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Abstract

Human activities are characterised by the spatio-temporal structure of their motion patterns. Such structures can be represented as temporal
trajectories in a high-dimensional feature space of closely correlated measurements of visual observations. Models of such temporal
structures need to account for the probabilistic and uncertain nature of motion patterns, their non-linear temporal scaling and ambiguities
in temporal segmentation. In this paper, we address such problems by introducing a statistical dynamic framework to model and recognise
human activities based on learning prior and continuous propagation of density models of behaviour patterns. Prior is learned from example
sequences using hidden Markov models and density models are augmented by current visual observations. © 2002 Elsevier Science B.V. All

rights reserved.
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1. Introduction

The ability to interpret human gestures and behaviour
constitutes an essential part of our perception. It reveals
the intention, emotional state or even the identity of the
people surrounding us and mediates our communication.
Such human activities are characterised by the spatio-
temporal structure of their motion patterns and can be
modelled as temporal trajectories in a high-dimensional
feature space representing closely correlated measurements
of visual observations. For example, the spatio-temporal
structure of a simple behaviour such as walking towards a
door could be represented by the trajectory of an observa-
tion vector given by the mean position and displacement of
the human body (Fig. 1). In general, an observation vector
can also include among other features the positions and
displacements of a set of salient feature points describing
the shape or the photometric characteristics of the object of
interest [5,9,15,17,18,21]. Such models can find numerous
applications in visually mediated interaction [14], auto-
mated visual surveillance [4] and content-based video
indexing.

Given that human activities can be modelled by structures
of high-dimensional temporal trajectories, gesture and beha-
viour recognition can then be performed by measuring the
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similarity or the distance between such trajectories. Based
on this general concept, recognition of human activities
can be treated as the problem of matching ‘holistic
shape’ templates in a spatio-temporal feature space
[6,14]. However, modelling temporal structures as static
templates can be sensitive to noise and ambiguities. Other
characteristics intrinsic to the nature of motion patterns
and therefore to the spatio-temporal structure of human
activities include:

—

. Covariance in observation measurements.

2. The temporal window of an activity cannot be
constrained. An activity therefore needs to be recognised
based on accumulated information and non-linear
temporal scaling.

3. The occurrence of an activity in time may change result-

ing in ambiguities in temporal segmentation.

To address such problems we adopt a statistical model-
ling approach that can account for the variability in duration
and temporal segmentation of the training samples. In this
paper, we introduce a method for learning both prior knowl-
edge and a model for recognising structures of human activ-
ities in a state space by continuous propagation of density
models of behaviour patterns. We illustrate the method
through (i) the recognition of walking behaviours associated
with people walking between different areas of interest in an
office environment; (ii) the recognition of communicative
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Fig. 1. A behaviour of a walking person from station B to station D in an office with overlaid trajectory. Trajectories are extracted using temporal filtering.

gestures defined within the context of visually mediated
interaction [14] and (iii) the recognition of symbol gestures
representing alphanumeric characters. Fig. 1 illustrates an
example of a walking behaviour. In this scenario we define
four stations of interest A, B, C and D and the behaviours
consist of walking from one station to another. Figs. 8 and
10 illustrate examples of gestures defined within the context
of visually mediated interaction and gestures representing
alphanumeric symbols, respectively.

We begin by stating our motivation and reviewing
previous work in this area. In Section 3 we introduce the
concept of modelling temporal structures by statistical
dynamic systems using first-order Markov processes. In
Section 4 we show how this approach can be extended to
(i) learn prior knowledge on both state distributions and
observation covariances, (ii) perform automatic state
selection and segmentation using temporal clustering and,
(iii) continuously propagate state densities via hidden
Markov states both under the constraint of the learned
prior and also subject to augmentation by current visual
observation. Experiments on the recognition of behaviours
and gestures using this model are described in Section 5
before we conclude in Section 6.

2. Motivation and prior work

The most common solution to represent temporal infor-
mation, such as human activities, has been to give it a spatial
representation. However, a better approach to address the
issues of uncertainty, non-linear temporal scaling and
temporal segmentation intrinsic to high-dimensional
temporal structures is to represent time implicitly. That is
to represent time by the effect it has on processing and not as
an additional dimension of the input vector.

