Image and Vision Computing 20 (2002) 397-414

image
vision
COMPUTING

www.elsevier.com/locate/imavis

The dynamics of linear combinations: tracking 3D skeletons
of human subjects

Eng-Jon Ong”™, Shaogang Gong

Department of Computer Science, Queen Mary and Westfield College, University of London, London E14NS, UK

Received 16 October 2000; accepted 18 December 2001

Abstract

We propose a general framework for addressing three fundamental issues using linear combinations: (1) the properties of the examples to
linearly combine, (2) the constraints, and (3) the method for estimating the linear combinations coefficients for reconstructing an object based
on noisy and incomplete visual observations. To this end, we synthesise the necessary examples from known data using principal component
analysis. Crucially, the dynamics of the object is dealt with by learning spatio-temporal constraints on the coefficients of the linear
combinations. The CONDENSATION framework was adopted to estimate the coefficients for legitimate and plausible linear combinations.
Finally, we apply the linear combinations framework to track 3D skeletons of human subjects using a hybrid representation. © 2002

Published by Elsevier Science B.V.
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1. Introduction

Linear Combinations of Examples [2] have been used to
tackle various computer vision problems. A set of examples
for an object, which has undergone different transforma-
tions, is linearly combined together to make a novel
example. As a result, the dynamics of the object are
modelled implicitly by this method. However, there are
three fundamental issues about the Linear Combinations
of Examples method.

1. The properties of the examples to linearly combine. How
many examples are needed to reconstruct any valid
instance of an object of interest? What are the examples
required for this linear combination?

2. Constraints on the linear combinations. How do we
constrain the linear combinations such that only plausible
results are acquired?

3. Estimating the valid coefficients for the linear combina-
tions to accurately reconstruct the object of interest,
given incomplete and noisy observations.

The aim of this paper is to address these issues in the
general context of linearly combining examples of an arbi-
trary representation. To this end, we propose a framework
under which we can learn the sufficient examples, determine
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how many are needed, learn the constraints for the linear
combination, and later incorporate this together with
temporal information to estimate the valid coefficients for
reconstructing some object via Linear Combinations of
Examples. The components of the framework and their
relations to each other is shown in Fig. 1.

We also present details on applying this framework to the
challenging task of tracking the 3D skeleton of a human
subject. In this context, the linear combinations method
acts as a form of inference engine, whereby the 3D skeleton
is inferred (reconstructed) from incomplete information
(visual cues) using knowledge in the form of a set of
examples and spatio-temporal constraints on how the exam-
ples can be combined together over time.

1.1. Background and related work

The earliest use of the Linear combination method to
combine prototypes of some sort was for recognition on
3D objects [2]. In this paper, 3D objects undergoing rigid
transformations were recognised by attempting to recon-
struct its projection using a linear combination of different
views of the same object. This was extended for matching
line drawings by linearly combining known prototypes
pictures. Another area, which has made use of the linear
combinations method, was in modelling and tracking
deformable models using Point Distributed Models
(PDMs). One use was for tracking humans across a scene
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Fig. 1. This figure shows our dynamical linear combinations framework. The ellipses represent functions while the rectangles represent data. The thin arrows
represent data being fed into the functions. The results of the functions are denoted by the thick arrowed lines. The framework’s components are collected into
two major parts. The first part consists of the linear combination method’s components: the examples, coefficient constraints and the methods for obtaining
them. The second part performs estimating the coefficients of the linear combination for reconstructing an object of interest in input images.

by modelling shapes of their body silhouettes [5]. A robust
search method for recovering the PDM shapes was then
proposed in Ref. [6]. Another use was for tracking PDM
models of hands with the addition of constraints on the
possible linear combinations, allowing more accurate and
robust tracking [7]. This approach was taken further in Ref.
[9] for tracking 3D skeletons of human subjects by replacing
the PDM model with a hybrid representation combining
different modes of information together, (3D skeleton and
2D PDM shapes). Another area which utilises this method is
for reconstructing faces using Principal Component Analy-
sis (PCA) [10] to learn the examples to linearly combine.
The reconstruction has been used for both high-compression
coding of face images for video compression [11,12] and
face recognition [13].

1.2. Overview of the paper

The following sections are organised into two main parts.
The first part consists of details on the framework for learn-
ing the parameters for linear combinations and later, recon-
structing objects. An overview of this framework is given in
Section 2. The details of this framework are provided in
Sections 3 and 4.

The second part concerns the use of this framework for

tracking 3D skeletons of human subjects. We have adopted
the representation introduced by Bowden et al. [9] for this
task. The details of this representation and the methods for
associating its components with observable visual cues in
the input images will be described in Section 5. Results of
tracking the 3D skeleton of a human subject are shown and
discussed in Section 5.4. In Section 5.5 we tackle the effects
of self-occlusions in our representation by introducing a
method for modelling the ambiguities in hybrid
representation data. This ambiguity model also provides
us with a mechanism for tracking across multiple views
by view selection amongst views in a multi-camera setup,
as described in Section 5.6. The results of the view selection
process is shown in Section 5.7 before we conclude in
Section 6.

2. An overview on a dynamical linear combinations
framework

We now provide an overview on our dynamical linear
combinations framework shown in Fig. 1. The framework
is split into two main parts. The first part consists of the
components for the linear combinations of examples: the
examples and coefficient constraints. Given a set of training
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Fig. 2. An illustration of needing sufficient examples for reconstructing objects on the left and the need for constraints on the coefficients for linear

combinations on the right.

data, we first tackle the issue of learning the linear combina-
tions examples using PCA. Second, we project the training
data onto the global eigenspace and model it with piecewise
localised clusters. These clusters will act as the constraints
for the coefficients. The examples and coefficient constraints
will serve as spatial constraints in the estimation process.
The full details of the components of this part are given in
Section 3.

