
been investigated in tackling the retrieval task. In [23], they learned
the same hash codes for the corresponding photographic images
and sketches. Themethod of [27] also employed the shapematching
to tackle SBIR. Previous feature based methods [27, 32, 40] always
compared features from the edge maps of photographic images
and sketches which, however, requires a very complex pre-training
process. In our model, we use a triplet Siamese network with triplet

and classification loss to reduce the gap between photographic
images and sketches directly.
Losses for Cross-Domain Matching. Recently, there have been
numerous studies about loss functions for cross-domain matching
tasks like face verification, person re-identification and SBIR. The
robust contrastive loss was used in [18] for image search task.
Triplet loss was first proposed to solve face verification task[30] and
achieved great performance. An improved triplet loss based on hard
negative mining was proposed in [13]. In [7, 35], they developed
center loss and marginal loss respectively to minimize the distances
of intra-class features. Other researchers studied the losses based on
angular margin [24, 34] due to the euclidean margin based loss may
not be good enough for learning the most discriminative features
in manifold space. Besides, range loss [42] was designed for solving
the long-tail problem in face verification task. In our model, we
integrate triplet loss and serveral types of classification loss to learn
discriminative and representative features for iSBIR task.

2.2 Problem Setup and Datasets in SBIR
Most previous large-scale datasets are designed for cSBIR task, such
as TU-Berlin [8] and Flickr15k [14]. In this paper, different models
are evaluated on several benchmark datasets. Typically, the iSBIR
task is formulated as follows: given the input of sketch s and a
candidate collection of N photos, {pi }Ni=1 ∈ P, the SBIR model
should return the best matched photo from the candidate photo set{
pi
}N
i=1 for the query sketch s . This task is typically evaluated on

the following datasets,
QMUL-Shoe andQMUL-Chair contains 419 shoes and 297 chairs
photo-sketch pairs respectively. We follow the split in [40] which
uses 304 and 200 pairs to train and rest to test. The training photo
and sketch pairs are organized as triplet following the human triplet
annotations are provided in the dataset.
QMUL-Shoe v2 dataset extend the QMUL-Shoe dataset to 2000
photos and 6,730 sketches, where each photo has three or more
paired sketches. We randomly choose 1800 photos and their corre-
sponding sketches for training and rest for testing. 10 triplets are
also randomly generated when training.
Sketchy dataset is one of the largest photo-sketch dataset which
contains 74,425 sketches and 12,500 photos in 125 categories. We
randomly sample 90% instances for training and rest for testing
with 5 triplets randomly generated when training for one pair data.
Hairstyle Photo-Sketch Dataset (HPSD) is a newly proposed
photo-sketch database. This dataset is a nontrivial extension of
existing hairstyle30K dataset [39]. There are totally 3600 photos
and sketches, and 2400 photo-sketch pairs. Particularly, two types
of sketches, namely, simple and complex sketches are drawn for
each hairstyle photo. Thus, this newly proposed dataset has 1200
photo-sketch pairs of HPSD (simple) and HPSD (complex) respec-
tively, and the photos are evenly distributed over 40 classes. In
HPSD(simple) / HPSD(complex), 1000 photo-sketch pairs are used
for training and the rest 200 pairs for testing. The triplet pairs are
randomly generated. Specifically, given a query sketch, its corre-
sponding ground-truth photo is taken as the positive instances,
while randomly sample the negative instance set from 5 photos
within the same hairstyle category as the positive instance, and 45



Figure 1: Illustrative examples of edgemaps extracted by dif-
ferent algorithms. ∗ : the results reported in [40]. †: our im-
plementation by using the same setting as [40].

photos from the other hairstyle classes. Thus totally 50 triplets are
generated for each sketch query.

Methods Pre-Tr. Tr. QMUL-Shoe (%) QMUL-Chair (%)
Top-1 Top-10 Top-1 Top-10

TripletSN
✓ × 33.91 78.26 51.55 86.60
✓ ✓ 52.17 91.30 78.35 97.94
× ✓ 37.39 76.52 45.36 95.88

DSSA
✓ × 40.87 86.09 72.16 92.78
✓ ✓ 59.13 94.78 82.47 98.97
× ✓ 37.39 80.00 61.74 96.91

TC-Net × × 1.74 12.17 8.25 24.74
× ✓ 63.48 95.65 95.88 100.00

Table 1: Performance of models with/without pre-training
(Pre-Tr.) and training (Tr.). The pre-training refers to the
heavy pre-training process used in [32, 40, 41]. The training
means that using the training data of each dataset to train
the correspondingmodel. Note that our TC-Net does not use
the pre-training strategy as mentioned in [40].