One method is the use of procedures based on dynamic
programming such as Dynamic Time Warping (DTW) or
Hidden Markov Models (HMMs). Example of DTW in
gesture recognition is the work of Darell and Pentland [5]
and Bo-bick and Wilson [3]. Darell and Pentland applied
DTW to match normalised image template correlation
scores against learned spatio-temporal hand gesture models
whereas Bobick and Wilson represented gesture templates
as an ordered sequence of ‘fuzzy’ states in a configuration
space and employed a DTW parsing algorithm for recogni-
tion. However, although DTW has been successful in small
tasks, its main limitations are that it needs a large number of

templates in order to model a range of variations and it
cannot handle undefined patterns.

Temporal structures can also be modelled using HMMs
as stochastic processes under which salient phases of the
structure are represented as states and prior knowledge on
both state distributions and observation covariances is
learned from training examples. Predicting state transitions
then provides more robust means to cope with time scaling
and avoids the need for determining the starting and ending
points of behaviours [8,16,19]. In HMMs, one of the first
applications in behaviour recognition was that of Yamato et
al. who used HMMs to recognise sequences of tennis strokes
based on quantised time-sequential binary images [21].
HMMs with continuous observation distributions have
been applied by Starner and Pentland to model American
Sign Language from relatively low resolution hand tracking
[20]. HMMs have also been used by Ivanov and Bobick in
the recognition of atomic primitives of activities, as for
example a ‘square’ or the movements of a music conductor
[13]. However, the main disadvantages of HMMs are that (i)
they can be used to estimate the probabilities for only one
model at a time and (ii) they can only give an estimate of the
final probability for each model.

An alternative approach is the use of artificial neural
networks that assume dynamic behaviour and are responsive
to time-varying information. Examples are recurrent
networks [7,10,18] whose ability to store internal states
and implement complex dynamics provide a natural frame-
work for both recognition and prediction of temporal
sequences. However, the main disadvantage of such
networks is their inability to converge when trained with
high-dimensional structures.

More recently the conditional density propagation
(condensation) algorithm was proposed by Isard and
Blake [11,12]. Instead of modelling observation probabil-
ities conditional to a finite set of discrete states, a set of
probabilities for different models is continuously propa-
gated over time. For gesture recognition, condensation
has been adopted by Black and Jepson [1,2]. The model
performs fix-sized local linear template matching
weighted by the conditional observation densities propa-
gated according to condensation thus allowing for a
global non-linear time scaling. However, the model does
not use any prior knowledge on both state transitions and
measurement covariance. State predictions are simply
previous states plus arbitrary Gaussian noise. Conse-
quently, a very large number of density samples (over
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thousands) with localised uniform distribution is needed
to be initialised and then propagated over time. This is
computationally expensive.

Here we introduce a framework to recognise gestures and
behaviours based on both learning prior and continuous
propagation of density models of behaviour patterns. Prior
is learned from training sequences using hidden Markov
models and density models are augmented by current visual
observation. We begin by describing the spatio-temporal
trajectory exhibited by a gesture or behaviour as a first-
order Markov process under which salient phases or states
of the movement are explicitly modelled over time. Under
this framework, temporal changes are treated as state vector
transformations according to the probabilities associated
with each state.

3. First-order Markov processes

Human activities are temporally ordered. We would
like therefore to recognise gestures or behaviours based on
a finite sequence of ordered observations (O =
{o4,...,0,,...,07} where o, denotes the observation vector
o at time . Furthermore, we would like to predict the obser-
vations as this will constrain matching in the next time
frame, making tracking efficient and reliable. Markov
processes can be used to describe statistical dynamic
systems with temporal history by a sequence of character-
istic states, capturing landmark locations where the system
undergoes significant changes. For example, changes in
speed or direction of a movement.