The other major components fall in the coefficient
estimation process part. The structural dynamics of the
coefficients is learnt to provide temporal constraints. The
spatial and temporal information is then integrated together
into the CONDENSATION framework for estimating the
coefficients for reconstructing an object based on observable
visual cues from input images. The estimated coefficients
are then used to linearly combine the examples to recon-
struct the object of interest in each input image. The details
of this part are given in Section 4.

3. Representation for linear combinations and learning

In this section, we address two issues concerning the
method of linear combinations of examples. The first

Fig. 3. An illustration of sufficient example vectors for reconstructing all the
training data (shown as black circles) using the linear combinations method.
The plane upon which all the training data falls is shown with dashed lines.

involves obtaining a sufficient amount of examples which
captures enough variations in the configurations of the
object we wish to reconstruct. The issue then arises of
constraining the linear combinations to generate only valid
objects. Both issues are shown in Fig. 2.

For tackling both the issues described earlier, we have
adopted the Hierarchical Principal Component Analysis
(HPCA), a non-linear PCA [8,9]. Briefly, this method
consists of two main parts:

1. To reconstruct all the training data using the linear
combination method, we only need examples which
together span the subspace occupied by the training
data. To do this, PCA is used to recover the necessary
and sufficient examples for linear combinations. The
result is a lower dimensional global eigenspace, on to
which all the training data will be projected. The details
are described in Section 3.2.

2. However, the projection of data into the global eigen-
space often occupies non-linear regions. Thus, the second
part serves to model these non-linear regions using piece-
wise clusters. We will also find that these clusters will
serve as the constraints on the possible linear combina-
tions which can take place. Section 3.3 will provide more
details.

3.1. Linear combination of examples

First, we provide details on the linear combination of
examples, given an arbitrary N-dimensional representation
(i.e. a system with N variables for tracking). Suppose we
have, a set of (E) example instances, {e;,e,,...,eg}, of this
representation, we can reconstruct a novel instance (n) by a
linear combination

E
n= Zﬂlie[ (1)
i=1
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Fig. 4. An illustration of the articulated object with three vertices.

where the set of coefficients for the linear combination is
{al’az,"',aE}’

3.2. Learning the examples for linear combinations

We now describe the method for synthesising the suffi-
cient number of examples for reconstructing novel instances
of an arbitrary representation. First, we provide a few defi-
nitions. We define an instantaneous state of a N-variable
system with s = {s1,5,,...,5y}. We also define a training
data set as T = {7, 1,, N Y }, where Nr denotes the total
number of training examples and t; = {;,7;5,.... 45 }-

We now provide a simple example of what constitutes
sufficient examples for reconstructing the training data with
linear combinations. Suppose we have a system with three
variables, {x,y,z} (see Fig. 3). The state of the system can
be defined by a three-dimensional vector. We also have a set
of 3D training data, all of which falls onto a plane. In order
to reconstruct all the training data, only two linearly inde-
pendent vectors, {e;, e, }, lying on the training data plane are
required. To reconstruct the training example, t, we linearly
combine the e; and e, as follows

t= a e + a,e,

where {a;,a,} are the coefficients for the linear combina-
tion. This is shown in Fig. 3, where these coefficients are just
the projections of t onto e; and e,.

We extend the above example to a more general case,
where the number of examples is given by, E, and the
basis examples for linear combinations defined as
{e,....,eg}. In the general case of an N-variable system
with the training set, T, we often find that the training
data only occupies a lower dimensional subspace. We use
PCA to determine this subspace, providing us with a set of
orthonormal basis examples, {ej,...,ey}. Each basis
example lies on the directions of maximal variations in
the training data. Associated with each basis example, e;,
is its eigenvalue, A, representing the variance of the training
data along its respective direction. The number of sufficient
basis examples (E) for reconstructing the training data can be
found by retaining only those with a significant eigenvalue.
Basis examples with small eigenvalues are rejected on the
assumption that they are caused by noise in the training data.

These basis examples can then be linearly combined to
generate novel hybrid vectors since they span the subspace
of the training data. Thus, PCA has provided us with a
method for synthesising the required examples for linear
combination. Obtaining the coefficients, {a;, a,, ...,ag} for

a training example, t, is done simply by projecting it into the
normalised global eigenspace

N
_N\ 4ili
aj = /\
i=1 7Y

wherej € {1,...,E}, A;is the eigenvalue of the jth example,
e;; and t; are the ith component of the jth basis example and
training example, respectively. For this reason, from now
on, we will identify the eigenspace as the coefficient space.
However, while PCA has provided us with example bases
for generating novel vectors, these may also include invalid
reconstructions.

@

3.3. Learning constraints on the linear combination
coefficients for validity

Having shown how to obtain the necessary examples for
linear combinations, we now address the problem of learn-
ing the constraints on the linear combination coefficients.
The need for placing constraints on the coefficients is illu-
strated with a simple example of a 2D hierarchical articu-
lated object (see Fig. 4). The articulated object has three 2D
vertices, p;, p» and ps.