3 LIMITATIONS IN PREVIOUS WORKS
Before we fully develop our contributions – the TC-Net in Sec.
4, it is worthy of discussing and summarizing the limitations in
previous works – TripletSN [40, 41], and DSSA [32]. In particular,
these previous works adopted the intermediate representations –
edge maps, to bridge the gap between photographic images and
sketches. Unfortunately, it is very difficult to learn and use the edge
maps efficiently in practice.

3.1 Complex Pre-training Process
To facilitate training edge maps and achieve good performances of
iSBIR, TripletSN [40, 41] and DSSA [32] introduced very complex
pre-training process, including (1) pre-training on the edge maps
of ImageNet-1K [6], (2) pre-training on TU-Berlin [8], and (3) pre-
training on a combination of TU-Berlin and ImageNet-1K dataset
for a category-level retrieval task.

The sheer volume of data-scale as well as the computational cost
in the pre-training process makes the previous works [32, 40, 41]
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Figure 2: Visualization of multi-crop testing.

too expensive and complex in pre-training. For example, in order
to learn the edge maps of ImageNet-1K, Triplet and DSSA have to
convert millions of ImageNet-1K images into edge maps. In contrast,
the QMUL-Shoe and QMUL-Chair datasets totally have only several
thousands of training and testing sketches and images. It is thus
inefficient of pre-training on millions of edge maps to classify only
several hundreds of sketches and images.

We conduct experiments to further evaluate the importance of
the pre-training step in learning edge maps. We utilize the SBIR
setting as Sec. 2.2. The results are shown in Tab. 1. It shows that the
pre-training process affects the SBIR results a lot in previous works
[32, 40, 41]. Practically, we notice that the pre-training process is
already a complete pipeline for the category-level SBIR model; and
even can hit a very competitive performance on the iSBIR task in
Tab. 1. Specifically, on QMUL-Shoe dataset, the DSSA only pre-
training (i.e., Pre-training ✓, Training ×) can beat the DSSA model
with only training (i.e., Pre-training ×, Training✓).

Table 1 also reveals the fact that the pre-training process is
a quite important component in [32, 40]. Without pre-training,
the performance of DSSA and TripletSN models will be degraded
significantly. In contrast, our TC-Net model introduced in the next
section, does not really need such a heavy pre-training process, and
can achieve comparable or even higher accuracy on both datasets.

3.2 Sensitive to Quality of Edge Maps
Since previous approaches extracted edge maps from images first,
different algorithms for edge map extraction may lead to different
retrieval performances. We found that the quality of edge maps
is very important to results of TripletSN and DSSA [32, 40]. In
both methods, the edge maps of photos are actually extracted by
EdgeBox [8]. Some illustrative examples of edge maps are shown
in Fig. 1. We test different types of edge map extraction algorithms
in experiments which proves that our observation.

Concretely, we show the edge maps generated by (1) Canny
edge detector [1]; (2) XDog [36]; (3) EdgeBox which is produced as
[32, 40]. Each type of edge maps is utilized in the pre-training step
and help train the TripletSN and DSSA accordingly. We conduct
the experiments on QMUL-Shoe and QMUL-Chair datasets as Sec.
2.2. The performance of TripletSN and DSSA using four types of



Datasets Methods Canny (%) XDog (%) EdgeBox† (%) EdgeBox∗ (%)

Q-S TripletSN 32.17/75.65 32.17 / 76.52 33.91 / 77.39 52.17 / 91.30
DSSA 43.48/88.70 42.61 / 86.96 44.35 / 82.61 59.13 / 94.78

Q-C TripletSN 81.44/100.00 65.98 / 95.88 78.35 / 98.97 78.35 / 97.94
DSSA 84.54/98.97 70.10 / 96.91 82.47 / 96.91 82.47 / 98.97

Table 2: Performance of TripletSN and DSSA using different types of edge maps. ∗ : the results reported in [40]. †: our imple-
mentation by using the same setting as [40]. Q-S and Q-C refer to QMUL-Shoe and QMUL-Chair datasets, respectively.