Let us assume that the temporal structure of a behaviour
or gesture can be modelled by a dynamic system described
by a first-order Markov process. In this case the conditional
probability of state q, given q,—; is independent of its former

history 2;,_» = {qq,qs,...,q,—> }, i.e.
p(qt|qt—l) = P(qu@t—l) (D

Furthermore, we assume that a conditional, multi-modal
observation probability p(o,|q,) is independent of its obser-
vation history ,_; = {04,0,,...,0,_;} and is therefore
equal to the conditional observation probability given the
history, i.e.

p(0t|qt) = P(01|(lp 0,-1) ()

We can then propagate the state probability p(q,|¢,) based
on Bayes’ rule as follows:

p(qt|(9t) = kzp(0t|qt)l7(qt|(9t—1) (3

where p(q,|(,_,) is the prior from the accumulated observa-
tion history up to time ¢ — 1, p(o,q,) is the conditional
observation density and k, is a normalisation factor. The
prior density p(q,|¢,_,) for accumulated observation history
can be regarded as a prediction taken from the posterior at
the previous time p(q,_1|¢,_;) and the state transition

probability p(q,|q,—1) :

p(qt|(9t*1) = J p(qt|qt71)p(qt71|(9t*1) “4)

4 -1

In condensation, Eq. (4) is implemented using factored
sampling and the posterior p(q,_;|@,_,) is approximated
by a fixed number of state density samples [11]. The predic-
tion is more accurate as the number of samples increases but
there is a corresponding increase in computational cost.

In a hidden Markov model, sequences are modelled by
assuming that the observations depend upon a discrete,
hidden state, q,, The HMM hidden states are indexed by a
single multinomial label that can take one of N discrete
values, q; € {1,...,N}. Each of the hidden states has its
own conditional probability density function p(o,|q;).

4. Propagating conditional densities

Condensation does not make any strong parametric
assumptions about the form of the state density, p(q,), and
can therefore track multiple, ambiguous targets simulta-
neously over time [11]. However, based on the accumulated
history of the current observations (), alone without any
prior knowledge, the state propagation density p(q,|q,_;)
is usually given as the previous estimations plus arbitrary
Gaussian noise. Consequently, meaningful estimation of the
history accumulated prior p(q,|¢,_,) can only be obtained
by propagating a very large set of conditional densities over
time [2]. As a result the prediction can be both expensive
and sensitive to observation noise. In order to reduce the
required number of samples for the propagation and also to
cope with noise and variance in observation, priors on
temporal structures learned from training examples should
be used.

4.1. Learning prior using HMMs and EM

One solution to the problem of over-sampling in
condensation is to learn and impose a priori knowledge
of both observation covariance and the underlying state
transition structure over time in order to constrain ambi-
guities in the sampling and propagation of observation
conditional state densities. This is the notion of propagat-
ing observation conditional densities with priors (based
on landmarks).

An HMM serves this purpose well. In other words, an
HMM can be used to learn the prior knowledge of both
observation covariance and state transition probabilities
between a set of sparse and discrete landmark locations
in the state space in order to constrain the ambiguity in
continuous propagation of conditional state densities
over time.

An HMM model A = (A, b, 7) can be fully described by a
set of probabilistic parameters as follows:

1. A is a matrix of state transition probabilities where
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Fig. 2. Learning the spatio-temporal structure of a walking behaviour going from station C to station B using HMM and EM clustering (top). The process of
iteration is shown in the bottom row from left to right. The images on the left show the clustering on positions. The images on the right show the corresponding
density distributions over the entire structure based on the clustered hidden states and their distributions in space and time.

element a; describes the probability p(q,+; = jla, =19
and ZJN:I a; = 1.

2. b is a vector of observation density functions b; (o,) for
each state j where b;(0,) = p(0,|q, = j). The observation
density b; (o) can be discrete or continuous, e.g. a
Gaussian mixture b(0,) = S t—; c,Y(0,, e, i)  Wwith
mixture coefficient ¢;, mean u; and covariance 3 for
the kth mixture in a given state.

3. ar is a vector of initial probabilities of being in state j at
time 7 = 1, where S, 7; = 1.