A hierarchical structure is imposed on the vertices of this
object. The vertex, py, is the parent of all the vertices. The
second vertex, p,, is linked to p;, and the third vertex p;, is
linked to p,. Therefore, both p, and p; are affected by any
transformations on p;. Additionally, any transformation on
p» affects p;. Next, we make a ‘transformation-unified’
representation for the articulated object by concatenating
all its vertices into a six-dimensional vector o = (p;,,
PlysP2.x> P2y P3x>P3y)- The dynamics of this articulated
object is defined by the kinematics equations,
(fi(6, d),....fs(0, @), defined in Appendix A, which
produces the values for the components (p; x, Pi.y» P2x» P2,y»
D3 P3y), Tespectively. An illustration of the articulated
object and its kinematics parameters can be seen in Fig. 4.

Suppose we have a set of training data generated by
different combinations of the kinematics parameters (6,
¢). Using PCA as described in Section 3.2, we obtain the
basis vectors {e;,e,,...,eg} where E=6. These basis
vectors will be the axes of the E-dimensional coefficient
space. The equations, which all the coefficients must satisfy,
can be found by projecting the kinematics equations onto
the normalised eigenspace giving the constraints

1
¢ = x(ei,Lfl(ea ) + €i2f2(0, d) + €;3f3(6, ) + e 4f4(6, D)

+ €;5/5(0. d) + e;6f6(6, §))
3

where i € {1,...,E}, ¢, = {e;1,€;5,....,¢;6} and A; is the
eigenvalue of e;. For all values of 6 and ¢, the ith coefficient
must satisfy Eq. (3) to reconstruct a valid form of the
articulated object. The constraint surface for all the valid
coefficient sets is visualised in Fig. 5.
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Fig. 5. Visualisation of the constraint surface for Eqs. (A1)—(A6).
Displayed here are points with coordinates (c;, ¢», ¢3), produced using
different parameters 6 and ¢ for the articulated object shown in Fig. 4.

From this, it is clear that the articulated object’s valid
configurations can only be reconstructed by choosing coef-
ficient sets which lie on a non-linear surface in the coeffi-
cient space. The shape of the constraint surface (or high
dimensional volume in a more complex case) is determined
by the constraint equations, for example, Eq. (3) in this case.
Often, these constraint equations can become very complex.
Therefore, it may not be realistic to explicitly model the
constraint equations. Moreover, in many cases, the under-
lying dynamics are unknown.

Seeking a more general solution, we model the
constraints using a set of piecewise linear clusters. Given
a set of training data, we first project all the examples in this
set into the coefficient space. We then use a predetermined
number (N of clusters, {cy,...,ey, }, to model the
projected training data. Each cluster (c¢;) consists of a
mean position (w;), a set of eigenvectors (P;) and its corre-
sponding eigenvalues (A,); ¢; = (u;, P;, A;). The mean posi-
tions of the clusters are determined using k-means clustering
[14]. The covariance matrix of each cluster is found using
the training data in its partition. The covariance matrices of
all the clusters are then replaced by their eigenvectors and
corresponding eigenvalues.

In this section, we have described how we can create
enough examples for performing linear combinations and
illustrated the importance of placing constraints on the coef-
ficient space. We have also described the means to learn the
constraints using a set of piecewise linear clusters in the
coefficient space.

4. Modelling the dynamics of coefficients for linear
combinations

Having addressed the issues concerning the examples and
constraints on the linear combinations method in Section 3,

we now describe our method for reconstructing objects.
Representing the object with a N-dimensional vector, the
problem at hand is to estimate the coefficients
({ay,ay,...,ag}) for the linear combination of the known
examples ({ej,...,er}) such that an object (n) of interest
is reconstructed accurately. In practice, we do not know
the actual values of the object (n). However, we may
have an approximation (i) acquired from using visual
observations (e.g. by deforming an initial model to some
visual observations representing the object). This approxi-
mation (i) may be corrupted by noise in the observations
and ambiguities in the deformation process. Therefore, the
task now is to remove the corrupting elements from the
deformed object. This entails reconstructing the closest
object to (i) using linear combinations. Mathematically,
this involves obtaining the coefficient set ({a;,a,,...,ag}),
which minimises the magnitude of the ‘approximation resi-
duals’ vector (resy,...,resy),

resy = ny — Cl1€1,1 + (/1262‘1 + .+ aEeEyl

€S, = ny, — alel,z + a2€2,2 + -+ QEEE’z

IeSy = ny — alel’N + azeng + -+ aEeE,N

where n = (ny,n,,...,ny) represents the object’s current
state. The ith example vector’s components are denoted
by (e; 1, €25 €in)-

Typical methods for minimising these equations (i.e.
obtaining the appropriate coefficients) involves some form
of least-squares minimization [2,15] or other optimisation
procedures [6,16]. We have adopted the CONDENSATION
[17] framework, which estimates the coefficients by track-
ing them over time. That is, this algorithm allows spatio-
temporal knowledge to be used, allowing for a more robust
tracking. The spatial knowledge consists of the learnt coef-
ficient space (global eigenspace) and constraints (piecewise
clusters) as described in the Section 3. The temporal knowl-
edge is modelled with two methods. For modelling the
‘structural dynamics’ of coefficients, we adopt a Markov
model of transition probabilities between the different
piecewise clusters, as described in Section 4.1. On the
finer scale within the clusters, we simply use Brownian
motion (random displacements). An overview of the
CONDENSATION framework is given in Section 4.2.
The full details of the framework can be found in Ref. [17].