Methods Vanilla (%) Multi-crop (%) Imprv.(%)

Q-S
TripletSN 43.48 / 87.83 52.17 / 91.30 8.69↑ / 3.47↑
DSSA 55.65 / 93.04 59.13 / 94.78 3.48↑ / 1.74↑
TC-Net 62.61 / 96.52 63.48 / 95.65 0.87↑ / 0.87 �

Q-C
TripletSN 69.07 / 97.94 78.35 / 97.94 9.28↑ / 0↑
DSSA 76.92 / 96.91 82.47 / 98.97 5.55↑ / 2.06↑
TC-Net 95.88 / 100.00 96.91 / 100.00 1.03↑ / 0↑

Table 3: The Top-1/Top-10 retrieval accuracies of each
model are reported. Q-S and Q-C refer to QMUL-Shoe and
QMUL-Chair datasets respectively. Imprv. is short for im-
provement.

edge maps are compared in Tab. 2. We can find both methods are
very sensitive to the quality of edge maps produced. In contrast,
our TC-Net employs an end-to-end architecture which does not
require to implicitly convert the photo images into edge maps.

3.3 Multi-Cropping Testing Strategy
Multi-cropping is a quite widely used strategy in the testing stage
of deep architectures. In general, this testing strategy can slightly
boost the performance, due to better features produced. Specifically,
each testing photo/sketch pair is reproduced into multiple (i.e., 10 in
[32, 40]) cropped testing pairs by cutting, horizontally flipping [31]
both the photo and sketch. The features of each cropped photo /
sketch are extracted to compute the distance of each cropped photo
/ sketch pair, di (i = 1, · · · , 10). The final distance of this testing
photo / sketch pair is averaged over the features of all cropped
images d = 1

10
∑10
i=1 di . The “multi-cropping” process is visualized

in Fig. 2. Such a strategy is also adopted in TripletSN [40], and DSSA
[32]. In general, the multi-cropping strategy significantly increases
the computational burden in the testing stage, especially on the
large-scale photo-sketch dataset, e.g., Sketchy.

It is thus very interesting to understand how importance of multi-
cropping testing strategy for each iSBIR method. as in Tab. 3, we
compare multi-cropping against the vanilla testing strategy, i.e.,
the features extracted from only one sketch / photo / edge map
image. We report the Top-1 / Top-10 accuracy on both QMUL-Shoe
and QMUL-Chair datasets, which are employed as the benchmark
datasets in TripletSN [40], and DSSA [32]. Quite surpringly, it shows
that the multi-cropping testing strategy actually performs a very
significant role in TripletSN and DSSA. For example, There are
8.69% improvement if TripletSN uses the multi-cropping, rather
than vanilla testing strategy on QMUL-Shoe dataset. In contrast,
our TC-Net is very robust when we use different testing strategies.

4 METHODOLOGY
To address the limitations mentioned in Sec. 3, we present a novel
Triplet Classification Network (TC-Net) to bridge the gap between
photos and sketches for iSBIR. Formally, we define a triplet as(
si ,p

+
i ,p
−
i

)
∈ TriSet which consists of a query sketch si , a positive

photo p+i and a negative photo p−i . We utilize the DenseNet-169 [16]
as the weight-sharing feature extractor in each branch as shown
in Fig. 3. In more detail, there are four convolution blocks which
connect each layer in a dense way. We denote the feature extractor
as fθ (·) which shares weight for every branch with θ indicating
the parameters of DenseNet-169.

Our whole system is trained in an end-to-end fashion. Given the
query sketch and the collection of photos, the TC-Net will give the
similarity between query sketch and each photo which can be used
to output final retrieval result.
Input Images. The input images of TC-Net are RBG photo images
and the expanded sketch images. The expanded refers to duplicating
each sketch image into 3 channels as the input photo image to our
model. We highlight that such input images actually are different
from those in [32, 40]. Particularly, in [32, 40], the input images of
their Siamese Networks are the edge maps, rather than the RGB
photos. Intuitively, it may be reasonable to first compute the edge
maps of input images, in order to reduce the gap between photo
and sketch domains. However, as explained in Sec. 3, it requires
heavy pre-training steps in learning edge maps, and the conversion
from RGB photos into edge maps may lose some information (e.g.,
texture). Thus, the RGB photo images are adopted as the input for
our TC-Net.