Let us define the condensation state vector at time ¢ as
q; = (q, A), given by the current hidden Markov state q, for
a model A. By training HMMs on a set of observed trajec-
tories of activities, a priori knowledge on both state propa-
gation and conditional observation density can be learned by
assigning the hidden Markov state transition probabilities
p(q, =jlq,—; = i) of a trained model A to the condensation
state propagation densities of

pala—1) = p(q, = jlg,—1 = i, ) = a; (&)

Similarly, the prior on the observation conditional density
p(o,q,) is given by the Markov observation densities at each
hidden state as

p(otht) = p(0t|qt =j,A) = bj(0,) (6)

The Markov observation density at each Markov state b; (0,)
is used to provide the prior knowledge about the observa-
tion covariance. As a result, the process of both sampling
and propagating condensation states is made not only
more focused (guided) but also robust against observation
noise.

Learning the prior involves (i) automatic hidden state
segmentation through temporal clustering, estimation of
(ii) hidden state transition distribution and (iii) conditional
observation density distribution at each hidden state. This
can be achieved using the Baum—Welch method, an itera-
tive model that maximises the likelihood P(O|A) for a given
model A. Given the number of hidden Markov states to be N,
learning the locations of the states (automatic temporal
segmentation), their transition probabilities and the condi-
tional observation density distributions associated with each

state can be performed as follows:

1. Initialise 7+ = {1,0,...,0} and the state transition matrix
A as

_a” agn 0 0 ]
0 [25%) 0 0
A =
0 0 aN-IN-1 A4N-IN
| O o - 0 1

Where a; = 1 - (l/i) and Aji+1 — 1 - aj.
For a first-order HMM, the average time 7 in a state is
given by

1
1 —a;

(o)
P= ndi '(1—ay) = (7)
n=1
and estimated as the ratio between the mean trajectory
duration 7' of a behaviour in the training set and the
number of states N, 7 = T/N.

2. Use the EM algorithm over a set of M training examples
0={0"..,0"} to iteratively perform temporal clus-
tering on the states and estimate model probability distri-
butions A, b and .

Fig. 2 illustrates the iterative process of automatic clus-
tering of the hidden states of a walking behaviour going
from station C to station B in an office environment. In
this example, four training sequences were used. The
number of hidden states is set to 12, with conditional obser-
vation density distribution set to 1.

4.2. Observation augmented density propagation

Recognition based on prior can be made more robust if
current observation is also taken into account before predic-
tion. Let us consider the state propagation density p(q,|q,_;)
in Eq. (4) to be augmented by the current observation,
p(q]q;—1,0,) = p(q;|q,—, O,). Assuming observations are
independent over time and future observations have no
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Fig. 3. An example trajectory of a person walking from station B to station D (top). Examples of the eight typical behaviours that the subjects perform in an
office. From right to left and top to bottom: (A to B), (B to A), (A to C), (C to A), (D to A), (C to B), (B to D), (D to B).