In this context, the CONDENSATION framework
consists of an algorithm working on a set of samples.
Here, a sample is a coefficient set for a single linear combi-
nation. The algorithm basically propagates the samples in
the coefficient space based on learnt dynamics of the coeffi-
cients. The samples are rated on how well they fit the obser-
vable data which is used in the next iteration’s propagation
step. Here, the use of multiple samples serves as a mechan-
ism for having multiple hypotheses, allowing recovery from
failure in tracking.
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Fig. 6. The transition matrix is illustrated in this diagram. The left image
illustrates the clusters and the transition probabilities to other clusters.

4.1. Learning the dynamics of coefficients

We have described the method for modelling the exam-
ples and constraints for the linear combinations in Section 3.
However, these do not provide any information on the
dynamics of the state vectors and how the linear combina-
tion’s coefficients will evolve over time. Knowing the
dynamics of the coefficients can add further constraints to
reduce ambiguities while estimating the coefficients. This
provides the advantages of increasing the robustness as well
as the computational efficiency of the estimation process,
and avoiding invalid reconstructions. The rest of this section
provides details on modelling the structural dynamics of the
linear combinations coefficients using a Markov process [7].
The states of the Markov model are the piecewise clusters
described in Section 4.1. To account for potential large
discontinuous behaviours in the dynamics, each state is
fully connected to all the other states. Thus, a point belong-
ing to one cluster has the ability to move to any other clus-
ters at the next time step. The probability of it jumping to
another cluster is given in the transition matrix (U) of the
Markov model. This is shown in Fig. 6.

The ith row vector of the transition matrix (U)
consists of the transitional probabilities of the ith clus-
ter. The transition matrix can be constructed as follows.
Starting with a zero transition matrix, for every frame
of a training sequence, the memberships of the current
and next frames’ state vector’s clusters are found. If the
current frame belongs to ith cluster and the next frame
to the jth cluster, the element of the ith row and jth
column of the transition matrix is incremented. This is
done for all the sequences. Finally, the values in each
row vector of the transition matrix are normalised.

4.2. CONDENSATION for propagating coefficients

We now briefly outline the CONDENSATION algorithm.
First, we define a sample as a point in the coefficient space
(i.e. a coefficient set). Associated with each sample is a
probability measure indicating how well it represents the
real value. Initially, all the samples are assigned equal
probabilities and their components are randomly distributed

within their constraints. The algorithm then iterates over the
following steps:

1. The first step involves the selection of future samples
based on their probabilities.

2. The selected samples are then propagated based on some
model of their dynamics. This propagation step has the
equivalent effect of predicting the future state of the
samples.

3. The accuracy of the prediction is then determined in
the next stage of measuring how well each sample ‘fits’
with the observation data. The probabilities of the
samples are updated in proportion to its fitness value.

In adapting the algorithm for estimating the linear combi-
nations coefficients, the sample prediction step is modified
to make use of the transitional probability matrix (U) and
the coefficients constraints (clusters) as described in
Sections 4.1 and 3.3, respectively. This allows the tracker
to propagate samples across different subspaces for coping
with any discontinuities in the state space.

4.2.1. Propagating the samples

The samples prediction step is split into two steps: (1) the
first step involves finding out the new cluster membership,
labelled as b, for a sample at time 7, sﬁ,, based on the transi-
tional probabilities given by the ath row vector of the transi-
tion matrix, where a is the sample’s current cluster
membership; (2) the new position of the sample s is
determined by displacing it linearly in the directions of
the principal components of the clusters

S —

n

S,(lt) + PbAbQ’ a=2>b
)

Wy + PbAbQ’ a#b

where w,, P, and A, are the mean, matrix of the principal
axes, and eigenvalues of the bth cluster, respectively.
consists of the vector whose elements are unit Gaussian
distributed random values [7].

The position of the new sample, s ,(,” D , is then constrained
to lie within the bounds of its newly assigned cluster ¢;. This
is done by projecting the sample as follows:

r=s;""TP,A, " (5)

The restriction is made to obtain a plausible reconstruction
for this sample. All the elements of r are then limited to lie
within the range of —1 to +1. Any element outside the
bounds of this range is set to 1 or —1, respectively.

The sample’s elements are then reconstructed by taking a
linear combination of the principal components of cluster ¢

s'*D = AP/T. (6)

The estimated state vector (v) is reconstructed from the
components of a given sample in the same manner, by
taking a linear combination of Ng, number of global
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and body parts positions (vc). The bottom row shows the corresponding skeleton (vr).
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4.2.2. Measuring the samples’ fitness

The accuracy of the reconstruction, v is determined by
P(Z'ls;), which calculates the probability of this sample
state generating the observable data, Z'. This function has
the effect of ‘relating’ the estimated reconstruction of, s.,, to
the input measurements. For example, when v represents the
contour of a shape and the input measurements are edge
features, P(Z'[s},), can be a function which calculates how
much each vertex of the shape’s control points has to move
to its nearest edge. The sample vector with the highest
fitness value is selected and its reconstruction is used.

5. An application: tracking the 3D skeleton of a human
subject

In this section, we describe an application of the dynami-
cal linear combinations method for tracking the pose of a
person. We have chosen to represent the pose with a rough
3D skeleton model of a human subject. Related methods for
tracking 3D models in individual views include the use of
inverse kinematics for estimating the rotational parameters
[18]. Other common methods for tracking 3D models uses
primitive solids such as superquadrics [19,20] or cylinders
[21]. Alternatively, a procedure together with a similarity
measurement can be used to compute the parameters of a 3D
skeleton [19,21].