4.1 Loss Functions of TC-Net
In general, loss function plays an important role to train the net-
work, espicially for our iSBIR task. In our TC-Net, we introduce
two types of losses, namely, triplet loss (Ltr i ) and classification
loss (Lcls ) , to learn discriminative features for SBIR task. Frist, the
whole loss function in our model is defined as,

Lθ = αLtr i + βLcls + λR (θ ) (1)
where α , β are the coordinating weights for two different loss terms;
and empirically set as α = 0.15, β = 0.2. The classification loss can
be softmax loss, center loss, and spherical loss which would be
discussed in Sec. 4.3. R (θ ) indicates the penalty term. Here we use
the L2 regularization term with the weight λ = 5e − 4.

Intuitively, as a classical loss function for retrieval tasks [12],
the triplet loss optimizes the sketch instances closer to the positive
photo images, but far from the negative photo images. On the other
hand, despite the sketch and photo images come from different
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modalities, the same blocks are utilized here to embed them into
a common space. Thus, the classification loss is introduced as the
auxiliary task which further bridges the gap of two domains. Such a
classification loss enables the features of the sketches and positive
images from the same pair closer to each other.

4.2 Triplet Loss
The triplet loss is widely used in the retrieval tasks, such as face
verification [33], person re-identification [4, 13, 22] and so on. In
principle, it aims at learning the discriminative features of im-
ages which are important for retrieval task, particularly, the fine-
grained / instance-level retrieval task in our scenario. This loss
learns to optimize a correct order between each query sketch and
positive/negative photo images in the embedding space.

In our task, the triplet loss is trained on a series of triplets{(
si ,p

+
i ,p
−
i

)}
, where p+i and p−i represent the positive and neg-

ative photos corresponding to the query sketch si . The triplet loss
learns to optimize si closer to p+i than p−i . Such a designed purpose
enables the triplet loss to be applied to many areas, such as image
retrieval [17], person re-identification [5], etc. Thus, the triplet loss
can reduce the the intra-class variations and enlarge the inter-class
variations. Specifically, the loss is defined as

Ltr i =
∑

(si ,p+i ,p
−
i )∈T r iSet

Ltr i
(
si ,p

+
i ,p
−
i

)
(2)

Ltr i (si ,p
+
i ,p
−
i ) =max

(
0,

∆ + D
(
fθ
(
p+i
)
, fθ (si )

)
− D
(
fθ
(
p−i
)
, fθ (si )

)) (3)

where D (·) is the Euclidean distance function. The ∆ is the margin
between query-positive and query-negative features, and we set
∆ = 0.3.

4.3 Classification Loss
The triplet loss can efficiently constrain the sketch closer to the pos-
itive photo than the other negative photos. However, the standard

triplet loss in Eq (3) is not optimized for the purpose of bridging
the gap of photo and sketch domains. Notably, as shown in Fig. 3,
the same CNN blocks are used to extract features from both sketch
and photo images. The extracted features of paired sketches and
photos should be closed to each other. To this end, an auxiliary
classification task is, for the first time, introduced to iSBIR, which
aims to help better learn the embedded features from the photos
and sketches. This loss enforces the extracted features of the paired
photos and sketches to be close to each other. The class labels in
iSBIR are the indexes for photo-sketch pairs. We assign yi = i for
the photo-sketch pair (si ,pi ) and use these labels to learn the clas-
sification task. Particularly, three following types of classification
losses are integrated into TC-Net,

Lcls = γ1 · Lsof t + γ2 · Lsphe + γ3 · Lcenter (4)
where the weight parameters are γ1 = 1.5,γ2 = 1.0,γ3 = 0.0015.
To help the network to learn better discriminative feature of data,
our classification loss combines three types of losses: (1) softmax
loss Lsof t penalizes the learned features by Euclidean distance
which however has been shown not so robust to fine-grained tasks
as in [24]; (2) spherical loss Lsphe further makes constraint on
learning the features by angular / spherical distance; (3) additionally,
center loss Lcenter is added to minimize the inter-class variations
in optimizing the features.
Softmax Loss.We employ the standard softmax classification loss
in the form of

Lsof t =
1

|TriSet |

|T r iSet |∑
k=1

− log *
,

efyk∑
j e

fj
+
-

(5)

where fj is the j-element of the prediction score f .
Spherical Loss. In addition to optimize the euclidean loss of the
features, we introduce the angular margin based spherical loss
which minimizes the angular distances between features to im-
prove the results with only euclidean distances based losses like



triplet loss, softmax loss. Futhermore, as claimed in [24], spher-
ical loss can help to learn more discriminative features for fine-
grained task. Specifically, we denote the output as xk ∈ X ={
fθ (si ) , fθ

(
p+i

)}
(si ,p+i ,p

−
i )∈T r iSet

, where fθ (si ) represents the

sketches and fθ
(
p+i

)
represents positive photos. Since the spheri-

cal loss is based on classification task, in order to leverage it, we
make the pairs of sketches and positive photos xi as the same class
which are annotated with label yi .