. hmm. aug Model Probabllny , hmm. aug Model Probability
2osp DA — DioB BtoD _ CloA 2% Awc clB  Buh.
=z | DtoA ” / ! | Dost ‘ ; -
'ﬁ 08 /f . i D ib A/ y : g 1!
S / ) ) | o 4r At f\ . )
S ol \ . ) j o, 0B . AtoB
& DtoB S Forry f;( Yo J |
o2} : l“‘* ) \ J/\ Lo J\ WX
s $TA b soage, e <
l)0 20 40 80 80 100 120 140 |60"me|80 0 |UD time 1s0
08 End Probablllty 08 ,End Probability
; ! == ) i AtoC BtoA AtoB,
> DtoA D108 BtoD/ ) CloAls Zos| CtoB o I
=08 | | | ‘I 18 I | I
'8 | 1 Q04 i Pl J
'8 M J ! 'l 1 8 b L
e I [ i o
Qo2 i i . Sozp I !] o . .
| | ! ! o P U S S " L
" ) [T TS i
00 20 40 60 80 100 120 140 160 nmewau 0 0 10 tlme 150
, hmm. non Model Probabll;ty »5PMm. non Model Probability
..Dto A tc BtoD P - RN
2% Rl e CYSA Zosl A1C i lptes Bpto Df Vot \\ ' AtoB ]
3 g ' s 3 { { CtoB v ' BtoD . }
06f / / N < [ oD
Gosr ; " Dtod | 8 0y i THE
Bosf DioA K : N o1 e L S Hoa 4 AtC l/l.' l .
[ : - ] i :
a DtoB a ° I | | Qg2 \ -~ Do Pl
R GellD U G S (W Y SN,
o i I - IS e o Moo G W:”" 'A\mm
0 20 40 60 80 100 120 140 160 time|80 0
08 End Probablll'y o End Probability
: i A T
ol D“’A[ DtoB BY°DI/ \l Ctoa/l | Zasl AtoC Crod AtoB/|
X 'y 1 [ D
§ 04t : ! ! L 1 E o4f / it J
o ! i . <] -
CHE ! i ] B [ Ao b
| Ao
/ / ] o ' J L
0 [ S ek [ S [T S— 0 A L L L
20 40 60 80 100 120 140 ’EDtimeleD 0 S0 100 umeiSO
o8 cond. Model Probabmty o5 SoNd. Model Probability
2z - CfoA/»DtoA: CloAn T z _BtoA_  CtoB S CloA™,
Eost /Y ! / / Icton; ] Eosr ; B! JBTOD AtoC | | 1
4 , N ,/ Coo ; i’ \ 8 | |
ar / I ;. i 1 2
g Toroa A/ A 1K R |
Qo,l, v g \ [
»}\\J N R ¥
T e JL, e el Ak
0 20 40 60 80 160 time\BO
o8 End Probability 05 End Probability
EOG— BTOD‘(“W\ PCTOA gos_ CtoB BYOP ]
el DtoA i a i
Sol Dwa CtoA b ] Sl ' ]
o 5 . iy © i
a 4 - P! 5 i
02 i TR B i 1
| !
0 R T A NS R S P — oL ‘ Lt A
0 40 60 80 100 120 140 160 time!80 0 50 100 time'so

Fig. 4. Behaviour likelihoods estimated over time and final probability estimation for the walking sequences (D to A), (D to B), (B to D), (Cto A), (A to C), (C
to B), (B to A), (A to B), using observation augmented density propagation (top two rows), non-augmented density propagation using prior only (middle two
rows) and the condensation algorithm (bottom two rows). The number of samples used for these experiments was 80.
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Fig. 5. The office environment (left), the overlaid sample trajectories of the walking behaviours performed within such an environment (middle) and the overall

recognition and misclassification rate for these trajectories (right).

effect on past states p(q,_|C,) = p(q,_,|C,_,), the predic-
tion process of Eq. (4) can then be replaced by

p(q|0) = Z P(Q;|a;-1,0)p(q—1]0; 1)
qi—1

= Z kip(o,]a)p(a,la,-1)p(g,-1]0,-1) )]
qr-1
where k, = 1/p(0,|q,_) and

p(oy, qt|qt—1) _ p(0t|qt’ Qz—l)P(qz|qz—l)
p(0t|qt71) p(0t|qt71)

p(qz|qz—1a o) =

_ p(0t|Qt)P(qt|qr—1)
p(0t|qt7 D)
)

Given that the observation and state transitions are
constrained by the underlying HMM, the state transition
density is then given by

Az A
) . a;b; (0,)
p(qt|qt71?0t) = p(q, :]|q171 =1,0) = N i (10)

> ahbn(o)
n=1

The observation augmented prediction unifies the processes
of innovation and prediction in condensation given by Eqgs.
(3) and (4). Without augmentation, condensation performs a
blind prediction based on observation history alone.
Augmented prediction takes the current observation into
account and adapts the prior to perform a guided search in
prediction. This both improves the recognition rate and
reduces the number of samples used for propagation.

5. Experiments

We have applied our model to a set of extensive experi-
ments on the recognition of walking behaviours and
gestures. During our experiments any gesture or behaviour
is recognised once the number of samples in the last two
states is above a preset threshold. A gesture or behaviour is
misclassified if it is incorrectly recognised, whereas it is not
classified if the number of samples in the last two states is
below the preset threshold for all gesture and behaviour
models.