We have adopted the hybrid representation introduced by
Bowden et al. [9]. Different modes of information are
combined into a unified representation. In using the linear
combinations framework with this representation, it was
found that the examples used also encode the correlations
between different modes of information. The different infor-

mation combined includes shape, body parts positions and
the corresponding 3D skeleton. The details of the hybrid
representation are given in Section 5.1. In order to measure
how well an instance of the hybrid representation represents
the subject’s actual pose, a representation—image measure-
ment function is introduced in Section 5.2. We then describe
the results of learning the examples and their constraints for
tracking using linear combinations in Section 5.3. Examples
of tracking are shown and discussed in Section 5.4.

To make the tracking more reliable, we introduce
mechanisms to allow this method to be used in a multiple
camera setup. We start by modelling the ambiguities present
in the representation to be described in Section 5.5. We then
use this ambiguity model to select the least ambiguous view
amongst those provided by different cameras. Finally, we
show some results of view selection in Section 5.7.

5.1. Hybrid representation for tracking 3D skeletons

The hybrid representation is the combination of two types
of information; observable data and data to be inferred from
the former components. The observable data are 2D
features, including the 2D shape of a person’s body and
the positions of some body parts, both of these features
can be directly measured from the image. The contour of
a person’s silhouette is represented by a PDM. It consists of
N¢ 2D vertices, Vg = (X}, Y1, ---» Xy, YN, )» distributed evenly
across the entire contour. The body parts are represented by
the positions of the left hand (x;, y; ), the right hand (xg, yg)
and the head (xy, yy). The positions of left and right hands
are concatenated into a vector, vc. The head is used as an
alignment point for both the body parts and the contour.
Therefore, the coordinates of the contour vertices and
hand positions are all made relative to the position of the
head. Finally, the corresponding 3D data, which consists of
Nt 3D vertices of a skeleton, is similarly concatenated into a
vector (vy). Here, the 3D data were obtained manually. This
was achieved by firstly determining the length of the
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Fig. 8. The weight distribution of eigenvectors in the global eigenspace
used to represent the hybrid 2D-3D state vectors.

skeleton bones using an image of a subject with his limbs
stretched out. Following this, the 3D skeleton information of
the subject at different poses was determined in two steps.
First, the 2D image positions of the body joints of a subject
were located. Second, using the predetermined bone lengths
and 2D joint positions, spherical coordinates can be used to
recover the depth information of a joint. A state vector, v =
(vs, Ve, V1), therefore is a hybrid concatenation of three 2D—
3D components: 2D shape contour, 2D body parts positions
and their 3D skeleton vertices (see Fig. 7).

5.2. Measuring the hybrid representation against the
observation data

Given a hybrid representation vector v = (vg, V¢, V1), the
accuracy of both the shape contour (vs) and the body parts
(vc) are measured individually before combined to yield a
final fitness value. More precisely, a prediction accuracy (fs)
for the contour can be computed as follows:

1. Assign the prediction accuracy, fg = 0.

2. For N¢ vertices of a contour:
(a) find the distance (s) from each 2D shape vertex
position to the pixel of greatest intensity gradient by
searching along its normal;
(b) compute fg = f5 + s.

We now consider how to measure the accuracy of the
state vector’s predictions for the body parts’ positions,
(X1, ¥p1) and (x,, y,2). In each frame, three skin-coloured
regions of interests are tracked corresponding to positions of
the hands and the face [9,22]. Two of these three positions
are taken and ordered into a four-dimensional vector m;, =
(-xml’yml’xmbymZ) where (xml’yml) and (xm27Ym2) are the
coordinates of the first and second position, respectively.
An accurate prediction of the body parts positions would
contain values of (x,,,y,,) which are close to m;. Thus, to
quantify such a closeness value, it would be useful to have a
measure which decreases, as the predicted and observed
body parts positions become closer. To this end, the sum
of the Euclidean distances between the hypothesised and

observed body parts’ positions was used. Formally, this
can be defined as:

fC = \/(xpl - xml)2 + (ypl - ym1)2

+ '\/(xp2 - xm2)2 + (yp2 - ymZ)z- (8)

A final fitness value (f,) for v of the nth sample, (s§f+1)), is
then given by the individual fitness measurements as
follows

fHZOexp(;—jf?)-kRexp(;—]ch) )

where O and R are scale constants that can be employed to
give different reliability weighting to the fitness measure-
ments, fc and fs, respectively. Here, we have heuristically set
both O and R to be 0.5, giving both the body parts’ positions
and contour fitness measurements equal importance. A
more elegant solution to determine the values of O and R
could perhaps be to employ a Bayesian network [1] to
determine the reliability weightings of different types of
information. Constants P and Q represents the amount of
variance or tolerance allowed between the predicted and
observed values for the body parts and the shape contour,
respectively.

5.3. Learning the hybrid representation

Initially, our single view-based skeleton model was used
to track upper torso of people performing a series of differ-
ent gestures. The 2D shape contour was represented using
100 image feature points. The 3D skeleton consisted of 12
vertices for the upper torso. The hands and head were
tracked. Here, only the positions of the hands were used
in the state vector. The coordinates of both the hands and
contour feature points were made relative to the head. This
resulted in a state vector of 240 dimensions. Sixteen contin-
uous sequences were captured and used as training data.
Background subtraction and connected components analysis
[23] were used to extract the shape contour from the
sequence images. The body parts positions were located
by firstly finding pixels which were skin-coloured [22]
which were partitioned into three clusters using the k-
means algorithm [9]. In each sequence, a subject was
requested to perform random gestures.