A fully connected layer(with the weight matrixW ) is employed
to implement the spherical loss, after inserting the cos term, we can
rewrite the fully connected layer as follows,

WT
j xk =




W
T
j



 ·



xk 

 · cos
(
θ j,k
)
, (6)

WT
yk xk =




W
T
yk




 ·


xk 

 · cos

(
θyk ,k

)
(7)

where θ j,k indicates the angle between vector WT
j and xk . For

simplicity, we normalize 


Wj



 = 1 and suppose all bias bj = 0.

Then we add an angular marginm to make the decision boundary
more compact and we will have the spherical loss function Lsphe
in the form of

Lsphe (xk ) =

1
|TriSet |

∑
k

− log
*..
,

e ∥xk ∥ ·cos
(
mθyk ,k

)
e ∥xk ∥ ·cos

(
mθyk ,k

)
+
∑
j,yk e

∥xk ∥ ·cos (θ j,k )

+//
-

(8)

where θyk ,k should be in the range of
[
0, πm

]
. The decision bound-

ary is cos (mθ1) − cos (θ2) for binary-class case andm ⩾ 1 is the
margin constant.We setm = 4 in our case. To remove the restriction
on the range of θyk ,k and make the function optimizable, we can
expend cos

(
θyk ,k

)
by generalizing it to a monotonically decreasing

angle function ϕ (θyk ,k ) . Therefore, the spherical loss should be

Lsphe (xk ) =

1
|TriSet |

∑
k

− log
*..
,

e ∥xk ∥ ·ϕ
(
θyk ,k

)
e ∥ |xk ∥ ·ϕ

(
θyk ,k

)
+
∑
j,yk e

∥xk ∥ ·cos (θ j,k )

+//
-

(9)

where ϕ
(
θyk ,k

)
= (−1)t cos

(
mθyk ,k

)
− 2t , θyk ,k ∈

[
tπ
m ,

(t+1)π
m

]
,

t ∈ [0,m − 1].
As the spherical loss was first proposed to solve face verfica-

tion tasks[24], we first introduce it in SBIR task as a part of the
classification loss to constraint the features in angular margin. In
experiments, we show the spherical loss can cooperate well with
other losses.
Center Loss. The center loss targets at minimizing the intra-class
variations. It is formulated as,

Lcenter =
1
2

m∑
i=1




xi − cyi




2
2 (10)

where cyi is the center of the yi th class of deep features. Note that
in practice, it is difficult to compute the center of all training data in

one class. There are two modifications are made here in computing
Eq (10): (1) Rather than use the centers of all training data, we use
the center of each mini-batch; (2) To avoid the large perturbations
of wrong data, we add a hyperparameter α to control the update of
center. As the update equations below,

ctj = ct−1j − α∆ct−1j (11)

∆ctj =

∑m
i=1 δ (yi = j )

(
c j − xi

)
1 +∑mi=1 δ (yi = j )

(12)

where δ (yi = j ) = 1 when yi = j and δ (yi = j ) = 0 otherwise. In
this way, we can use the center loss for training better discriminative
features.

5 EXPERIMENTS AND RESULTS
Our model is evaluated on the datasets listed in Sec. 2.2. On the
datasets without human triplet annotations, we randomly sample
triplets as training triplets. We employ DenseNet-169 pre-trained
on ImageNet-1K dataset as the feature extractor in each branch. We
replace the final classifier layer with a fully connected layer which
has the output size of feature size. The model is optimized by Adam
algorithm with initial learning rate of 0.0002. All input images are
randomly cropped into 225 × 225 for each branch. On HPSD, the
model converges in 10 epochs; totally it takes 3 hours by NVIDIA
1080Ti GPU card.