Walking behaviours: These behaviours were defined
within an office environment where four stations were iden-

tified as shown in Fig. 3. Eight behaviours were selected and
a database containing 120 sequences was built. Each beha-
viour was performed five times by three different subjects
and captured at 12 frames per second. Features were
extracted using temporal image filtering and stored in a
vector 0 = {x,y,dx,dy} containing the centre of mass, rela-
tive to the initial starting position and the displacement of
the moving person between two consecutive frames. Exam-
ples for some of the behaviours and how they overlap can be
seen in Figs. 3 and 5.

Prior knowledge on the state propagation and conditional
observation density was learned using four example trajec-
tories from each behaviour. The same examples were also
used to compute mean trajectories and variances for each of
the behaviours that were used as models for the condensa-
tion algorithm. The remaining 11 trajectories for each beha-
viour were used for recognition.

Fig. 4 shows the probability likelihoods for the beha-
viours shown in Fig. 3. They are obtained by matching the
behaviour models to novel trajectories using (i) observation
augmented density propagation based on observation
augmented prior (top two rows), (ii) non-augmented density
propagation based on prior (middle two rows) and (iii) the
condensation algorithm (bottom two rows). For each algo-
rithm we show the model probability estimation for each
behaviour during the recognition process and the estimated
final probability for the recognised behaviour.

It can be seen that the observation augmented propagation
algorithm was able to recognise all behaviours whereas non-
augmented propagation algorithm was not able to recognise
behaviour (B to A). In addition, the final probabilities esti-
mated for the recognised behaviours by the non-augmented
propagation algorithm are lower to that estimated by the
observation augmented algorithm. The condensation algo-
rithm was not able to recognise behaviours (A to C) and (A
to B) and misclassified behaviour (D to B) as (D to A) and
(C to A) and behaviour (B to A) as (B to D). In general, the
probability estimated for a recognised behaviour by the
condensation algorithm was much lower to that estimated
by both observation-augmented propagation and non-
augmented propagation using prior.

The block diagrams in Fig. 6 show the recognition rate
(black area) and the misclassification rate (dark grey area) of
each of the three algorithms for each behaviour, taking into
account all 88 novel trajectories. The observation augmen-
ted density propagation algorithm (hmm.aug) recognised



A. Psarrou et al. / Image and Vision Computing 20 (2002) 349-358

AtoB \

AtoC

ﬂmliml;nilit;/

mm.non  cond

Clo A

Bto A

mm. non

CtoB

pmbabiliry

cond. mm. aug

cond. ““hmm, aug —_hmm. non

con

““hmm. aug

mm. non

, , Frobosiiy

cond

mm. non  cond.

355

Fig. 6. Recognition (black area) and misclassification (dark grey area) rate for the walking behaviour and all novel trajectories of the data set using (i)
observation augmented density propagation, (ii) non-augmented propagation using only prior, (iii) the condensation algorithm.
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Fig. 7. Recognition rate (left) and misclassification rate (right) for the walking behaviour with respect to the number of samples used for the observation

augmented, non-augmented and condensation algorithm.

{7}

Fig. 8. Examples for the four communicative gestures in visually mediated interaction. From top to bottom: pointing left, pointing right, waving high and

waving low.
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Fig. 9. Recognition rate (left) and misclassification rate (right) for the communicative gestures with respect to the number of samples used for the observation

augmented, non-augmented and the condensation algorithm.

most of the trajectories for all behaviours but it misclassified
some of the (B to D) behaviours as (B to A). The non-
augmented density propagation algorithm (hmm.non)
misclassified some of the (A to B) and (A to C) behaviours,
whereas the condensation algorithm misclassified some of
the (A to B), (A to C), (B to A) and (B to D) behaviours and
failed to recognise all (D to B) behaviours.

Fig. 7 shows the recognition and misclassification rate for
all walking behaviours with respect to the number of
samples propagated. Using only 160 samples the results in
Fig. 7 (left) illustrate that estimating prior knowledge and
incorporating it to our behaviour models increases the over-
all probability estimation to 60%. Further using observation
augmented propagation of density functions increases the
overall probability estimation to 70%. This translates to an
improvement of 60 and 100%, respectively, compared to the
recognition rate achieved by the condensation algorithm.
Compared to the non-augmented propagation algorithm
the observation augmented recognition rate is increased by