It was found that 30 eigenvectors accounted for roughly
80 percent of the variance in the global eigenspace (see
Fig. 8). This number was found to be sufficient for tracking.
Additionally, the eigenvectors with smaller variances may
only represent the noise in the training data.

In order to approximate the space occupied by the
projected training examples, a set of cluster models with
different numbers of clusters were built. In total, a total of
10 cluster models, or more specifically, cluster models with
10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 clusters were built.
A visual example of a cluster model with 40 clusters can be
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Fig. 9. An illustration of the projections of state vectors to the three largest global eigenvectors. Training example vectors are shown with the local principal
components of different clusters. The side figures show the reconstruction of moving points along the largest local principal components from the mean of a

* model the body
configurations
constraints

generally
fares better

cluster.
Tracker Error Across Different
Training (Known) Body Motion
The value of the ” Sequences,
error is emphasise
s Sample Numbers (10-90)
graph. Darker shades and Cluster Models (10-100 clusters).
represent lower errors. .
s .
£
3
14 Low number
g of clusters
As the number 2 results in
of samples § comparatively
increase, £ . wosrt errors,
the tracking < : since the clusters
performance 2 : do not accurately
2
%
1
)

0

Number of samples Number of clusters

As the number of clusters

and samples increase, the

tracking estimation of the

training data increases accordingly.

(a)
Tracker Error Across Different
9 Training (Known) Body Motion
Sequences,
Sample Numbers (100-300)
and Cluster Models (10-100 clusters).

A further

increase in the
number of samples
from 100 - 300
does not improve
the tracking
accuracy noticably,
when compared

to increasing the
samples

from 10 ~ 100.

Number of clusters
Number of samples Agreater
number of
clusters results
in a smaller
tracking error

(b)

Fig. 10. The error surfaces of the tracking experiments carried out on
training data when different number of samples and cluster models are used.

seen in Fig. 9. Once the parameters of each of the cluster
models were determined, the training data obtained from the
16 continuous sequences were used to build their corre-
sponding transition matrices.

5.4. Tracking the 3D skeleton

The tracker was implemented on a PC equipped with a
Pentium 200 MHz processor. All the input images were
captured at a resolution of 320 by 240 pixels. The tracking
processing time was between 1 and 3 s for each frame. The
majority of the computation time was spent in obtaining the
measurements probabilities for the samples.

A series of different experiments on tracking the 3D
skeletons using a single view was performed. In order to
quantify the accuracy of the tracking, the mean squared
error of the 3D skeleton vertices was used. For each experi-
ment, a series of tracking tests using different cluster models
and sample numbers were carried out. For the cluster
models, all 10 cluster models described in Section 5.3
were used. Additionally for each cluster model, the lack
of sufficient training examples resulted in a transitional
probability matrix that was not an accurate representation
of its real values, slowing down the transition of the samples
across different clusters. It was found that iterating the
CONDENSATION process for a number of times over the
same frame (five times was sufficient for our experiments)
allowed the samples to converge on the correct subspace.

We also investigate how differing number of samples can
influence the tracking accuracy. To do this, tracking tests
using each of the 10 learnt cluster model was carried with a
tracker configured with sample numbers of 10-90 in incre-
ments of 10 and 100-300 in increments of 50.

To determine how accurately the training poses were
learnt in the HPCA model, the tracker was made to track
the 3D skeleton of the subject in the training sequences. The
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Fig. 11. This figure shows the tracking of 3D skeletons using the CONDENSATION algorithm on the training sequences. Every 10th frame is shown. For each
frame, the left window shows the 3D skeleton, the middle window shows the 3D skeleton projected onto the image and the right window shows the global
eigenspace together with the localised principal components and the samples tracked using CONDENSATION.
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Fig. 12. The error surfaces of the tracking experiments carried out on test
sequences of novel body movements with a different number of samples
and cluster models with different number of clusters.

mean squared error of each of the 3D skeleton’s vertices for
different combinations of cluster and sample numbers can
be seen in Fig. 10. Additionally, a visual illustration of an
example of the tracking results can be seen in Fig. 11.

It was found that as the number of clusters and samples
increased, there was also a general trend for improvement in
the tracking accuracy. The increasing number of cluster
allowed more accurate and realistic body configuration
information to be produced. However, as only training
sequences are used for this experiment, it is not clear as to
how well the tracker can generalise to novel body motions
using the different parameters and cluster models.

The subsequent experiments were used to evaluate the
tracker’s ability to generalise and track novel poses. In
order to investigate the tracking accuracy under fairly
controlled conditions, a blue screen was placed behind the
subject to provide a homogeneous background. The back-
ground was then removed to experiment on tracking a subject
with the presence of a cluttered background. Finally, to eval-
uate the tracker’s performance in generalising to novel
subjects, the fourth experiment was performed with a subject
which is not present in any of the training sequences.

The overall error surfaces for the three experiments are
shown in Fig. 12. From the results, it was observed that the
tracking performance deteriorates and becomes more unpre-
dictable as the number of clusters increase. Such results bear
the implication that cluster models with too large a number
of clusters have over-fitted the data. The resulting transition
matrix for the cluster models would account only for the
training motion patterns. A novel sequence may contain
transitions between clusters that were not modelled using
the training data.