5.1 Main Results
We compare several baselines here. (1) TripletSN [40] employs
triplet Siamese network which is trained by triplet loss. They use
Sketch-a-Net [41] as their feature extractor. (2) DSSA [32] improves
the TripletSN by attention based network and triplet loss with
higher-order energy function. These modifications boost the per-
formance on SBIR tasks. Further, we evaluate the methods of using
hand crafted features. As in [40], we have three additional competi-
tors. (3)HOG+BoW+RankSVM uses HOG and BoW descriptors as
features for ranking; (4) Dense HOG+RankSVM utilizes 200704-d
dense HOG features extracted from images. (5) ISN Deep+RankSVM
use the improved Sketch-a-Net as the feature extractor and the
features from fc6 layer will be fed to RankSVM for ranking. In these
three baselines, we use RankSVM to predict the ranking order of
edge maps in collection for a query sketch. Furthermore, we also
report the results of ICSL [38], Deep Shape Matching [27], LDSA
[26], USPG [21], Sketchy [29].
Results.We report results of iSBIR task on the benchmark datasets
in Tab. 4. On all datasets, our network achieves the best performance.
This validates the effectiveness of our models.

Our model outperforms the second best methods by a large
margin on QMUL-chair and Hairstyle Photo-Sketch datasets. On
HPSD dataset we report the performance by using both simple
sketches , i.e., HPSD (s) and complex sketches, i.e., HPSD (c).

On Sketchy datasets, our model also performs much better than
edgemap-based methods such as TripletSN [40] and DSSA [32]
due to the fact that the photos in these two datasets contain rich
background and texture information. Additionally, Sangkloy et al.
[29] also used raw photo and achieve relatively high accuracy on
Sketchy dataset.



Method QMUL-Chair (%) QMUL-Shoe (%) QMUL-Shoe v2 (%) Sketchy(%) HPSD(s) (%) HPSD(c) (%)
HOG+BoW + rankSVM 28.87 17.39 0.29 – – –
Dense HOG+rankSVM 52.57 24.35 11.63 – – –
ISN Deep + rankSVM 45.36 20.87 7.21 – 12.00 12.00

ICSL [38] 36.40 34.78 – – – –
Deep Shape Matching [27] 81.40 54.80 – – – –

LDSA [26] – – 21.17 – – –
USPG [21] – – 26.88 – – –
Sketchy [29] – – – 37.10 – –
Triplet SN [40] 72.16∗ 52.17∗ 30.93 21.63 41.50 41.50
DSSA [32] 81.44∗ 61.74∗ 33.63 – 45.00 45.50
TC-Net 95.88 63.48 40.02 40.81 64.00 68.50

Table 4: Results of instance-level SBIR on five benchmark datasets. The numbers represent the top-1 retrieval accuracy. ∗:
results reported in [32, 40].

Losses QMUL-Shoe (%) QMUL-Chair (%) QMUL-Shoes v2 (%) Sketchy (%) HPSD(s) (%)
Triplet 26.96 81.44 29.43 18.38 49.00
Centre 21.74 61.86 6.61 0.11 18.50
Sphere 23.48 75.26 1.20 10.45 44.00
Softmax 26.09 82.47 23.12 17.28 36.00

Triplet+Centre 59.13 92.78 34.89 12.87 56.00
Triplet+Spherical 57.39 96.91 38.74 41.22 63.00
Triplet+Softmax 59.13 91.75 37.84 35.19 63.00

TC-Net 63.48 95.88 40.02 40.81 64.00
Table 5: Ablation study of combining different losses. The deep architecture of TC-Net is kept the same for all variants. We
only use different combinations of loss functions.

Method Q-C (%) Q-S (%) HPSD (%)
DSSA [32] 81.44 61.74 42.50

TC-Net (Edge Map) 57.73 31.30 35.50
TC-Net (RBG image) 85.57 56.52 54.50

Table 6: Results of different inputs of TC-Net. Q-S and Q-C
refer to QMUL-Shoe andQMUL-Chair datasets, respectively.

The results on the series of QMUL-Shoe datasets, i.e., QMUL-
Shoe and QMUL-Shoe v2 are also shown in Tab. 4. Not like HPSD
and Sketchy datasets, these datasets are mainly about simple shoe
objects. So the extracted edge maps are clear enough to help train
the network. However, our model still work better than other base-
lines on these datasets. This proves the great capability of TC-Net
on extracting discriminative and representative features for both
sketches and photos which shows the effectiveness of classification
loss for iSBIR task.