25%. 1t is also significant that the observation augmented
propagation algorithm achieves a 64% recognition rate
using only 40 samples compared to the 38% recognition
rate achieved by the non-augmented algorithm and 29%
rate achieved by the condensation algorithm using the
same number of samples. The recognition rate of the obser-
vation augmented propagation algorithm can only be
matched by the non-augmented algorithm when 640
samples are used. Using 640 sample, observation augmen-
ted propagation gives a recognition rate over 70%. Fig. 7
(right) shows the misclassification rate with respect to the
number of samples for the three algorithms. The graphs
illustrate that the misclassification rate is much higher for
the condensation algorithm compared to both observation
augmented and non-augmented algorithms. It should be
noted that the increase in the misclassification rate as the
number of samples increase is against the non-classification
rate, which is decreased accordingly.

Gestures: In addition to the walking behaviours two sets

Fig. 10. Examples for the four symbol gestures defined in three sets. From top to bottom: numerals ‘5’, ‘3°, 2 and letter ‘0’.
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Fig. 11. Recognition rate (left) and misclassification rate (right) for the symbol gestures with respect to the number of samples used for the observation

augmented, non augmented and the condensation algorithm.

of gestures have been used: (i) a set of communicative
gestures defined within the context of visually mediated
interaction and they are: pointing left, pointing right,
waving high up and waving low down [14] and (ii) a set
of symbol gestures similar to that defined in [2] and they are
the numerals ‘2°, ‘3’, ‘5’ and letter ‘I’. In the communicative
gestures the object-centred position and displacement {x, y,
dx, dy} of a gesture in time ¢ is determined using moment
features estimated from image motion as described in [14].
In the symbol gestures, in addition to image motion the skin
colour of the hand was also used for extracting the observa-
tion vector {x, y, dx, dy}. As a result, the symbol gestures are
less noisy than the communicative gestures. A database of
image sequences was collected and for the purpose of these
experiments we build HMMs using four examples of each
symbol gesture and six examples of each subject performing
communicative gestures. Each sequence has on average 40
frames captured at 12 Hz. Examples of the communicative
gestures and symbol gestures can be seen in Fig. 8 and 10,
respectively.

Fig. 9 and 11 show the recognition and misclassifica-
tion rate for the communicative and symbol gestures,
respectively. The results for the communicative gestures
shown in Fig. 9 (left) illustrate that using 160 samples the
observation augmented and non-augmented propagation
density algorithms increase the overall probability estima-
tion by 40% compared to the probability estimated by the
condensation algorithm. It is important to note that using
only 80 samples the observation augmented algorithm
achieves a 70% recognition rate. Fig. 11 (left) illustrates
that using 160 samples to recognise the symbol gestures,
the observation augmented and non-augmented algo-
rithms increase the overall probability estimation by
25% compared to the probability estimated by the
condensation algorithm. The improved performance of
the condensation algorithm is due to the less noisy nature
of the symbol gestures.

Figs. 9 and 11 (right) show the misclassification rate with
respect to the number of samples for the three algorithms.
The graphs illustrate that for both communicative and
symbol gestures the misclassification rate is much higher
for the condensation algorithm compared to both observa-
tion augmented and non-augmented algorithms.

6. Conclusions

We described a statistical dynamic framework to model
and recognise human activities in a state space based on
learning prior and the continuous propagation of density
models of behaviour patterns. Prior is learned from training
sequences using hidden Markov models recognition is made
more robust using density models augmented by current
visual observation. The ability of the framework to address
the problems of uncertainty, non-linear scaling and temporal
segmentation intrinsic to temporal structures, is illustrated
through the recognition of a set of walking behaviours and
gestures and compared to that of condensation. From the
experiments we have shown that both the observation
augmented and non-augmented algorithms achieve a much
higher recognition rate compared to condensation. The
recognition rate of the walking behaviour is increased by
70% and the recognition rate of the communicative and
symbol gestures is increased by 40% and 25%, respectively.
In addition we have shown that we can achieve a high
recognition rate for the walking behaviour and gestures
with using only a small number of samples (40). It is signif-
icant that such performance improvement is achieved with
less computational cost since both the observation augmen-
ted and non-augmented algorithms require a smaller number
of samples.
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