A visual example of tracking with a homogeneous back-
ground can be seen in Fig. 13. Having a homogeneous
background allowed one for a fairly accurate segmentation
of the subject in the input image. The tracker was then able
to accurately compare the contour components of its
samples to the edges of the segmented image. In the
presence of a cluttered background, it was found that the
positions of the hands were important in disambiguating
the poses in the presence of contours matched inaccurately
to spurious edges. A visual example of tracking with a
cluttered background results can be seen in Fig. 14. Finally,
Fig. 15 shows a visual example of the tracking of a novel
subject.

5.5. Exploiting multi-view information

Observations are ambiguous when more than one projec-
tions of a 3D skeleton can be matched. Fig. 16 shows an
example of this phenomenon. We consider that a state
vector’s observation information is ambiguous if there are
many other state vectors which have similar observations
but dissimilar underlying 3D skeleton models. The follow-
ing method measures the degree of ambiguities in the
observations of a state vector.

Let us define an observation subspace of a state vector
(Vc, Vs, v7) to be vg and vc. There are Nc number of vertices
for a shape contour (vg) while the number of tracked body
parts positions is two. Thus, the observation subspace spans
from dimension O through dimension 2N¢ + 4 in the state
vector. We also define a skeleton subspace to be the dimen-
sions of a state vector for all the 3D skeleton vertices. There
are Nt number of 3D vertices for a 3D skeleton. In order to
measure how close the 2D observations in two state vectors
are, we firstly assume that all the observation subspace state
vectors are initially aligned spatially in terms of translation,
scale and rotation on the image plane [3]. The observation-
distance (d,,) between two state vectors x and y is then
defined using the Euclidean distance measure

ONg +4
dop(X,y) = o, + dyg, (10)
where dxg, =x3; —yy; and  dyg, = Xp41 — yai+1. The
smaller the observation-distance, the more similar the
observation information of the state vectors. That is, from
the information extracted from the camera for both state
vectors, the features appear the same.



408 E.-J. Ong, S. Gong / Image and Vision Computing 20 (2002) 397—-414

Fig. 13. Single view tracking using the CONDENSATION algorithm. This shows the tracking of a novel gesture in a controlled environment. The 10th, 17th,
30th, 40th, 50th and 76th frame is shown from top to bottom, respectively. Again, the left window shows the tracked 3D skeleton, the middle shows the input
image and the right window shows the global eigenspace together with the localised principal components and the samples tracked using CONDENSATION.
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Fig. 14. This figure illustrates the tracker working in the presence of a cluttered background. The 3rd, 10th, 14th, 25th, 30th and 42nd frame of the continuous
sequence is shown from top to bottom, respectively. Again for each frame, the 3D skeleton is on the left, the input image on the middle and the tracked samples
in the global eigenspace with the localised principal components on the right.
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Fig. 15. This figure illustrates the tracker working on a novel subject which is not present in any of the training sequences. The 3rd, 16th, 29th, 50th, 61st and
71st frames of the continuous sequence are shown from top to bottom, respectively. Similar to the previous figures showing the tracking results, the tracked 3D
skeleton is shown on the left, the input image in the middle and the tracked samples in the global eigenspace along with the localised principal components on
the right.
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e

Fig. 16. The ambiguous nature of 2D observations in certain views is shown. Despite the fact that the 3D skeleton is changing, there is little difference in the 2D

shape contour and the positions of the hands in the image.

Similarly, to measure the similarity of 3D skeleton
components in two state vectors, we define a skeleton-
distance (d;) between two state vectors X and y as

3Nr
dy(x,y) = > yJdx? + dy? + dz? (11)
i=1

where dx; = x3; — y3,  dys = X301 —y341 and dzg =
X3;+2 — V3i+2. Based on a set of K example state vectors
of the 2D-3D hybrid representation, {y;,y,,...,¥x}, We
now define the ambiguity of an example state vector as

K
a=> Gls;p, 0)f (s3p, B, 1) (12)
=1

where sop = do,(W, y;) and s3p = dy(W, y;). Eq. (12) formu-
lates our notion of ambiguity between a 3D skeleton and its
2D observations in a single view. If two example state
vectors have very similar observations, we would like to
consider the difference in their 3D skeletons. However, if
they are not similar, we would not like to compare them, as
they are two different observations. This is the role of the
one-dimensional Gaussian kernel G(x, o). It returns the
similarity between observations of two example state
vectors. The smaller the observation-distance is, greater is
the similarity. The rate at which this value reduces as the
observation-distance increases is determined by the stan-
dard deviation (o) of the Gaussian kernel.

If they both have similar observations and 3D skeletons,
there is little or no difference in them, the ambiguity ratio
should not be increased, To achieve this computationally,
given that the difference between two 3D skeletons is
quantified by Eq. (11), a translated Sigmoid function is
then used. Formally, it can be defined as:

1
1 +exp(—Bx—1)"

With its monotically increasing property, its role is to weigh

fx, B0 = 13)

down contributions of example state vectors whose ambi-
guity is currently measured. Additionally, the fin Eq. (13)
has the advantage of lying in the range between O and 1.
Such a property allows it to provide a normalised weighting
measure regardless of the scale of the 3D skeletons. Finally,
precisely how dissimilar two skeletons must be before
they are considered to cause ambiguities is determined by
t and B, the Sigmoid’s mid-point and scaling parameter,
respectively.