5.2 Ablation Study

Combination of different losses. We analyze the function of the
differene losses by reporting performances of various combination
of different losses in Tab. 5. We use the same TC-Net architecture
for all the combinations and just vary the loss functions.

This ablation study can help us understand the role of each loss
in our TC-Net.

R-10 R-20 R-50 H-L
TripletSN[40] 71.13 77.32 78.35 78.35
DSSA[32] 78.35 84.54 79.38 82.47
TC-Net 87.63 89.69 86.60 95.88

Table 7: Results of different triplet sampling methods on
QMUL-Chair. R-10, R-20, and R-50 indicate randomly gener-
ating 10, 20, and 50 triplet pairs for each query sketch. H-L
represents the human labeled triplet pairs.

Specifically, we discuss the question that whether auxiliary clas-
sification loss can help the triplet loss to learn better feature rep-
resentions for iSBIR task. It is obvious that triplet loss play an
important for a retrieval task, while some classification type loss
can also achieve a good performance on some datasets like softmax
loss on QMUL-Chair dataset. But the combination of triplet loss
and classification loss can boost the performance than only using
triplet or classification loss. It demostrate the effectiveness of the
auxiliary classification task in our TC-Net.

We may also find that the combination of triplet loss and spher-
ical loss achieves even better performance on QMUL-Chair and
Sketchy datasets which shows the constraint on angular space is
important to help bridging gaps between sketches and photos. The
final results of TC-Net validates the robustness and capacity of our
model which hit best accuracy on most datasets.
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Figure 4: Retrieval results for different methods, the correct results are highlighted in green rectangulars.

Edge map vs. RGB Photo. We also compare our TC-Net on both
edge map input and rgb photo input in Tab 6. The pre-defined edge
maps by Yu et al. [40] are used to train our model. It is clear that our
model works much better by using RGB photos. These results show
that it is not suitable to use deep model which is pre-trained on rgb
photos dataset to learn the discriminative features from edge maps
data. In another way, it shows the complex pre-train process in
[32, 40] is necessary when taking edge maps as input. In conclusion,
this ablation study reveals one improtant merit of our model that
we can skip the complex pre-training procedure but achieve even
better performance at the same time.
Triplet Selection. Furthermore, we also study how triplet selec-
tion affects the performance. To reveal the insights of this problem,
we further conduct the experiments on QMUL-Chair dataset, which
has the triplet annotations contributed by human [40]. Neverthe-
less, such human annotations are very expensive in practice. In
contrast, a naive and straightforward way of triplet selection is just
random selection. Specifically, given a query sketch, we can get its
corresponding photo as the positive image, and randomly sampling
from the others as the negative photos. By virtue of such a way,
we can produce the triplet pairs by randomly generating 10, 20, 50
triplet pairs for each query sketch. The sampled triplet pairs are
used to train the corresponding models. The whole experiments
are repeated for 5 times; and averaged results are reported for R-10,
R-20, and R-50. In Tab. 7, it shows that the human labelled triplet
pairs can indeed benefit the performance of our model. However,
how to manually choose the appropriate triplets for training is
still a nontrivial, difficulty and time-consuming task for human
annotators.

5.3 Qualitative Visualization
In Fig. 4, we list serveral retrieval results from different methods.
The correct retrieval results are highlighted with green rectangulars.
From the results in Fig. 4, we can find our model is better at find-
ing fine-grained similarity between the photos and sketches. For
example, when given the query sketch like second chair example

with ‘X’ structure, our system can find all the similar photos with
such detail. Futhermore, when use the shoe sketch with shoelace
and high heel like first shoe example, our system also retrieval the
correct sample and other relevent results. These qualitative results
demostrate our system can learn more discriminative features for
iSBIR task.

6 CONCLUSION
This paper demostrates the limitations in previous iSBIR systems
which convert photos to edge maps first for retrieval by extensive
experiments. To address these limitations, we propose a new iSBIR
system, namely, Triplet Classification Network(TC-Net) which con-
sists of triplet Siamese network and an auxiliary classifcation loss to
help learning more discriminative features. Our model achieves best
performance on serveral benchmark datasets. Both the qantitative
and qualitative results show that our model can lean fine-grained
details than previous works for iSBIR task.
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