5.6. Tracking across multiple views

In order to make use of the ambiguity measurement, a set
of K number of example state vectors, {yj,...,yx} of the
2D-3D hybrid representation is provided. The 3D compo-
nents of all the example states are made to be viewpoint
invariant. That is, the transformation caused by a change in
the viewpoint does not affect an example’s associated 3D
skeleton. For example, if two basis set differ from each other
because they were obtained at different viewpoints, their 3D
components (associated skeleton) will be the same. There-
fore, these examples only capture the changes of the 2D
measurements due to different viewpoints for the same
body pose allowing for the recovery of consistently aligned
skeletons despite differences in viewpoints.

The ambiguity, (a;) for each example, (y;) is computed
using Eq. (12) resulting in the set {a, ..., ax }. Given a novel
state vector (n) its ambiguity can be calculated by assigning
it the ambiguity value of its nearest neighbour

an = j|de(n» Yt) < de(na yj)
(14)
Vi, i=1,...,j—1,j+1,..K

where d,(n, y) gives the Euclidean distance between (n) and
(y). This is applied to tracking using multiple views. For
each individual view, the 3D skeleton is tracked using the
CONDENSATION algorithm as described in Section 4. We
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Fig. 17. Example results of the view selection using the ambiguity measurements. The sequence is shown from left to right, top to bottom. Each frame shows
two views, one near frontal and one position diagonally to the user. Below the camera views are the 2D measurements extracted from it (i.e. the contour and
body parts positions). On the left of the contours for each view is a white bar going from the top to the bottom. The length of the white bar indicates the
ambiguity value of the extracted 2D measurements for each respective view. The longer the bar is, more ambiguous the view’s extracted information is. The
view selected is therefore the view with the shortest ambiguity bar. The selected camera view is indicated by two surrounding white rectangles.

select M samples with the highest fitness values given by
Eq. (9). The model state vector (v) is reconstructed from
each sample using Eq. (7). Its ambiguity is calculated using
Eq. (14). We select the sample which has the highest
product of its fitness value given by CONDENSATION
together with its ambiguity value. Different views are
given the ambiguity measurement using the nearest neigh-
bour. We then select the vector which is least ambiguous
and fits the data the best. This can be measured by taking the
product of a vector’s probability for measurement fitness to

the inverse of its ambiguity measurement. Finally, multiple
instances of single view trackers are integrated together
using the ambiguity measurements.

5.7. View selection results

A total of two views were used. Training sequences of a
person performing random gestures were captured simulta-
neously by two cameras at different viewpoints. For each
individual view in each frame, the 2D measurements (i.e.
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contour and body parts positions) were extracted. Using Eq.
(12), each of the measurement was labelled with its ambi-
guity value.

Using the same two views used for capturing the training
sequence, a test sequence was obtained. For each frame in
the training sequence, Eq. (14) was used to determine the
ambiguity of the 2D measurements in each view. Example
results are shown in Fig. 17.

6. Conclusions

In this article, we have addressed three main issues in the
use of the linear combination method: determining the
examples, learning the spatio-temporal constraints on
the linear combination coefficients and finally a method
for estimating the necessary coefficients to reconstruct a
valid object of interest over time. Each object’s configura-
tion is represented as a high dimensional vector of variables.
From this perspective, recovering the examples required for
reconstructing the object’s different configurations implies
modelling its subspace within this high dimensional space.
PCA was used to extract the axes of this subspace, where
each subspace axis serves as a basis example. Thus, the
eigenspace also serves as a ‘coefficient space’ whose points
are coefficient sets for possible linear combinations.
However, when an object undergoes non-linear dynamics,
only a non-linear portion of the coefficient space can
provide coefficients for plausible object reconstructions.
This brings about the need to impose spatial constraints in
the coefficient space. The problem addressed using a collec-
tion of piecewise linear clusters. Additionally, we model the
temporal constraints to account for the non-linear dynamics
of the linear combinations coefficients using a Markov
model. In order to make use of the linear combinations
model, we need a way to estimate its coefficients over
time. To this end, we adopted the CONDENSATION
model for its properties of multiple hypotheses and ability
to use the spatio-temporal constraints for robust estimations.
Finally we gave details and experimental results on the
application of our dynamical framework for linear combi-
nations to track moving 3D skeletons of human subjects.
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Appendix A. Kinematics of a simple hierarchical object
The dynamics of the simple articulated object described

in Section 3.3 can be defined with the following kinematic
equations:

J1(6, d) = g, (AL)

106, 9) = q, (A2)
300, ¢) = r, cos(0) — r, sin(0) + g, (A3)
J4(0, d) = r, sin(6) + r, cos(0) + g, (A4)

f5(0, d) = s (cos(P)cos(0) — sin(P)sin(8)) — s, (sin(¢h)cos(6)

+cos(¢)sin(8)) + r, cos(8) — r, sin(6) + g,
(A5)

J6(0, ) = s,(cos(¢)sin(6) + sin(P)cos()) + s,(cos(P)cos(6)

—sin(¢)sin(6)) + r, sin(f) + ry cos(6) + q,.
(A6)

The articulated object has three 2D vertices, p;, p, and ps.
The kinematics functions (f1(0, ¢), ..., f¢(6, &)) produces the

values for the components (pj,P1y>P2.x0 P2y P30 P3y)s
respectively, r and s are the original local coordinates for

P> and p;3. The position of the object in the world is given by
g. The kinematics parameters 6 and ¢ are the angles of
rotation on p, relative to p; and rotation angle on p; relative
to p,, respectively. An illustration of the articulated object
and its kinematics parameters can be seen in Fig. 4.
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